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Abstract 

 

In the present paper a copper(II) phosphovanadate is presented and formulated as 

[Cu6(phen)6(V
V
O2)6(PO4)6(V

V
O2HO)3] (1a). This compound was obtained by hydrothermal 

synthesis and crystallizes in the triclinic group P-1, with a=10.6290(5), b=17.4275(8), 

c=23.6151(11) Å; =92.888(4), =98.910(4) and The leitmotif in (1a) is 

almost identical to some previously reported ones, viz. 

[Cu(phen)(V
V
O2)(PO4)]2[V

V
O2(OH)] (2); [Cu(phen)(V

V
O2)(PO4)]2[V

IV
O2(H2O)] (3)except 

for the fact that the small cells found in (2)-(3) are tripled in (1a). The reasons driving to 

these differences are subtle, and reside in the way in which the disorder in some vanadate 

groups takes place, viz., completely at random in (2)-(3) thus leading to a small "average" 

cell, while keeping some systematics in (1a) thus needing for a larger motif to take account 

of its repetition scheme in the crystal. The magnetic unit in the structure of (1a) is defined 

by a dinuclear system of Cu
II
 bonded by a 2,

1
-PO4 bridge. A fit of the corresponding 

magnetic data of (1a) was done, using the van Vleck equation for two S= ½ centres 

. The parameters obtained by the fit of the experimental data were g=2.1 

and J= -3.5 cm
-1

.  
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1.-Introduction 

 

Phosphovanadates (VPO) constitute a well explored type of compounds, which in spite of 

their long term studies persist in driving the attention of structural chemists due to their 

unpredictable structural diversity. This is the result of the variety of geometric 

surroundings, which the vanadium cation can adopt in its different oxidation states, as well 

as the way in which it can condense with the phosphate anion [1].Besides the fact that 

functionalization of these oxides with transition metal complexes allows the generation of 

quite different structures and dimensionalities, like chains, lamellar or heavily 

interconnected three-dimensional arrays [2-10]. A final, non-minor ingredient in this 

structural "Pandora's box" is the finding that slight differences in synthetic conditions might 

derive in either subtle or important structural differences in the final products.  

In this work an interesting example of the former case is presented. A detailed structural 

analysis of an organo-inorganic hybrid compound is discussed, corresponding to an 

inorganic VPO framework functionalized with a Cu
II
 complex having 1,10-phenanthroline 

(phen) as ligand, [Cu6(phen)6(VO2)6(PO4)6(VO2HO)3] (1a) (Scheme 1)that was obtained by 

the hydrothermal method. Almost exact replicas of this structure had already been reported 

by Finn and Zubieta [4] and Zhang et al. [5], but as we shall discuss below, with some 

subtle differences setting them apart as different polymorphic structures. 

The magnetic characterization shows that compound (1a) presents anantiferromagnetic 

behaviour due to the super-exchange interaction existing between Cu2 and Cu3 (3.262(3) 

Å). 

 

2. –Materials and Methods 

 

2.1 - Synthesis. 

 A mixture of NaVO3 (0.156 g, 1.2 mmol), H3PO4 (0.098 g, 1.0 mmol), Cu(NO3)2•3H2O 

(0.290 g, 1.20 mmol), 1,10-phenathroline (0,198 g, 1.0 mmol) and H2O (2.00 mL, 111 

mmol) in a molar ratio of 1.2:1.0:1.2:1.0:111, was stirred for 1 h before being heated at 

200°C in a 23 mL Teflon Lined Parr reactor for 120 h. After cooling to room temperature, 

green crystals of [Cu6(phen)6(VO2)6(PO4)6(VO2HO)3] (1a) where mechanically separated, 

washed and dried. The obtained yield in vanadium is 45%. The initial pH of the mixture 

was 1.8, and the final pH of the reaction mixture was 2.3.  

 

2.2 - SEM-EDXS. 

 

The presence of vanadium, phosphorous and copper atoms was determined by SEM-EDXS 

analysis using a SEM-EDX JSM 5410 equipment.Figure 1S (Supplementary Material) 

shows the micrography of some crystals and the EDX spectrum. The presence of Pd, and 

Au in the spectrum is due to the grid used in the experiment. 

 

2.3 - FTIR:  

 

Infrared spectrum of the powder sample was recorded in the 4000–400 cm
-1

 range at room 

temperature on a Perkin Elmer FTIR spectrophotometer, model BX II, using KBr pellets. 

The principal bands are (cm
-1

): 898 (s), 987 (s) corresponding to terminal V=O and O-V-O 

bridge stretching modes; 1114 (s), 1164 (s) assigned to P=O and P-O groups; 1392 (m) and 



1443 (m) assigned to C=C and C=N groups of the organic ligand (phen). 

 

2.4 -X-ray Diffraction 

Single crystal data were collected on an Oxford Diffraction Gemini diffractometer, 

MoKradiation, and the following software was used in different stages of the crystal 

structure analysis process: Data collection: CrysAlis PRO (Oxford Diffraction, 2009) [11]; 

cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve 

structure: SHELXS97 [12]; program(s) used to refine structure: SHELXL97 [12]; 

molecular graphics: SHELXTL [12]; software used to prepare material for publication: 

SHELXL97, PLATON [13]. All H atoms were identified in a difference Fourier map, and 

further idealized and allowed to ride (C—H: 0.93 Å, O—H:0.85 Å, U(H)isot = 1.2× 

U(host). 

The structure presents an important pseudo translation symmetry, broken by a differentiated 

splitting in a few, otherwise equivalent, vanadyl V—O's. The latter groups were refined 

with similar restraints (SADI and DELU in SHELXL), and their occupation factors 

converged to V2—O62: 0.8432/0.1568 (14), V8—O68:0.8525/0.1475 (16).  

 

Table 1(first column) presents the crystal data and structure refinement parameters for (1a). 

Further information on structural details on the structure can be found in Table 2 

(Coordination distances) and  Table3 (H-bonding interactions). 

 

2.5 - Magnetic Measurements 

The magnetization was measured over the temperature range of 2-300 K for (1a). 

Measurements were performed on 73.7 mg at 1 kOe, using a Quantum Design SQUID 

magnetometer (MPMS-XL5). Diamagnetic corrections of the constituent atoms were 

estimated from Pascal constants [14]. The validity of the fitting procedure for the used 

model in this work was done using the agreement factor, defined as:      

 

 

The molar magnetic data of (1a) were obtained using the formula weight determined by 

crystallography, that is, with six spin carriers per mole. 

 

 

 

3. Results and Discussion 

 

Fig. 1 presents an ellipsoid plot of the compound. The complexity of the structure (apparent 

from inspection) is the result of a frustrated threefold translation symmetry along the <1/3,-

1/3,-1/6> vector which makes the asymmetric unit three times as large as it would be 

required if the proper symmetry were in force. This means that, in a first order 

approximation the structure of (1a) can be considered as a triple leitmotif with very minor 

variations from one another, or in other words and from a purely crystallographic point of 

view, (1a) is approximately {[Cu2(phen)2(PO4)2][(VO2)2(VO2HO)]}3. (See below for a 

thorough discussion on this pseudo symmetry) The pseudo "elemental" unit is highlighted 

in Fig. 2, where a schematic view of the resulting 2D structure is presented with the 

2 2[( ) ( ) ] / [( ) ]M exp M calc M expR T T T    



phenligands removed, for clarity. 

As can be observed from both Fig.1 and Fig. 2, each "elemental" unit is formed by two 

copper Cu
II
 and three vanadyl (V

V
O2

+
) groups, charge balanced by two phosphate (PO4

3-
) 

and one hydroxyl (OH
-
) groups. The relevant atoms characterizing each group in the three 

moieties are in an ordered sequence: {Cu1,Cu2;V1,V2,V3;P1,P2;O72}; 

{Cu3,Cu4;V4,V5,V6;P3,P4;O75} and {Cu5,Cu6;V6,V7,V8;P5,P6;O78} with Cu1 being 

the "quasi equivalent" to Cu3 and Cu5, and so on. 

Both copper cations in each unit have a similar square pyramidal geometry, and both are 

chelated by the phen ligands, through the corresponding N atoms (N1,N2) A,B, to (N1,N2) 

E,F with Cu—N distances of 1.984 (3) to 2.019 (3) (Table 2). The oxygen atoms that bind 

the copper centres correspond to two phosphate and one vanadyl group (Cu1, Cu3 and 

Cu5). The apical bond corresponds to one of the vanadyl oxygen atoms (Cu—Oapical: 2.226 

(3) - 2.351 (3) Å) with basal Cu—Ophosp, Cu—Ovanadyl being shorter and very similar, 

spanning the tight range 1.957 (3) to 1.972 (3)Å. A hydroxyl group replaces the vanadyl 

oxygen in Cu2, Cu4 and Cu6.  

There are two different coordination types within the vanadium cations in each group: the 

outermost ones V1, V3; V4, V6; V7, V9 are similar to each other with a four-fold, 

deformed tetrahedral coordination, fulfilled by its two intrinsic vanadyl plus two phosphate 

oxygen atoms. Both groups of bonds are similar in the three "pseudo equivalent" units, but 

different from each other (V—Ovanadyl: 1.603 (3)-1.613 (3)Å, V—Ophosphate:1.856 (3)-1.866 

(3)Å). The central vanadium cations, V2, V5 and V8, present instead a five-fold 

coordination by inclusion of a hydroxyl group, which completes a deformed square 

pyramidal arrangement where vanadyl bonds are also shorter than the phosphate/hydroxyl 

ones. In all cases, their internal spread is larger than in the previous group (V—Ovanadyl 

range: 1.596(3)-1.711(3)Å, V—Orest:1.910(3)-2.044(3)Å). It is important to note for future 

reference, that the V2—O62, V8—O68 groups appear as slightly disordered, through 

splitting at both sides of the basal plane of the corresponding pyramid, with a local change 

of chirality. 

Occupation factors were independently refined for both groups, and converged to very 

similar final values (V2—O62: 0.8432 (14/0.1568 (14), V8—O68:0.8525 (14), 0.1475 

(14)). On the other hand, the V5—O65 group did not show any appreciable splitting. The 

PO4
3-

 groups are featureless, with an even span of P—O distances (1.514 (3) to 1.555 (3)Å) 

for the six independent moieties. 

The planar inorganic 2D structure evolves parallel to (0 -1 1) (Fig. 2). The network presents 

five different kind of loops of general type (M—O)n, where M stands for either Cu, V or P, 

two of them with n = 3 (A, A' in Fig. 2) and three with n = 2, 4 and 10, (B, C and D, 

respectively). The phenantroline ligands decorate the planar arrays stretching outwards, 

either above or below the narrow 2D inorganic structures. By interdigitation of these 

protruding phen ligands of neighbouring planes, the 2D structures finally link into a 3D one 

(Fig. 3). The process, however, takes place in an unexpected way since the "gluing agent" 

is not, as usual in this type of arrangement, the π···π stacking interaction between adjacent 

phen groups but a number of non-conventional C—H…O contacts instead, (Table 3) 

having phen C—H's as acceptors and (mainly) Ovanadyl (entries 1-10 in Table 3) or Ophosphate 

(entries 11-13 in Table 3) as donors. 



 

3.1 - The pseudo symmetry problem 

The presence of eventual pseudo symmetry was something foreseeable "ab-initio" from a 

careful observation of the diffraction data, which present an evident intensity systematics. 

Finding the law which describes these systematics, what would correspond to a reciprocal 

space approach to the problem, appeared however as non-trivial. The solution of the 

structure was attempted instead, looking for some noticeable pseudo symmetry aspects in 

the resulting model. This "direct space approach" proved to be successful, and the expected 

singularity prompted out as the threefold translational pseudo symmetry along the <1/3,-

1/3,-1/6> vector. 

The pseudo operation was accurate for most of the structure including the phen molecules. 

The main deviation from a perfect match corresponded to the  V2—O62, V5—O65 and 

V8—O68 groups, some of them disordered, which by the pseudo translation mixed up and 

loosed their otherwise well defined "identity" (V2 -> V5; V5 -> V8; V8 -> V2). 

In order to further investigate the degree of matching a transformation matrix leading to a 

"single motive cell" was used and this was found to be M: (1 0 0; 0 1 0; 1/3,-.1/3,-.1/6). 

This transformed the original cell into a rather deformed primitive one with V' = 718.66 

(6)Å3 = 1/6 V, and a' = a = 10.6290 (5)Å ; b' = b = 17.4275 (8)Å ; c' = 8.0764 (4)Å ; α' = 

135.229 (3)°; β' =57.374 (4)° ; γ' = γ = 91.995 (4)°. In this way, the hkl data set, consisting 

of the reflections which indices transformed into a set of integers, reduced to 1/3 of the 

original one. The other 2/3 of the total reflections, showed a much weaker intensity on 

average, but large enough as to confirm the original triple cell as the correct one, describing 

the structure under study. 

The transformed model could be treated and refined in P-1 (1b), with inversion centres at 

the midpoint of all type B loops (Fig 2); loops A and A' being equivalent through disorder. 

In this description, the pair V2/V2' also appeared related by the inversion centre. The net 

result was a reduction of the number of parameters by ca. 1/6, without jeopardizing the 

refinement performance (Table 1). Through all the procedure, the R indices and residual 

densities dropped appreciably. However, the model so refined suffered from a severe over 

simplification, showing only one type of disordered vanadyl group, now split into equally 

populated halves at both sides of an inversion centre. 

Analysis of the results in Table 1 leads to the conclusion that the centrosymmetric six-fold 

cell is the proper one to correctly describe the ―superstructure‖ in (1a), and this is 

confirmed in the differentiated disorder shown by the central V2, V5 and V8 atoms. 

However, if this effect is considered second order and accordingly disregarded, the system 

could be described by a much smaller cell, V' = 1/6 V, with only half of a motive as the 

independent part and no substantial differences in its structural main features, but with loss 

of the finer details introduced by the "ordered" disorder scheme. 

 

3.2 - Comparison with related structures 

Finn and Zubieta reported a structural study for a compound formulated as 

[Cu(phen)(V
V
O2)(PO4)]2[V

V
O2(HO)] (2) [4], matching exactly the formulation of (1b). 



This compound was reported to crystallize in a triclinic cell, with half of a "single motive" 

(in the sense described so far in this paper) in the asymmetric unit. Unfortunately, no 

structural data seems to be available in the crystallographic data base (CSD) beyond the 

description in the paper, as to make any further comparison. On the other hand, a 

subsequent paper by Zhang et al., [5] describes what claimed to be an isostructural 

compound of (2) of slightly different formulation, [Cu(phen)(V
V
O2)(PO4)]2[V

IV
O2(H2O)] 

(3). Since structural data of this latter compound is available in the CSD, a comparison was 

in principle possible: the transformation M = (1 -1 1, 1 1 0, 0 1 0) drives the cell vectors of 

(2) and (3) into those in (1b), and the transformed model of (3) fits almost exactly onto 

(1b). Thus, it should be concluded that structures (2) and (3) coincide with the "average" 

description of (1a), and what we have called (1b). 

Considering that both structures (2) and (3) appear as fairly accurate the possibility of a 

coincidental artefact in both, such as the overlooking of a large number of weak reflections 

must be considered as highly improbable, and consequently the models presented for (2) 

and (3) should be taken as basically correct. 

The conclusion seems to be that [Cu(phen)(V
V
O2)(PO4)]2[V

V
O2HO] can present some very 

subtle polymorphic states, of which (1a) and (2) are perhaps two out of a larger number, 

where the way in which a particular site is disordered allows it to "command" the long 

range order. This situation resembles the classic case of the Cu3Au alloy which, when in its 

ordered phase, is simple cubic (P), with Au at (000) and Cu at (1/2,1/2,1/2), but face 

centred cubic (FCC) when completely disordered, with an "atom-per-site" of average 

composition 1/4(3Cu+Au). [15] In the case of (1a) and (2), an evenly disordered state, 

which means a non-systematic distribution in space of the central VO5polyhedra with 

opposite chirality, would lead to a small cell as in (2) and a unique 50%/50% split for the 

central V atom. Instead a partially ordered state, meaning some more systematic 

distribution in space of the central VO5 polyhedra with opposite chirality, can lead to much 

larger cells (six-fold in the case of (1a)). As stated before, intermediate situations cannot be 

disregarded from scratch. 

 

3.3 - Magnetic Studies 

 

The temperature dependence of χT observed for (1a) is displayed in Fig 4, already 

corrected for diamagnetism and TIP, which was estimated to be 3×10
-3 

emu mol
-1

. The χT 

value at 300 K is 2.52 emu·mol
-1

·K, which corresponds to six S=½ centres with μB 1.83. 

This value is consistent with the spin only value of 1.73 μB for an isolated Cu
II
 centre. At 

low temperatures the χT product decreases sharply; this phenomenon being explained as 

due to the presence of antiferromagnetic interactions. The low temperature limit for the χT 

value at 5 K is 1.84 emu·mol
-1

·K. The inverse susceptibility in the high temperature range 

follows the Curie–Weiss law, with a Weiss constant θ of –0.7 K. The negative value of the 

Weiss constant makes evident the bulk antiferromagnetic interactions present at low 

temperatures in the studied 2D system. 

Compound (1a) presents the shortest Cu···Cudistance of 3.262 (3) Å between Cu2 and Cu3 

(Cu4 and Cu5). Taking into account that the other distances between the spin carriers are 

larger, the most relevant intramolecular super exchange interaction was defined between 

Cu2 and Cu3. This magnetic unit can be treated as a dinuclear system of Cu
II
 atoms bridged 

by 2,
1
-PO4 groups (Scheme 2).  



 

A fit of the corresponding magnetic data of (1a) was done, using the van Vleck equation for 

two S= ½ centres, with the analytical expression given below (Eq 1) 

 

(Eq. 1) 

 

 

where N is Avogadro’s number, β is the Bohr magneton and k the Boltzmann constant. 

The parameters obtained by the fit of the experimental data using the above expression are 

g = 2.1 and J = -3.51 cm
-1

 (R = 5·10
-4

). The full line (red in the web, grey in print) in Fig 4 

shows the fit of the experimental data, using these parameters. The obtained J value can be 

related to antiferromagnetic coupling, and suggests a weak transmission of the magnetic 

phenomenon through the 2,
1
-PO4 bridges. The bonds between both Cu

II
 centres occur 

through an equatorial-apical coordination mode. Since both copper centres present dx
2

-y
2
 

magnetic orbitals, the coordination mode does not allow a more effective overlap, and 

therefore a more intense antiferromagnetic exchange phenomenon.   

The low value of J obtained for (1a) can be compared with that of [Cu2(bipy)2(μ2,η
2
-

HPO4)- (μ2,η
1
-H2PO4) (μ2,η

2
-H2PO4)]n [16], where the two metal centres also have a square 

pyramidal geometry and are bridged by phosphate groups, with a Cu···Cu distance of 3.22 

Å, forming a dinuclear system. Although, both experimental magnetic data were fitted 

using different analytical models, the obtained values of J are similar. For 

[Cu2(bipy)2(μ2,η
2
-HPO4)- (μ2,η

1
-H2PO4) (μ2,η

2
-H2PO4)]n, J = -5.3 cm

-1
, a value which also 

indicates a weak antiferromagnetic behaviour produced by the same connectivity mode 

(equatorial-apical positions) between the metallic centres as in (1a). Only a few magnetic 

studies of phosphate-bridged Cu
II
 complexes are available in the literature. The work of 

Ainscough et al. shows that a 2,
1
-PO4 bridge in an equatorial–axial coordination fashion 

between copper centres producing weak antiferromagnetism [17]. 

 

4. Conclusions 

In the present work the studied compound [Cu6(phen)6(V
V
O2)6(PO4)6(V

V
O2HO)3] (1a) was 

obtained by the hydrothermal method. The main conclusion is that 

[Cu(phen)(V
V
O2)(PO4)]2[V

V
O2HO] motif can present some subtle polymorphic states, of 

which (1a) is perhaps one out of a larger number of related structures. In the present case 

the presence of a small vanadate disorder gives rise to a threefold translational pseudo 

symmetry, as the basis of this subtle superstructure difference.Even though there is a short 

Cu-Cu distance (3.262(3)Å), the apical-equatorial coordination mode of the bridging 2,
1
-

PO4 groups leads to a poor overlap of the magnetic orbitals and therefore to a weak 

antiferromagnetic phenomenon.  
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Supplementary material 

 

CCDC 924170 contains a Crystallographic Information File (CIF) for this structure. This 

file can be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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Schemes 

 

 

Scheme 1 

 

Scheme 2 



 

 

 

Figure 1.Molecular view of 1a with displacement ellipsoids at a 30% level. Carbon atoms in the 

phenligands "B" to "F" are not labelled in the Figure, but repeat the labelling scheme as those in the 

"A" moiety. Aromatic H atoms omitted. Symmetry codes: (i) -x+2, -y, -z; (ii) -x, -y+2, -z+1; (iii) x-

1, y, z; (iv) x+1, y, z. 



 

 

 

 

 
 

 

 

Figure 2. The inorganic 2D structure in a view normal to (011) (phen groups and H atoms removed, 

for clarity). Line codes: Full heavy lines: Ovanadyl, Ophosphate covalent bonds; Full weak lines: 

Ovanadyl,Ophosphate coordination bonds; strong broken lines: OHydroxyl coordination bonds. 



 

 

 

 

 
  

 

 

Figure 3.View of the structure showing the interaction between interdigitated planar arrays, seen 

through their [100] projection as slanted 1D structures running from top-left to bottom-right.The 

inorganic framework drawn in heavy lines, phen groups in weak lines. 
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Figure 4.Temperature dependence of χT for 1a. Open circles represent the experimental magnetic 

susceptibility data; red line corresponds to the fit using the van Vleck analytical expression. 

 

 

 

 



 

 

 

 

 

 
 

Figure 1S.Spectrum SEM-EDXS of 1a. 

 

 



Table 1.   Comparison between (1a), (1b), (2) 

Structure (1a) (1b) (2) 

# of Indpendent motives 

[C24H17Cu2N4O15P2V3]  

3 1/2 1/2 

Mr 2829.77 471.63 471.63 

S.G. P-1 P-1 P-1 

a(Å) 10.6290 (5) 10.6290 (5) 10.6203 (7)(*) 

b(Å) 17.4275 (8) 17.4275 (8) 17.2324 (9)(*) 

c(Å) 23.6151 (11) 8.0764 (4) 8.0547 (7)(*) 

(°) 92.888 (4) 135.229 (3) 135.140 (3)(*) 

(°) 98.910 (4) 57.374 (4) 56.959 (5)(*) 

(°) 91.995 (4) 91.995 (4) 92.454 (13)(*) 

V(Å
3
) 4312.1 (4) 718.66 (6) 709.30 (10) 

T(K) 291 (2) 2912) 90 (4) 

Data: 

Total,Indep.,F
2
>2(F

2
) 

66556 / 20174 / 11094 11139 / 6295 / 5906 na / 4786 / na 

h,k,l range -14-14; -22-22; -31-32 -13-14; -22-22; -10-10 na 

Parameters 1365 245 245 

Requiv 0.0239 0.0140 na 

< F
2
/( F

2
)> 39.2 71.4 na 

R[F
2
>2(F

2
)];wR(F

2
) 0.0412; 0.1098 0.0238; 0.0670 0.0537; 0.1321 

Occupation of Central V 

atoms 

0.8432/0.1568 (14) 

1.00/0.00 0.8525/1475 

(14) 

0.50/0.50 0.50/0.50 

max;min (eÅ
-3

) 0.38; -0.73 0.92; -0.75 na; na 

 

(*): cell axes transformed to facilitate comparison with those in (1b); na: not-available info. 



Table 2 

Selected bond lengths for (1a) (Å) 

Cu1—O32 1.957 (3) V2'—O21 2.194 (4) 

Cu1—O52 1.972 (3) V2'—P2 2.905 (3) 

Cu1—N2A 1.984 (3) V2'—H72 1.8740 

Cu1—N1A 2.015 (3) O72—H72 0.8500 

Cu1—O32
i
 2.293 (3) V3—O53 1.607 (3) 

Cu2—O72 1.929 (2) V3—O63 1.608 (3) 

Cu2—O31 1.963 (3) V3—O41
iv

 1.860 (3) 

Cu2—N2B 2.010 (3) V3—O12 1.866 (3) 

Cu2—N1B 2.012 (3) V4—O54 1.603 (3) 

Cu2—O34 2.331 (3) V4—O64 1.612 (3) 

Cu3—O65 1.963 (2) V4—O44
iii

 1.863 (3) 

Cu3—O34 1.965 (3) V4—O13 1.865 (2) 

Cu3—N2C 1.988 (3) V5—O55 1.599 (3) 

Cu3—N1C 2.012 (3) V5—O65 1.711 (3) 

Cu3—O31 2.259 (3) V5—O23 1.956 (2) 

Cu4—O75 1.935 (2) V5—O75 1.964 (3) 

Cu4—O33 1.972 (3) V5—O24 1.980 (3) 

Cu4—N2D 2.019 (3) O75—H75 0.8500 

Cu4—N1D 2.019 (3) V6—O56 1.610 (3) 

Cu4—O36 2.328 (3) V6—O66 1.610 (3) 

Cu5—O58 1.963 (2) V6—O43
iv

 1.862 (3) 

Cu5—O36 1.967 (3) V6—O14 1.864 (3) 

Cu5—N2E 1.985 (3) V7—O57 1.609 (3) 

Cu5—N1E 2.005 (3) V7—O67 1.611 (3) 

Cu5—O33 2.256 (3) V7—O46
iii

 1.856 (3) 

Cu6—O78 1.935 (3) V7—O15 1.858 (3) 

Cu6—O35 1.972 (3) V8—O68 1.599 (3) 

Cu6—N2F 2.013 (3) V8—O58 1.695 (3) 

Cu6—N1F 2.015 (3) V8—O25 1.928 (2) 

Cu6—O35
ii
 2.302 (3) V8—O78 1.939 (3) 

V1—O61 1.606 (3) V8—O26 2.025 (3) 

V1—O51 1.611 (3) V8'—O68' 1.589 (9) 

V1—O42
iii

 1.857 (3) V8'—O78 1.605 (4) 

V1—O11 1.863 (3) V8'—O26 1.834 (4) 

V2—O62 1.596 (3) V8'—O58 1.893 (4) 

V2—O52 1.675 (3) V8'—O25 2.158 (4) 



V2—O21 1.910 (2) V8'—H78 2.0829 

V2—O72 1.983 (3) O78—H78 0.8500 

V2—O22 2.044 (3) V9—O59 1.612 (3) 

V2'—O72 1.575 (4) V9—O69 1.613 (3) 

V2'—O62' 1.589 (9) V9—O45
iv

 1.858 (3) 

V2'—O22 1.776 (4) V9—O16 1.859 (3) 

V2'—O52 1.950 (4)   

 

Symmetry codes:  (i) -x+2, -y, -z; (ii) -x, -y+2, -z+1; (iii) x-1, y, z; (iv) x+1, y, z. 



Table 3 

Hydrogen-bond geometry for (1a) (Å, º) 

  D—H···A D—H H···A D···A D—H···A 

C3A—H3A···O68
v
 0.93 2.59 3.356 (5) 140 

C5A—H5A···O68
v
 0.93 2.31 3.152 (6) 151 

C5C—H5C···O55
v
 0.93 2.36 3.216 (5) 153 

C5E—H5E···O62
v
 0.93 2.31 3.162 (5) 153 

C8A—H8A···O69
v
 0.93 2.45 3.318 (6) 156 

C8B—H8B···O67
vi
 0.93 2.39 3.276 (6) 158 

C8C—H8C···O66
v
 0.93 2.48 3.350 (5) 155 

C8D—H8D···O64
vi

 0.93 2.39 3.270 (5) 158 

C8E—H8E···O63
v
 0.93 2.47 3.344 (5) 156 

C8F—H8F···O61
vi
 0.93 2.42 3.309 (6) 159 

C6B—H6B···O15
vi
 0.93 2.58 3.472 (5) 162 

C6D—H6D···O13
vi

 0.93 2.57 3.463 (5) 161 

C6F—H6F···O11
vi
 0.93 2.60 3.493 (5) 161 

 

Symmetry codes:  (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1. 

 

 


