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L. Jézéquel

Laboratoire de Tribologie et de Dynamique des Systèmes
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Abstract: The aim of the present paper is to apply the Harmonic
Balance Method (HBM) to a Finite Element Model of a complete
vehicle (body, engine and engine mounts) in order to calculate the
non-linear response of the assembly. The non-linear effects come
from the amplitude-dependent stiffness of the engine mounts. First,
the Harmonic Balance Method is presented. A condensation process
on the non-linear degrees-of-freedom is also proposed. This process
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reduces the original non-linear system by focusing only on the solution

of the non-linear equations associated with the system’s non-linear

components. Secondly, the engine mount stiffness dependency with

amplitude is measured on a test bench to estimate a polynomial

stiffness law. Finally, the numerical analysis is performed to analyze the

non-linear response of the whole vehicle using the Harmonic Balance

Method algorithm with appropriate condensation located only on the

non-linear coordinates of the system in order to minimize computer

time.

Keywords: Harmonic Balance Method; Engine mounts; Vehicle Finite

Element Model; Amplitude-dependent stiffness; Craig and Bampton

condensation procedure; condensation on non-linear DOFs.

1 Introduction

A whole vehicle is a complex assembly of many subsystems : the car body, the
engine, the front and rear axles, etc. Both experimental and numerical expertise
has been developed to predict the response of each isolated subsystem that remains
linear on usual frequency ranges of study. All these subsystems are coupled
by elastic components which have two main functions: to maintain subsystems
together and to limit the transmission of vibrations.

These elastic components are often represented as simple linear stiffness and
damping, linking subsystems together. However, they are made of metal, visco-
elastic fluids and rubber and thus have very complex mechanical behaviour.
They may be strongly non-linear with different environment parameters such as
frequency, temperature, static preload or amplitude.

In this paper we study the coupling between the engine and the car body.
In most of cars, the link between the engine and the car body is based on a
pendular engine mounting system presented Figure 1. This system includes an
engine mount, a gearbox mount, a lower torque rod and an upper torque rod for
powerful engines.

In Section 2 of this paper we present the Harmonic Balance Method with a
condensation process on the non-linear degrees-of-freedom that allows computing
the non linear dynamics of a system containing non-linear components (J.J. Sinou
(2009);E.J. Hahn and P.Y. Chen (1989);V. Jaumouillé, J.J. Sinou and B. Petitjean
(2010);J. Tezcan and J-K Hsiao (2008)).

In Section 3, we apply the Harmonic Balance Method to a whole vehicle FE
model to compute the non-linear dynamic of the car excited by a simple harmonic
force. The non-linear behaviour of the engine mounts with amplitude is measured
on a test bench and we estimate a polynomial law for the amplitude-dependent
stiffness.
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Figure 1 Pendular engine mounting system

2 General theory of the Harmonic Balance Method and

condensation process

In this section, the Harmonic Balance Method with a condensation process on the
non-linear degrees-of-freedom will be presented.

2.1 The Harmonic Balance Method

For a mechanical system, the equations of motion may be written as

MẌ(t) +DẊ(t) +KX(t) = F (t) + FL(X(t), Ẋ(t), ω, t) + FNL(X(t), Ẋ(t), ω, t)

= F (X(t), Ẋ(t), ω, t) (1)

where FL and FNL are the linear and non-linear forces located on the linear
and the non-linear degrees-of-freedom, respectively. F (t) represents the external or
internal periodic force of the system. X(t) represents the time-dependent solution
of size n. M , K and D represent the mass matrix, the stiffness matrix and the
damping matrix, respectively. In order to estimate the response of the non-linear
system as a truncated Fourier series (if this solution exists), the right-hand side
of the system is assumed to be a function that is periodic in time with period
T . Thus we assume that the non-linear dynamical response of the system may be
approximated by finite Fourier series with Ω = 2π

T
the fundamental frequency:

X(t) = B0 +

m
∑

k=1

Aksin(kΩt) +Bkcos(kΩt) (2)

where m is the order of the Fourier series and B0, Ak and Bk define the
coefficients of the finite Fourier series. The number of harmonic coefficients
is selected on the basis of the number of significant harmonics expected in
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the non-linear dynamical response. Moreover, we assume that the force vector
F (X(t), Ẋ(t), ω, t) can be approximated by finite Fourier series of order m

F (t) = C0 +
m
∑

k=1

Sksin(kΩt) +Ckcos(kΩt) (3)

Substituting equation 2 and equation 3 in equation 1 yields a set of (2m+ 1) ∗ n
equations. Using the first nth equations, the constant terms B0 can be determined
by equation 4

KB0 = C0 (4)

For each order k, the kth Fourier coefficients Ak and Bk are given by equation 5
[

K − Ω2M −kΩD
kΩD K − Ω2M

]{

Ak

Bk

}

=

{

Sk

Ck

}

∀k ∈ [1,m] (5)

However, in case of complex non-linearity the Fourier coefficients C0, Sk and Ck

(∀k ∈ [1,m]) are not directly functions of B0, Ak and Bk (∀k ∈ [1,m]). T.M.
Cameron, J.H. Griffin (1989) suggested that the truncated Fourier expression of
F (X(t), Ẋ(t), ω, t) should be calculated by applying an Alternate/Frequency Time
domain method (AFT-method) :

⎡

⎢

⎢

⎢

⎢
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⎢
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...
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⎤

⎥
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⎥

⎥

⎥

⎥

⎦

(6)

Following this, the (2m+ 1) ∗ n non-linear equations of motion 4 and 5 can be
solved by using a non-linear system of equations solver such as the Broyden
method (C.G. Broyden (1994)).

2.2 Condensation procedure

If a non-linear system consists in n-degrees-of-freedom system with non-linear
forces associated with q of these elements, this system may be considered as a
linear structure with p = n− q degrees-of-freedom and having several additional
non-linear elements. Therefore it may be of great interest to keep only the q non-
linear degrees-of-freedom. Equation 1 can be re-ordered by considering the linear
transformation X = PY = P

[

Yq Yp

]

where Yq and Yp contain the q non-linear
degrees-of-freedom and the p linear degrees-of-freedom, respectively. Therefore, the
non-linear equation 1 is transformed by

[

M̃qq M̃qp

M̃pq M̃pp

]{

Ÿq(t)

Ÿp(t)

}

+

[

D̃qq D̃qp

D̃pq D̃pp

]{

Ẏq(t)

Ẏp(t)

}

+

[

K̃qq K̃qp

K̃pq K̃pp

]{

Yq(t)
Yp(t)

}

=

{

Fq(t)
Fp(t)

}

(7)

Here, we present the condensation procedure used to obtain the Fourier
coefficients associated with the non-linear and linear elements of the complete
system.
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2.2.1 Determination of the constant terms associated with the non-linear

elements

By substituting equation 2 and equation 3 in equation 7, and by only equating
coefficients for the constant terms corresponding to the first linear equation of the
system 4, we obtain

[

K̃qq K̃qp

K̃pq K̃pp

]{

B
q
0

B
p
0

}

=

{

C
q
0

C
p
0

}

(8)

where Bq
0 and B

p
0 are the vectors with the q non-linear and the p linear degrees-of-

freedom of the system, respectively. By eliminating B
p
0 from the latter equation,

B
q
0 is given by

B
q
0 =

(

K̃qq − K̃qpK̃
−1
pp K̃pq

)−1 (

C
q
0 − K̃qpK̃

−1
pp C

p
0

)

(9)

2.2.2 Determination of the sine Fourier coefficients associated with the non-

linear elements

Equation 5 may be written as

(

K̃ − (kΩ)
2
M̃

)

Ak − kΩD̃Bk = Sk (10)

kΩD̃Ak +
(

K̃ − (kΩ)
2
M̃

)

Bk = Ck (11)

By eliminating coefficients Bk in equation 10 thanks to equation 11 we obtain

[

K̃ − (kΩ)
2
M̃ + kΩD̃

(

K̃ − (kΩ)
2
M̃

)−1

kΩD̃

]

Ak = Sk + kΩD̃
(

K̃ − (kΩ)
2
M̃

)−1

Ck(12)

By introducing

Tk =

[

K̃ − (kΩ)
2
M̃ + kΩD̃

(

K̃ − (kΩ)
2
M̃

)−1

kΩD̃

]

(13)

Wk = Sk + kΩD̃
(

K̃ − (kΩ)
2
M̃

)−1

Ck (14)

And after separating non-linear and linear degrees-of-freedom, equation 12 may be
re-written as

[

T
qq
k T

qp
k

T
pq
k T

pp
k

]{

A
q
k

A
p
k

}

=

{

W
q
k

W
p
k

}

(15)

By eliminating coefficients Ap
k, coefficients Aq

k are given by

A
q
k =

(

T
qq
k − T

qp
k T

pp
k

−1
T

pq
k

)−1 (

W
q
k − T

qp
k T

pp
k

−1
W

p
k

)

(16)
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2.2.3 Determination of the cosine Fourier coefficients associated with the

non-linear elements

Starting from equation 11 and eliminating coefficients Ak thanks to equation 10
we obtain

[

K̃ − (kΩ)
2
M̃ + kΩD̃

(

K̃ − (kΩ)
2
M̃

)−1

kΩD̃

]

Bk = Ck − kΩD̃
(

K̃ − (kΩ)
2
M̃

)−1

Sk(17)

By introducing equation 13 and the following relationship

Uk = Ck − kΩD̃
(

K̃ − (kΩ)
2
M̃

)−1

Sk (18)

We obtain

[

T
qq
k T

qp
k

T
pq
k T

pp
k

]{

B
q
k

B
p
k

}

=

{

U
q
k

U
p
k

}

(19)

By eliminating coefficients Bp
k, coefficients Bq

k are given by

B
q
k =

(

T
qq
k − T

qp
k T

pp
k

−1
T

pq
k

)−1 (

U
q
k − T

qp
k T

pp
k

−1
U

p
k

)

(20)

2.2.4 Determination of the Fourier coefficients associated with the linear

elements

The linear (2m+ 1) ∗ p Fourier coefficients Bp
0 , A

p
k and B

p
k can be estimated from

equations 8, 15 and 19. After calculations, we obtain

B
p
0 = K̃−1

pp

(

C
p
0 − K̃pqB

q
0

)

(21)

A
p
k = T

pp
k

−1
(W p

k − T
pq
k A

q
k) (22)

B
p
k = T

pp
k

−1
(Up

k − T
pq
k B

q
k) (23)

2.2.5 Complete process for the determination of the Fourier coefficients and

the non-linear dynamical response of the system

In conclusion, the Fourier coefficients B
q
0 , A

q
k and B

q
k associated with the non-

linear components of the system are first determined by considering the (2m+
1) ∗ q equations 9, 16 and 20. These equations are solved by a solver such as
the Broyden method (C.G. Broyden (1994)). Secondly, determination of the B

p
0 ,

A
p
k and B

p
k associated with the linear components of the system are obtained by

considering equations 21, 22 and 23. We can note that the iterative resolution is
only performed on the non-linear degrees-of-freedom. The response on the linear
degrees-of-freedom is then an explicit function of the response on the non-linear
degrees-of-freedom.

Some linear degrees-of-freedom of the vector Yp can be transferred and added
to the vector Yq of the non-linear degrees-of-freedom without loosing the general
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process presented previously. This operation can be very interesting if keeping the
physical linear degrees-of-freedom is necessary for the study (i.e. the non-linear
behavior of the chosen physical linear degrees-of-freedom can be obtained directly
by using relations 16 and 20, without calculating expressions 22 and 23). However,
in this case, the size of the vector Yq has been increased, thereby increasing
calculation time and storage requirements.

3 Application to a whole vehicle FE Model

In this section, the HBM method will be applied on a whole vehicle FE Model
containing non-linear engine mounts stiffness with amplitude.

3.1 Amplitude-dependent stiffness measurement for the engine mounts

3.1.1 General principles

It is possible to measure the dynamic stiffness and damping of a mount enforcing
a harmonic displacement expressed on equation 24 on the top of the mount and
measuring the transmitted effort. Schematic of the test is presented Figure 2. We
assume that the force transmitted is also harmonic with a delay as expressed in
equation 25.

x0(t) = X0cos(ωt) (24)

f(t) = Fcos(ωt+ δ) (25)

Using complex notation we obtain

x∗

0(t) = X0e
iωt (26)

f∗ = Fei(ωt+δ) (27)

The complex stiffness can be expressed as

K∗ =
f∗

x∗

0

=
F

X0
eiδ = K ′ + iK ′′ (28)

This complex stiffness can be re-written as

K∗ = K ′ (1 + itan(δ)) (29)

With δ, the phase of the complex stiffness defined by

δ = Arctan

(

K ′′

K ′

)

(30)

The structural damping coefficient of the mount is then expressed as

G = tan(δ) (31)

We can also define the dynamic stiffness

Kdyn = |K∗| =
F

X0
=

√

K ′2 +K ′′2 (32)
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Figure 2 Dynamic stiffness and structural damping measurement

3.1.2 Non-linear stiffness measurements

Mounts are principally made of rubber. Those materials are non-linear with
several parameters such as amplitude of excitation, temperature, static preload
and frequency. We focused only on the non-linearity of the stiffness K ′ and of
the structural damping coefficient G due to the amplitude of excitation. There
are several references dealing with the non-linearity with amplitude of elastomers
and hyper-elastic materials (P. Saad (2003); A. Lion (1998)). Those phenomena
are attributed to the friction between the long macromolecular chains constituting
rubber. The more carbon black is present in the rubber, the more non-linear the
mechanical properties. Measurements made on rubber samples (A. Lion (1998))
showed two principal effects of the amplitude of excitation on the mechanical
properties of rubber:

• Stiffness decreases with amplitude of excitation (Payne Effect)

• Structural Damping coefficient first increases with amplitude and then
decreases

In the following, we measured on a test bench the stiffness K ′ and structural
damping G along the principal direction for each mount that connects the engine
to the car body. Before measuring, we applied to the engine mount and to the
gearbox mount a static preload corresponding to the weight of the engine. Two
parameters were considered : the frequency and the amplitude of excitation. For
clarity, we fixed frequency at 25 Hz and we represented only the amplitude-
dependent normalized properties. Figure 3 and Figure 4 represent the evolution
of the stiffness K ′ and of structural damping G, respectively. All curves were
interpolated with a 6-degrees polynomial law. The obtained Root-Mean-Square
coefficients are indicated. As observed on rubber samples, we notice that the
dynamic stiffness increases as amplitude decreases while damping first increases
with amplitude and decreases.

3.2 Finite Element Model of the vehicle

The Finite Element model of the vehicle includes the whole trimmed body, axles,
wheels and the engine. This model counts millions of degrees-of-freedom and thus
cannot be easily solved. In order to reduce matrix storage memory, we used a
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Figure 3 Stiffness K’ interpolation for the four mounts

Figure 4 Structural damping coefficient interpolation for the four mounts

Craig and Bampton dynamic condensation method to reduce the vehicle only on
few degrees-of-freedom containing the modal behaviour of the system.

3.2.1 Craig and Bampton dynamic substructuring

Craig and Bampton substructuring method (R.R. Craig and C.C. Bampton
(1968);J.F. Imbert (1979)) is a well-known method for reducing the size of a
problem. Starting from the stiffness matrix K of a mechanical system of size N ,
it is based on a partition of the degrees-of-freedom in two sets of size B and I, so
that N = B + I:

• Boundary degrees-of-freedom (subscript B)

• Interior degrees-of-freedom (subscript I)

{

FB

FI

}

=

[

KBB KBI

KIB KII

]{

XB

XI

}

(33)



10

Considering fixed boundaries we assume that we can consider

{

FI

}

=
{

0
}

(34)

Interior degrees-of-freedom can be expressed (after calculations) as

{

XI

}

= −K−1
II KIB

{

XB

}

=
[

Φ
] {

XB

}

(35)

Applying the same partition to the lumped diagonal mass matrix M we obtain

M =

[

MBB 0
0 MII

]

(36)

Substructure normal modes are defined as the normal modes of the structure with
totally constrained boundaries. These are obtained from equations

{

XI

}

=
{

ψI

}

eiωt (37)

ω2MII

{

ψI

}

= KII

{

ψI

}

(38)

All the eigenvectors
{

ψI

}

are columns of the I-by-I matrix Ψ defined as the
eigenvectors matrix of the fixed boundary system. Matrix Ψ is then truncated,
keeping only the rth first eigenvectors defining matrix Ψr so that

Ψ =
[

Ψr ΨI−r

]

(39)

We also define the modal coordinates vector
{

ηr

}

so that

{

XI

}

=
[

Ψr

] {

ηr

}

eiωt (40)

We can then express the coordinate transformation defined as

{

XB

XI

}

=

[

¯̄I ¯̄0

ΦΨr

]{

XB

ηr

}

eiωt =
[

α
]

{

XB

ηr

}

(41)

Where α is a B + I -by- B + r matrix

The stiffness matrix and the mass matrix after condensation are finally expressed
as

K̃ = αTKα (42)

M̃ = αTMα (43)

The matrices K̃ and M̃ are B + r -by- B + r matrices. Such a method allows
reducing considerably the number of unknowns representing the structure. In our
case the initial model contains almost 4.5 millions degrees-of-freedom. By applying
Craig and Bampton condensation method, the model is reduced to almost 500
degrees-of-freedom.
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3.2.2 Application to the vehicle FE model

First we apply Craig and Bampton condensation technique to the FE model of the
vehicle defining

• 57*3 boundary components

• 300 modal elements

Secondly, degrees-of-freedom are separated considering

• 9*3 non-linear degrees-of-freedom : 8*3 located on the 4 mounts (one on the
engine side, the others on the body side) and 1*3 at the center of gravity of
the engine

• The other 48*3 boundary components and the 300 modal degrees-of-freedom
are defined as linear degrees-of-freedom

The whole FE model of the vehicle is presented Figure 5. The model after Craig
and Bampton condensation method is presented Figure 6.

Figure 5 FE model of the vehicle before Craig and Bampton dynamic condensation

Figure 6 FE model of the vehicle after Craig and Bampton dynamic condensation

3.3 Non-linear computation with an engine simple sine excitation

We excited the system at the center of gravity of the engine with a simple sine
force. In order to simplify the calculation, we only considered a one-stroke-per-
round excitation. The computation was done increasing the rotating speed Ω of
the engine from 0 to 3000 RPM which corresponds to 0 to 50Hz. This frequency
range is the usual idle frequency range of excitation for thermal engines. Moreover,
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non-linear effects with amplitude are expected for low frequencies rather than
high frequencies. In this frequency range the engine is assumed to be rigid, only
represented by its mass and inertia. On the contrary, the car body presents lots
of modes in this frequency range that have to be taken into account in the
resolution. To simplify computations, we only used the interpolated non-linear
functions measured for the stiffness K ′ at 25Hz. Structural damping coefficient G
is assumed to be constant with amplitude.

3.3.1 Simple sine excitation

The non-linear system is excited with a simple sine excitation at the center of
gravity of the engine.

F = F0sin(Ωt) (44)

Where Ω is the rotating speed of the engine and F0 the amplitude of the excitation
fixed at F0 = Fref . We first considered a small value for Fref . The excitation is
along the vertical direction. As presented in Section 3.2.2 we performed a HBM
computation with appropriate condensation on 9*3 non-linear degrees-of-freedom.
We considered the 5 first orders in the truncated Fourier series. The iterative solver
was performed on those 9*3 non-linear degrees-of-freedom. After convergence, the
results were exported on the 48*3 linear degrees-of-freedom. For each rotating
speed of the engine and each degree-of-freedom i , we obtain the converged sine
and cosine Fourier coefficients Ai

k and Bi
k . For one value of the rotating speed

Ω, the total response of a degree-of-freedom i can be estimated during a period
T = 2π

Ω .

X i(t) = Bi
0 +

m
∑

k=1

Ai
ksin(kΩt) +Bi

kcos(kΩt) t ∈ [0, T ] (45)

Modulus of the total response is then defined as

|X i| = maxt∈[0,T ]

(

X i(t)
)

(46)

We can also compute the response of order k during a period which is given by

|X i
k| = maxt∈[0,T ]

(

Ai
ksin(kΩt) +Bi

kcos(kΩt)
)

(47)

After calculations we can show that

|X i
k| =

√

Ai
k

2
+Bi

k

2
(48)

Figure 7 presents the result of the calculation on the body side of the engine
mount in the vertical direction. The sum of all orders and the amplitude of each
order are plotted as functions of the rotating speed of the engine. We clearly see
on this example that due to the non-linearities in the 4 mounts, harmonics appear
in the solution. Amplitudes of the harmonics decrease and become less significant
for high orders. We can notice that we find the first rigid body modes of the
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engine for low frequencies and car body modes for higher frequencies. For this low
amplitude excitation, effects of the non linearity are small, since the non-linear
(composite power) solution (black curve) is equal to the first order solution (blue
curve) which means that the system can be considered as linear for this amplitude.

Another manner to represent the results is to plot the Fourier Coefficients
of the truncated Fourier series for every rotating speed of the engine. We then
construct a non-linear sonagram of the solution. For example, Figure 8 represents
the sonagram obtained on the body side of the engine mount in the vertical
direction. We can see rays appearing on the figure induced by the non-linearities
in the mounts. For thermal engines rotating, such rays are basically visible on the
response of the car body because engine excitations are multi-harmonic. In this
case even a linear model reproduces the rays of the excitation. In our case, the
rays are only due to the non-linearities present in the system excited by a single
sine force.



14

Figure 7 Total Response and order tracking for the engine mount (body side)
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Figure 8 Non-linear sonagram for the engine mount (body side)

3.3.2 Evolution with amplitude of excitation

Considering same iterative stopping criteria, we compared the non-linear response
of the car obtained for two various amplitudes of excitation with the corresponding
linear solution obtained with a classical commercial software. Results are presented
Figure 9 and Figure 10. Amplitudes chosen were F0 = Fref and F0 = 100Fref .

First, we can note that for a low-amplitude excitation, we find the linear
solution obtained with a commercial software, which validates the implementation
of the HBM solver. Secondly, for higher amplitudes of excitation, we can note that
the solution becomes more and more different from the linear solution.

Due to non-linear effects, we clearly see on Figure 10 that amplitude of the
response is modified comparing with the corresponding linear solution. Globally,
amplitude of the resonances at 5Hz, 12Hz and 15Hz is decreasing with amplitude.
Effects of non-linearities is also to shift the resonance frequencies lower than the
linear solution (5Hz) or higher (12Hz, 15Hz, 18Hz). Small pics of resonance appear
on the response (2Hz) which correspond to the resonance of lower orders in the
Fourier decomposition of the solution.
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Figure 9 Comparison of the linear and the non-linear solution for the engine mount
(body side) F0 = Fref
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Figure 10 Comparison of the linear and the non-linear solution for the engine mount
(body side) F0 = 100Fref
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3.3.3 Computational time considerations

We can observe computer time needed for the previous calculations. For each
amplitude, calculations were done for around 400 values of the rotating speed
Ω. Results are presented Table 1. We can note that the higher the amplitude of
excitation is, the longer computational time is. Computer time needed is not so
huge comparing with classical industrial linear calculations.

We can compare computer time between results obtained with a HBM
method without condensation process on the non-linear degrees-of-freedom and
results obtained with a condensation process. Computer time was compared only
calculating the response of the system for the first value of the engine rotating
speed. Table 2 presents the results for the 2 previous amplitudes of excitation. We
can note that the condensation process leads to the appropriate solution 300 times
faster than classical HBM. For using HBM method on industrial models with many
elements, condensation process is thus necessary.
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Table 1 Estimation of the CPU time for a HBM method with a condensation process

F0 = Fref F0 = 100Fref

HBM with condensation process 7839s 12875s

Table 2 Comparison of the HBM method without and with condensation process

F0 = Fref F0 = 100Fref

HBM without condensation process 4969s 5038s

HBM with condensation process 16s 19s

Conclusion

In this paper we described the Harmonic Balance Method with a condensation
process on the non-linear degrees-of-freedom. We applied the method to a whole
vehicle FE model, containing non-linear engine mounts stiffness with amplitude
of excitation. First, the FE model of the vehicle was reduced using a Craig and
Bampton dynamic condensation method. Secondly the non-linear stiffness were
measured on a test bench to evaluate non-linear polynomial laws. Finally, the
non-linear system was excited by a simple sine excitation located at the center of
gravity of the engine with various amplitude of excitation. Condensation process
on the non-linear degrees-of-freedom allows huge reduction of computational time.
We showed that for small amplitudes of excitation, non-linear effects were weak,
while for higher amplitudes, non-linearities changed the response of the car,
comparing to a classical linear solution. However, it may be noted that the
comparison between numerical tests and experimental results may be very difficult
to perform. For the problem of the dynamic response of a whole car, one of the
most important factors is the connectors (for example welds) that are not usually
modelled well. Comparison between numerical and experimental tests should be
one of the future challenges for automotive industries.
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