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Abstract The synthesis of a series of electroactive 1,5-benzodiazepines bearing either a 

ferrocene or tetrathiafulvalene core, acting as the electroactive moiety, is reported. The 

electron donating ability of these redox active 1,5-benzodiazepines is described together with 

their molecular structures, investigated by X-ray diffraction studies.  

Keywords: dehydroacetic acid, tetrathiafulvalene, dihydropyrone, ferrocene, 1,5-

benzodiazepine. 

 

1. Introduction 
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Benzodiazepines, an important class of N-heterocyclic compounds, exhibit a wide range of 

biological and pharmacological activities which have contributed to their use as active 

ingredient in numerous drugs.1 Various structures of benzodiazepines have been described 

and the 1,5-benzodiazepine scaffold exerts similar biological activity to that of their well 

known 1,4-isomers.2 Among the various analytical methods which have been used to detect 

these drugs or their metabolites into biological fluids the electrochemical detection is worth 

mentioning. This method mainly relies on the reduction of the azomethine bond of the 

diazepine ring.3,4 However this imine bond is reduced at quite high potential (Ep = -0.8 V vs 

Ag/AgCl).5 Therefore, it would be of interest to graft on the benzodiazepine scaffold an 

electroactive moiety which is either easily reduced or oxidized in order to facilitate their 

electrochemical detection. For that purpose, two electrophores, the tetrathiafulvalene (TTF)6 

and the ferrocene (Fc)7 could be of interest as they both exhibit easily accessible and 

reversible oxidation processes. Different strategies have been studied with the aim of forming 

the 1,5 benzodiazepine ring. They mainly rely on the condensation reactions of o-

phenylenediamine either with  unsaturated carbonyl compounds,8 β-haloketones,9 or 

ketones under acid catalysis conditions.10 An efficient synthesis of 1,5-benzodiazepine 

bearing a pyronyl side chain in the 2 position has also been described using o-

phenylenediamine, DHA (dehydroacetic acid) and aromatic aldehydes in the presence of 

catalytic amount of acid.11 Similarly, tetronic acid is known also to react with o-

phenylenediamine to lead to binucleophilic enaminone intermediate. Subsequent reaction of 

this intermediate with various electrophiles represents a versatile access to different 

heterocyclic structures, including benzofurodiazepine.12,13,14 Therefore the reaction of o-

phenylenediamine with DHA or tetronic acid in the presence of different aromatic aldehydes 

under acid catalysis conditions leads easily to 1,5-benzodiazepine. Thus, we decided to 

investigate these approaches for the synthesis of electroactive benzodiazepines using either 
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trimethyl-tetrathiafulvalene carboxaldehyde (Me3TTFCHO) or ferrocenecarboxaldehyde 

(FcCHO) as the electrophile. Herein, we report the synthesis of a series of redox-active 3,4-

dihydro-1,5-benzodiazepines where the electroactive lead is played by either the TTF moiety 

or the Fc core using as starting compounds DHA or tetronic acid. The structural and 

electrochemical properties are also reported.  

 

2. Results and discussion 

The chemical strategy we used for the synthesis of the electroactive 1,5-benzodiazepines 

bearing a DHA moiety and a ferrocene (Fc) or a TTF core is outlined in Scheme 1. It relies on 

the reaction of o-phenylenediamine (o-PDA) with DHA in ethanol to afford the imine 

structure 1. Subsequent reaction of 1 with ferrocene carboxaldehyde or Me3TTFCHO in the 

presence of a catalytic amount of trifluoroacetic acid leads to the formation of the 1,5-

benzodiazepine 2 and 3 respectively. 1H NMR analysis of these derivatives reveals that the 

CH2-CH of the seven-membered ring appears as an AMX system with a large anisochrony 

consistent with a 1,5-benzodiazepine structure.15 The difference in the chemical shift 

observed for these protons in 2 (HA,  = 2.58 ppm; HM,  = 4.50 ppm; HX,  = 5.02 ppm) 

compared to 3 (HA,  = 2.85 ppm; HM,  = 4.17 ppm; HX,  = 5.35 ppm), and especially to the 

HM one, can be infer to the different electron donor character of the TTF compared to the Fc 

core. 
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The formation of 1,5-benzodiazepine according to this strategy leads usually to a seven-

membered ring with one imine belonging to the ring. However, for the benzodiazepine 

bearing a DHA moiety two tautomeric forms, the enamine and the enol, can be written as 

depicted in Scheme 2. The chemical shift for the H atom involved in the hydrogen bonding 

between the DHA and the benzodiazepine is observed at 15.43 ppm for 2 and 15.33 ppm for 3 

which is in accordance with either the enolic form or the enamine one (scheme 2). However, 

1H NMR studies carried out on analogous systems indicate the presence of the enamine 

structure rather than the enol one.15,16  
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Single crystals suitable for an X-ray diffraction study were obtained for 2 by recrystallization 

in EtOH and for 3 by recrystallization in 1,4-dioxane. Compound 2 bearing a Fc moiety 

crystallizes in the monoclinic system, space group P21/c with two independent molecules (A 

and B).  Compound 3 crystallizes in the triclinic system, space group P-1 with one 

independent molecule and two solvent molecules. The molecular structures of these 

derivatives are represented in Figure 1 and selected bond lengths are listed in Table 1. Both 

molecular structures exhibit similar trends. Unambiguously, these benzodiazepines crystallize 

under the enamine tautomeric form (scheme 2) and as the E isomer (Scheme 3) with hydrogen 

bonds between the N-H•••O=C (1.870(38) Å mole A and 1.792(36) Å mole B in 2 and 

1.829(34)Å in 3).17  

Scheme 3. Two configurations of the enamine form of benzodiazepines 2 and 3.
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It can be observed that the 3,4-dihydro-1,5-benzodiazepine is not planar with the folding of 

the seven-membered ring which adopts a boat conformation along the N…N hinge. The bond 

lengths of the seven membered ring are of comparable values for 2 and 3 indicating that there 

is no influence of the nature of the electroactive moiety. The dihedral angles between the 
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protons involve in the AMX H1 NMR pattern amounts to 177.9 Å and 64.2 Å for 

benzodiazepine 2 mole A while for 3 they amount to 173.1 and 54.9° (Scheme 4). The latter 

dihedral angle is slightly smaller in 3 compared to the one observed in 2 probably due to the 

steric hindrance generated by the TTF core. Nevertheless, these dihedral angles determined in 

the solid state by X-ray diffraction studies are in accordance with those determined by 1H 

NMR in solution on benzodiazepine analogues by using the coupling constant and the Karplus 

type equation.15 This indicates that in solution and in the solid state the seven membered ring 

exhibit similar conformation.   

HX

HA

HM

N

TTF

Dihedral angles in 3
HM-C-C-HX : 54.89(28) Å
HA-C-C-HX : 173.10(21) Å

HX

HA

HM

N

Fc

Dihedral angles in 2
Mole A
HM-C-C-HX : 59.43(35) Å
HA-C-C-HX : 176.91(26) Å
Mole B
HM-C-C-HX : 64.19(36) Å
HA-C-C-HX : 177.92(28) Å  

Scheme 4. 

Concerning the redox moieties, TTF and Fc, the bond lengths and the bond angles are in the 

usual range for such molecules and confirm that these compounds 2 and 3 are under the 

neutral state. 
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Fig. 1. Molecular structure of 1,5-benzodiazepines 2 molecule A (top) and 3 (bottom). 

 

 

 

Table 1 

Selected bond lengths (Å) of the benzodiazepine ring in 2, 3 and 5. 

 

N

N
R

a

b

c
d

e

f
H

H

 

C-N (a) 

 

N-C (b)  

 

C-C (c) 

 

C-C (d) 

 

C-N € 

 

N-C (f) 

molecule A of 2 1.408(7) 1.479(4) 1.532(5) 1.501(5) 1.334(5) 1.415(6) 

molecule B of 2 1.412(7) 1.486(4) 1.517(6) 1.493(5) 1.323(5) 1.418(6) 

compound 3 1.405(3) 1.475(4) 1.528(4) 1.501(4) 1.326(3) 1.418(3) 

N

N
R

a

b

c
d

e

f
H

H

 

   C=Cd   

molecule A of 5  1.425(4) 1.504(3) 1.493(4) 1.356(3) 1.347(3) 1.412(3) 

molecule B of 5 1.423(3) 1.478(3) 1.493(4) 1.348(3) 1.340(3) 1.410(3) 

 

The other approach used to synthetize electroactive 1,5-benzodiazepines is depicted in 

Scheme 5 and relies on the reaction of tetronic acid with o-phenylenediamine.12-14 This 

reaction affords the 4-(2-aminophenylamino)furan-2(5H)-one 4. In refluxing EtOH, 4 in the 
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presence of FcCHO or Me3TTFCHO and two drops of trifluoroacetic acid leads to the desired 

benzodiazepine 5 and 6 respectively.  
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The benzodiazepine 5 crystallizes in the triclinic system, space group P-1 with two 

independent molecules and two molecules of EtOH. The molecular structure of 5 is depicted 

in Figure 2 and selected bond lengths of the diazepine ring are collected in Table 1. Within 

this compound the diazepine ring is less distorted compared with compounds 2 and 3, due to 

the presence of the fused furanone ring. The C–N bond lengths (Table 1), within this ring are 

of comparable values than the one observed for 2 and 3. Both sets of data are consistent with 

the presence of an enamine form with an exocyclic "ene" structure for 2 and 3 and an intra 

"ene" diazepine ring for 5 as the C–N (e) bond (Table 1) is smaller than the C–N (b) bond. 

Intermolecular hydrogen bonds are observed between two neighboring molecules as shown in 

Figure 2. This intermolecular hydrogen bonds involve the same N-H atoms of the diazepine 

ring either as a donor or as an acceptor of hydrogen bonds with one molecule of EtOH and the 

the exocyclic O atom of another molecule 5.  
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Fig. 2. Molecular structure of 1,5-benzodiazepine 5 showing the hydrogen bonds between 
EtOH and the N of 5 and between the N-H and the O=C. 

 

Electrochemical investigations were carried out by cyclic voltammetry and the oxidation 

potentials are collected in Table 1 together with the oxidation potentials of the Me3TTFCHO 

and FcCHO precursors. The cyclic voltammograms show that the benzodiazepines 3 and 6 

containing one TTF core display two reversible monoelectronic processes corresponding to 

the reversible oxidation of the TTF to the cation radical species and to the dicationic one 

(Fig.3.). Contrariwise, the benzodiazepine substituted by a ferrocene moiety, 2 and 5 display 

one reversible monoelectronic oxidation process corresponding to the oxidation of the Fc to 

the Fc+ (Fig.3.).  In both families, the ferrocene/benzodiazepines and the 

TTF/benzodiazepines one, the presence of the DHA core induces a decrease of the overall 

donating ability as the first oxidation potential for 2 and 5 is anodically shifted by 120 mV for 

2 and 50 mV for 5 compared with 3 and 6. For all these electroactive benzodiazepines, the 

oxidation process is observed at easily accessible oxidation potentials especially for the 

TTF/benzodiazepines due to the presence of the electron rich TTF core. 
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Fig. 3. Cyclic voltammograms of 2 (red) and 3 (blue) in 0.1 M CH2Cl2 -[NBu4PF6]. E in V vs 

SCE, v = 100 mVs-1. 

 

Table 2   

Oxidation potentials of the benzodiazepines 2, 3, 5 and 6, E in 

V vs. SCE, CH2Cl2  0.1 M, Pt working electrode with 0.1 M n-

NBu4PF6 scanning rate100mV/s  

compound E1 E2 E mV 

2  0.55  - - 

5 0.43 - - 

FcCHO 0.74 - - 

Fc 0.47   

3 0.28 0.81 530 

6 0.23 0.78 550 

Me3TTFCHO 0.43 0.95 520 

Me3TTF 0.27 0.80 530 

 

3. Conclusion 

In summary, we have developed the synthesis of electroactive 1,5-benzodiazepines using a 

simple and compatible approach with the electroactive moiety such as the ferrocene and the 
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TTF. As evidenced by X-ray diffraction studies, the diazepine rings adopt the enamine form 

with intramolecular hydrogen bonds between the N-H of the enamine and the carbonyl of 

DHA. All these benzodiazepines exhibit reversible oxidation processes at low oxidation 

potentials thanks to the presence of the electrophore TTF or Fc. Further investigations of the 

influence of the redox active moiety on the biological activity of these benzodiazepines will 

be investigated in due course. 

 

4. Experimental  

4.1. General 

1H NMR and 13C NMR spectra were recorded on a Bruker Avance 300 III spectrometer with 

tetramethylsilane as internal reference. Chemical shifts are reported in ppm. Mass spectra and 

elemental analysis results were performed by the Centre de Mesures Physiques de l'Ouest, 

Rennes. Melting points were measured using a Kofler hot stage apparatus and are 

uncorrected. Cyclic voltammetry were carried out on a 10-3 M solution of the compounds in 

dichloromethane, containing 0.1 M nBu4NPF6 as supporting electrolyte. Voltammograms 

were recorded at 0.1 Vs-1 on a platinum disk electrode (A = 1mm2). The potentials were 

measured versus Saturated Calomel Electrode. Me3TTFCHO was prepared according to 

published procedure.18 All the reagents were purchased and used without additional 

purification. 

 

4.2. Synthesis and characterization 

 

4.2.1. General procedure for the synthesis of 1,5-benzodiazepines (2-3) 
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A solution of o-phenylenediamine (1.08 g, 0.01 mol) and DHA (1.68 g, 0.01 mol) in 50 mL of 

EtOH was stirred for 3h. The precipitate was filtered, washed with diethyl ether and dried. 

Compound 1 was obtained in 90 % yield and used in the next step without further 

purification. To a stirred suspension of 1 (0.12 g, 0.5 mmol) in 10 mL of EtOH was added 0.5 

mmole of the aldehyde (0.137 g for FcCHO and 0.107 g for Me3TTFCHO) and two drops of 

CF3CO2H. The mixture was then refluxed for 6 h and the reaction was monitored by TLC. 

The resulting mixture was allowed to stand at room temperature and the precipitate was 

filtered and washed with water. The precipitate was dissolved in 30 mL of CH2Cl2 and 

washed with water dried over MgSO4. The solvent was evaporated and the residue was 

recrystallized in EtOH for 2 and in dioxane for 3. 

 Benzodiazepine 2 was obtained as yellow powder in 74 % yield. Mp = 212 °C; 1H NMR 

(CD3Cl) ∂ (ppm) 2.18(s, 3H, CH3), 2.58(dd, 1H, J=12.4, J=11.4, CH2), 4.13(s, 1H, H-N), 

4.16-4.23(m, 4H, Fc), 4.28(s, 5H, Fc), 4.5(dd, 1H, J=12.4, 3.3, CH2), 5.02(dd, 1H, J=11.4, 

3.3, CH2), 5.80(s, 1H, CH=C), 6.81-6.93(m, 1H, H-Ar), 6.94-7.07(m, 1H, H-Ar), 7.12-

7.25(m, 2H, H-Ar) 15.43(s, 1H, NH); 13C NMR (CD3Cl) 19.9 (C84), 36.6 (C67), 64.2(Cp), 

65.2 (C66), 66.3(Cp), 68.2(Cp), 68.6 (Cp), 92.7 (Cp), 96.4 (C77), 107.4 (C79), 121.6 (Ar), 

121.8 (Ar), 122.4 (Ar), 126.7 (Ar), 128.4(Ar), 140.1 (C69), 163.2 (C80), 163.7 (C82), 172.9 

(C76), 184.8.(C78); UV-vis (CH2Cl2) λ (ε L.mol-1cm-1) : 238 29910), 322 (11360), 375 

(14940) ; HRMS calcd for C25H22N2O3Fe56
  M

+. 454.09798. Found 454.0977. 

 

Benzodiazepine 3 was obtained as brown powder in 67 % yield. Mp = 152 °C; 1HNMR 

(CD3Cl) ∂ (ppm) 1.91 (s, 3H, CH3), 1.93 (s, 3H, CH3), 2.15 (s, 3H, CH3), 2.17(s, 3H, CH3), 

2.84(dd, 1H, J=12.2, J=10.9, CH2), 3.88 (s, 1H, NH), 4.17(dd, 1H, J=12.2, 3.4, CH2), 5.35(dd, 

1H, J=10.9, 3.4, CH2), 5.79(s, 1H, CH=C), 7.21-7.25(m, 1H, H-Ar), 7.02-7.10 (m, 2H, H-Ar), 

7.14-7.18 (m, 1H, H-Ar), 15.33(s, 1H, NH); 13C NMR (CD3Cl) 13.3 (CH3TTF, 13.4 
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(CH3TTF), 13.5 (CH3TTF 19.2(C28)34.6 (C20), 62.7 (C10), 96.1 (C21), 107.1 (C23), 

(C=C TTF)(Ar)121.5 (Ar), 122.6 (Ar), 122.8(C=C TTF) 124.3(C=C TTF) 

125.9 (Ar), 128.3 (Ar), 132.9 (C=C TTF) 140.4 (C12), 161.9 (C24), 164.6 (C26), 171.7 

(C19), 182.1 (C22); UV-vis (CH2Cl2) λ (ε L.mol-1cm-1) : 240 23890), 279 (16210), 322 

(20150), 368 (15670) ; HRMS calcd for C24H22N2O3S4 M
+. 514.05133. Found 514.0513; Anal 

calcd for C24H22N2O3S4 C, 56.01; H, 4.31; N, 5.44; S, 24.92 Found: C, 55.89; H, 4.32; N, 

5.36; S, 24.80. 

 

4.2.2. General procedure for the synthesis of 1,5-benzodiazepines (5-6) 

A solution of o-phenylenediamine (1.08 g, 0.01 mol) and tetronic acid (1 g, 0.01 mol) in 25 

mL of EtOH was refluxed for 30 min. The mixture was cooled to room temperature and the 

precipitate was filtered recovered by filtration. Compound 4 was recrystallized in EtOH. To a 

stirred suspension of 4 (950 mg, 0.5 mmol) in 10 mL of EtOH was added 0.5 mmole of the 

aldehyde (0.137 g for FcCHO and 0.107 g for Me3TTFCHO) and two drops of CF3CO2H. The 

mixture was then refluxed for 6 h and the reaction was monitored by TLC. The resulting 

mixture was allowed to stand at room temperature and the precipitate was filtered and washed 

with water. The precipitate was dissolved in 30 mL of CH2Cl2 and washed with water dried 

over MgSO4. The solvent was evaporated and the residue was recrystallized in EtOH for 5 

and in DMF for 6. 

Benzodiazepine 5 was obtained as yellow powder in 73 % yield. Mp = 248 °C; 1H NMR 

(DMSO-d6) ∂ (ppm) 3.75 (m, 1H, H-Ferr), 3.88 (m, 1H, H-Ferr), 3.96 (m, 1H, H-Ferr), 4.09 

(m, 1H, H-Ferr), 4.11 (s, 5H, H-Ferr), 4.82 (d, 2H, J = 4.9 Hz, CH2), 4.88 (d, J=4.5 Hz, 1H, 

CH), 5.78 (d, J=4.9 Hz, 1H, NH), 6.62-6.72(m, 3H, H-Ar), 6.78-6.82(m, 1H, H-Ar), 9.70(s, 

1H, NH); 13C NMR (DMSO-d6) 52.6 (CH, diazepine), 65.7 (Cp), 66.0 (Cp), 66.1 (Cp), 66.6 

(Cp), 67.4 (CH2), 68.4 (Cp), 93.2 (Cp), 98.3 (C=C, diazepine), 119.3(C=C, diazepine), 120.4 
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(Ar), 122.5 (Ar), 122.7 (Ar), 130.9 (Ar), 138.2 (Ar), 158.6 (Ar), 172.9 (CO2); UV-vis 

(CH2Cl2) λ (ε L.mol-1cm-1) : 243 21300), 307 (7710), 451 (750); HRMS calcd for 

C21H18N2O2Fe56
  M

+. 386.07177. Found 386.0729. 

 

Benzodiazepine 6 was obtained as brown powder in 63 % yield. Mp = 278 °C; 1H NMR 

(DMSO-d6) ∂ (ppm) 1.84 (s, 3H, CH3), 1.87 (s, 3H, CH3), 2.15 (s, 3H, CH3), 4.84 (s, 2H, 

CH2), 4.98 (d, 1H, J=3.8 Hz, CH), 5.98 (d, 1H, J=3.7 Hz, NH), 6.82-6.94 (m, 4H, H-Ar), 9.91 

(s, 1H, NH) ; 13C NMR (DMSO-d6) 13.3(CH3TTF13.4(CH3TTF 14.1(CH3TTF  

(CH, diazepine), 66.1 (CH2), 95.7 (C=C, diazepine), 113.7 (C=C TTF) 119.8 (C=C, 

diazepine), 121.1 (Ar), 122.7 (Ar), 123.4 (Ar), 125.3 (C=C TTF) 130.9 (Ar), 136.7 (Ar), 

158.2 (Ar), 172.2 (CO2); UV-vis (DMF) λ (ε L.mol-1cm-1) : 267 19280), 314 (30270), 467 

(530); HRMS calcd for C20H18N2O2S4 M+.  .  446.02512 Found . 446.0252. Anal calcd for 

C20H18N2O2S4 C, 53.78; H, 4.06; N, 6.27; S, 28.72. Found: C, 53.32; H, 4.09; N, 6.10; S, 

28.81. 

4.3. Crystallography 

Single-crystal diffraction data were collected on APEX II Bruker AXS diffractometer, Mo-Kα 

radiation (λ = 0.71073 Å), for compounds 2, 3 and 5 (Centre de Diffractométrie X, Université 

de Rennes, France). The structures were solved by direct methods using the SIR97 program19, 

and then refined with full-matrix least-square methods based on F2 (SHELX-97)20 with the 

aid of the WINGX program.21 All non-hydrogen atoms were refined with anisotropic atomic 

displacement parameters. Except nitrogen linked hydrogen atoms that were introduced in the 

structural model through Fourier difference maps analysis, H atoms were finally included in 

their calculated positions.  
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Crystal data for 2 (2(C25H22FeN2O3)); M = 908.59. T = 150(2) K; monoclinic P21/c, a = 

6.2447(11), b = 27.047(5), c = 23.789(4) Å, β = 95.263(9) °, V = 4001.0(12) Å3, Z = 4, d = 

1.508 g.cm-3, μ = 0.785 mm-1. A final refinement on F2 with 9103 unique intensities and 573 

parameters converged at ωR(F2) = 0.0964 (R(F) = 0.0492) for 5215 observed reflections with 

I > 2σ(I). 

Crystal data for 3 (C24 H22 N2 O3 S4, 1.5(C4 H8 O2)); M = 646.83. T = 150(2) K; triclinic P -1, 

a = 7.6361(3), b = 11.8253(4), c = 17.0490(6) Å, α = 96.626(2), β = 92.349(2), γ = 99.234(2) 

°, V = 1506.63(9) Å3.Z = 2, d = 1.426 g.cm-3, μ = 0.362 mm-1. A final refinement on F2 with 

6744 unique intensities and 389 parameters converged at ωR(F2) = 0.1188 (R(F) = 0.0526) for 

4826 observed reflections with I > 2σ(I). 

Crystal data for 5 (C21H18Fe1N2O2); M = 864.58. T = 150(2) K; triclinic P-1, a = 10.9619(7), 

b = 13.7303(9), c = 14.9665(10) Å, α = 83.262(3), β = 73.607(3), γ = 66.771(2) °, V = 

1985.8(2) Å3, Z = 2, d = 1.446 g.cm-3, μ = 0.787 mm-1. A final refinement on F2 with 8853 

unique intensities and 533 parameters converged at ωR(F2) = 0.0802 (R(F) = 0.0358) for 7242 

observed reflections with I > 2σ(I).  

5. Supplementary material 

Crystallographic data for structural analysis have been deposited with the Cambridge 

Crystallographic Data Centre, CCDC n° 922159-922161 for compounds 2, 3 and 5. Copies of 

this information may be obtained free of charge from The CCDC, 12 Union road, Cambridge 

CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: 

http://www.ccdc.cam.ac.uk). 
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