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Abstract. This work proposes to study the effects of physical parareedad loading conditions
on both dynamic and acoustic responses of a brake systemcsedbjto squeal. A simplified brake
system model composed of a disc and a pad is investigatedfrithen interface is modeled by
introducing linear and non-linear stiffnesses at severedll nodes to model contact. The classical
Coulomb law is applied to model friction and the friction fo®ent is assumed to be constant. A
stability analysis of this system is performed with resgedhe friction coefficient and the hydraulic
brake pressure. The system presents up to four instabikime the focus is on a single instability
case with a fundamental frequency of 930 Hz. For this caskeeseted vibrations are investigated
for two loading conditions: static and ramp loadings. Tiregponses for these cases are significantly
different: the amplitude of the case with ramp loading is 1iB@es higher than the amplitude of
the static load case. Spectrum analysis are performed b§ah&nuous Wavelet Transform and the
response associated with the static load is composed ofitttamental frequency and its harmonic
components. Time response with the progressive load is osetpof two fundamental frequencies,
their harmonic components and linear combinations whiemat expected according to the stability
analysis. Noise emissions for these two loading conditppesent significantly different features in
terms of level and directivity. It is noted that levels in thear field are about 127 dB for the static
load and 193 dB for the progressive load. Moreover, the tuieg patterns in the near and far fields
are composed of lobes for the static load and circular wawa fines for the ramp loading.

I ntroduction

Disc brake systems are composed of two main components rihat eircular disc and a pad.
Over the interface between the disc and the pad, complexgphema of contact and friction occur
and these non-linearities can lead to self-excited vibratinduced by friction which produce squeal
noise. For a complete background about brake technologyrengroblem of contact in automotive
disc brake, one can refer td,[2]. Squeal occurrences are still difficult to predict and mamgydels
which are capable of reproducing squeal events have beposed. Mechanisms of friction-induced
vibrations which lead to squeal are complex and referenge$e found in3]. Studies that have been
carried out are based on classical stability analysis efiized equations of motion. In some cases,
they are able to characterize squeal with respect to sguaraimeters such as the friction coefficient,
geometrical parameters, material properties or dampirayvdver, stability analysis does not allow
for the prediction of the amplitude of the stationary resgmwor the frequencies which compose the
spectrum. So, temporal integration is carried out to chara®e cases which lead to squed) §].
These non-linear time integrations are initialized witk tfuasi-static sliding equilibrium configura-
tion which corresponds to the brake configuration under glerdulic braking pressure. Considering
a slight disturbance around the sliding equilibrium posatf-excited vibrations are generated. Gener-
ally, the main neglected phenomena are vibrations duriagthievement of the sliding equilibrium
point due to the evolution of the loading conditiods%].

In this paper, we first focus on the influence of physical pat@ns, such as hydraulic pressure
and friction coefficient, over the stability of a simplifiedalte system. Secondly, the influence of
loading conditions over the non-linear dynamic respongkeranise emissions during squeal event is
characterized: static and progressive loads cases areatechp
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Fig. 1: Brake system model. (a): simplified brake system;l{bundary element mesh; (c): observa-
tion planeP, used to display the acoustic intensity

Brake system model and loading conditions

Brakemodel. The brake system is modeled with a circular disc, where theriradius is clamped,
and a pad which can only translate along the normal diredsee Figurel (a)). There are about
34000 degrees of freedom and eight-node linear hexahetioreats are used. Moreover, a hydraulic
pressure is applied over the back-plate of the pad.

In order to calculate the acoustic radiation, a boundamnel® model is used and it is composed
of the upper surface of the disc without the friction intedaand the upper surface of the pad (see
Figure 1 (b)). The friction interface only radiates during loss ohtact configurations so it can be
assumed that this area does not contribute to the globaktacaadiation: it is not considered in the
boundary element model. Moreover, the gap between the tewiqus surfaces contains fluid and
allows acoustic interactions: for example the pad acoysgssure can be reflected over the disc. To
avoid this coupling, pressure fields over the disc and thenpashes will be calculated separately. In
free space, global radiations composed of both pad and dise Bmissions will be considered. For
the acoustic study, parts of the Open BEM toolbox are u6pd-pr more details about the boundary
element method, one can refer @.[

Contact/friction formulation. The friction interface is modeled by introducing nine umifdy
spaced contact elements. Contact and loss of contact caatfus are taken into account so that the
disc and the pad can separate at several local nodes duargdhking process. Moreover, the non-
linear contact force is described by a classical cubic lawclvhits experimental results as explained
in [8]. During contact configuration, the normal contact forcefishe form F.,,,1uc: = k1.0 + knp6°
along the z-direction, wheré& denotes the penetration between the disc and the fjgadnd k.
denote the linear and the cubic stiffnesses respectivelginD loss of contactt,.,,;q.; = 0.

The friction coefficientu is assumed to be constant for the sake of simplicity and theswdal
Coulomb law is applied. Moreover, the rotation velocity bétdisc is assumed to be such that the
orthoradial velocity sign does not change during the brgldrocess. So, the friction force is of the
form Frriciion = 1tEcontace OVET the friction interface and along the direction of thihoradial velocity.

L oading condition. The vector¥'(¢) denotes the external force vector due to braking pressure. |
the present study, two cases will be studied: the first onsiders a static load,,.. by neglecting
the ramp loading. The second one corresponds to a ramp tpddimed by Equatiof.

F(t)

t . !
—Frnax if ¢ < 135 !

F(t)={ tr § (1)
FLax Otherwise 1

tr t



wheret is the duration of the linear part &f(¢), ¢ is the time and*,,,.x IS the force vector associated
with the maximum brake pressurg,,..

Equation of motion of the brake system. The Craig and Bampton method is applied to reduce
the finite element model of the brake system under study. Tétehiundred eigenmodes of the com-
plete system and all the attachment eigenmodes are retdiheddreduction basis provides a good
correlation between the complete and the reduced models 2@ kHz. This frequency corresponds
to the maximum audible frequency, so it allows for perfornuesa noise calculation. Finally, the
equations of motion for the reduced model are given by Eqo&i

MX + CX + KX = Fni,(X) + F(t) 2)

where M, C and K are mass, damping and stiffness matric€sis the generalized displacement
vector and the dot denotes the derivative with respect te.fwy, (X) corresponds to the non-linear
force vector which contains contact and friction force west The damping matrix is computed by
using a modal damping: we consider a damping percentage dbd %table modes and a damping
rate of 10 for modes involved in coalescence.

Evaluation of the disc brake stability

The first step in the stability analysis consists of the daloon of the quasi-static sliding equi-
librium configurationXg;.:ic associated with the hydraulic pressure applied. This cardigpn is
defined by the non-linear static problem which correspoadsdquations.

KXstatic = FNL<Xstatic) + Fmax (3)

The non-linear equations of motion are linearized arouredstiting equilibrium point and a complex
eigenvalue analysis is performed with respect to the @icttoefficient and the braking pressure.
Figure2 shows the stability results for a pressure in the range [0] bérs and a friction coefficient
in the range [0; 1]. Figur@ (a) represents the stability results over the complex pkamek points
with a positive real part correspond to the unstable sliddggilibriums. Two main areas contain
all the unstable modes: between 9420 and 9480 Hz and betva$ear@l 1650 Hz. Figure@ (b)
shows the number of unstable modes with respect to the cunstessurer,,,. applied and the
friction coefficient. Five domains are noted and corresporgliding equilibrium configurations with
different stability results: from stable (no unstable mpdp to five unstable modes. This analysis
allows for select the couple of parameters £,...) which provides the wanted instability. In this
work, the single instability case defined py= 0.72 and P,,,..= 12.5 bars is investigated.

Sdlf-excited vibrations

The previous set of parameters presents one unstable m@@@ &tz but according to Figur2
(b), it can be noted that the system is close to the two urestabdes domain. In the previous section,
the stability analysis does not consider the ramp loadirftpele by F'(¢) but only the loading force
vector associated with the maximum pressure B.€) = Fax). S0, time integration needs to be
performed to investigate the effects of the progressivd.loa

This section aims at comparing the time and acoustic regsarfshe brake system for two kinds
of initial and loading conditions. In the literature, stesliare carried out by initializing temporal in-
tegration around the quasi-static sliding equilibrium foguration X.¢;c With a disturbance around
this point. In BJ, the effects of the initial disturbance on the dynamic cesge is presented. The au-
thor shows that initial condition can significantly change brake response. The main disadvantages
of this method is the fact that the non-linear vibrationsmigithe achievement of the sliding equilib-
rium are neglected. In this paper, the focus is on the infleexicamp loading with time integration
initialized with the configuration without loading.

Casesunder study. The two cases under study both present a single instabildycarrespond to
the following parameters:
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Fig. 2: Stability analysis calculated fét,,... € [1; 100] bars and. € [0; 1]. (a): real part vs frequency;
(b): Areas of stability: from white to black 0 unstable mod&ple case), 1, 2, 3 and 4 unstable modes

-Case 13 = 0.72, F(t) = Fax, X(t = 0) = Xgeatic + €, X(t =0) =0
- Case 2y, = 0.72, F(t) ramp loadingt; = 10~ s (see Equatioft), X (t = 0)= 0, X(t = 0) = 0
wheree defines a small disturbance around the sliding equilibri@miaX;.t;c. It can be noted that
no disturbance on the dynamic response of the system islunteml for case 2.

Continuous Wavelet Transform. To compare cases 1 and 2, spectrum analysis are performed
by using the Continuous Wavelet Transform method (CWT). Jigaal processing method provides
a good description of the non-linear contributions whiclews during the transient and stationary
responses. The method consists of the decomposition ohalsigo wavelets that are well localized
both in time and frequency. For a time sigrfdt), the CWT is defined by Equatich

+o00
1 t—>b
W(a,b) = / f@)W; (t)dt  whereW, ,(t) = %\If < - ) 4)
where ¥, ,(t) are the daughter wavelets,defines the scale parameter, andorresponds to the
time parameter. The asterigk; , indicates the complex conjugate ¥f, ,. The daughter wavelets
U, ,(t) are given by the kind of mother wavelet that has to be choseh fihe following admis-
sibility condition has to be satisfietl < Cy < 400 whereCy defines the admissibility constant

Cy = ff;o 'ﬁ"w#dw and U is the Fourier transform of’. For a time signalf (t) represented byv
sampled, data points (with uniform time st&f), the Continuous Wavelet Transform of Equatidh (
is a convolution of the data sequenffe’) (with»’ = 1, ..., V) with a scaled and normalized wavelet.

It can be represented by Equatisn

Cla,n) = NZ sy Sy (= 00) ®)

wheren defines the localized time index andis the sampling interval. The most important point is
the specification of an appropriate type of mother wavelgrtwide the previously defined daughter
wavelets. In reality, the mother wavelet is scaled and ethifo build basis functions which are the
daughter wavelets. In this study, the Morlet mother waviedet been chosen due to the fact that it is
one of the most commonly used CWT wavelets (and it is wellllned in both the time and frequency

. n? .
domain). It is defined in the time domain by, (n) = T iemme="% wherem is the wave number
andn is a non-dimensional time parameter. The wavelet functartains unit energy at every scale
due to the normalization of the mother wavelet. The wavetetqy is then defined d€’(a, n)[%. A



complete theoretical background can be foundli@].[

Time responses. Figure 3 (a) presents the velocity calculated for case 1 for a norrafbéithe
friction interface. This response presents the classezlies of self-excited vibrations with a single
instability and similar responses can be founddpd]. Actually, the amplitude of velocity increases
during a transient regime until it reaches a stationarymegiA spectrum analysis is performed by us-
ing the CWT previously defined. FiguBxb) shows the wavelet power spectrum for case 1. It can be
noted that the frequencf; and its harmonic components such2gs are present but the component
f1is predominant. The fundamental frequerfeys predicted by the stability analysis and appearance
of its harmonic is due to non-linearities.

Figure3 (c) illustrates the time response for case 2 and it can bedribt it is significantly dif-
ferent from the case 1. Actually, the profile of the velocighibits a short transient regime where
the amplitude is much greater than stationary (fer [0.1; 0.2] s). By comparing the velocities of
cases 1 and 2, it can be noted that the amplitude for case ®us B0 times higher than for case 1.
Moreover, the wavelet power spectrum associated with cab®®&s a spectrum with more harmonic
components than for the case 1 (see Fidli(d)). The two frequencieg, = 944 Hz andf, = 9424
Hz and several harmonic combinations appears in the speciioe first frequency; is not predicted
by the stability analysis but it is close to the predictio®80 Hz: there is an evolution ¢f due to the
evolution of the quasi-static sliding equilibrium and niamearities. Actually, the comparison between
the sliding equilibrium and temporal evolution of the axggaf the displacement shows an important
gap of about 40%: the system does not oscillate arounddimglequilibirum. In case 1, this gap does
not exist, the brake system position is near the slidinglaagium throughout the response. In case 2,
the wavelet power spectrum is composed of the frequéh@nd its harmonic componemntg, 3 f,

4 f; etc. The second frequengy is present at the begining of the response but disappeatsfdr.5

s and this is sufficient to activate the componem® f; + f> throughout the response. However, it can
be seen that the componerfisand2 f; are predominant and lead the response. Involving the com-
ponentf,, it is not predicted by the stability associated with therent set of parameterg. (= 0.72,

Pa: = 12.5 bars) but with another wich provides two unstable modesdkample;, = 0.74 and
P = 12.5 bars).

To conclude, case 1 provides a response leghby 930 Hz, whereas case 2 provides a response
where f; = 944 Hz and2f; are predominant. The frequengy = 9424 Hz appears in case 2 and
activates harmonic components of the fottm f, + n f> (wheren andm are positive integers) which
are not predominant. So, the case 1 is a single instabilgg e@th low amplitude whereas case 2
seems to be a multi-instability case with high amplitudesaih be noted that stability analysis does
not predict all the unstable modes that govern the dynarsjparese for case 2 and the brake system
can jump into another area of stability for a sufficientlytfaogressive load.

Acoustic radiation. In this paragraph, sound pressure radiated during squeat &/character-
ized in terms of level and directivity. The method appliegptrform this calculation is based on the
three following steps. Firstly, non-linear time integoas are performed. Secondly, a Fourier trans-
form is applied in order to build a Fourier basis which consaall the harmonic components present
in the response and the field of velocity is decomposed byrokae the following calculations, all
the orders previously found in the non-linear response et@ned. Thirdly, the boundary element
method is applied for each order due to the fact that the presseeds to be calculated for a unique
frequency. Then the global sound pressure is obtained Brgagition. The level of acoustic intensity
is defined by the following expressioh;z = 10log (PP*/P,?ef), whereP denotes the calculated
sound pressure and..; is the minimum audible sound pressufe ( = 2 x 10~° Pa). The estimation
of Lyp in the far and near fields is performed over two observatiam@$ placed &t x 1072 and 1
meter high from the top of the pad. The directivity patterevaluated over four planes defined by
Py, Pz, Pz and P:: (see Figurel (c)).

Figure4 shows the acoustic intensify,;z corresponding to the case 1. Over the mesh (Fidure
(@), Lqyp presents variations from 100 to 124 dB over the pad, 93 to BL6\wkr the disc and the
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Fig. 3: Time responses and wavelet power spectrum assdeigttea normal dof of the interface. (a):

velocity in case 1; (b): wavelet power spectrum in case 1;\glocity in case 2 (d): wavelet power
spectrum in case 2

maximum is reached over the pad. In the near field (Figui®)), a peculiar intensity pattern can be
noted, four directivity lobes clearly appear and the maximavel is about 127 dB. By comparing
Figures4 (a) and (b), it can be seen that the intensity pattern in tlae field corresponds to the pat-
tern over the mesh: the four lobes present in the near fieléspond to the four areas of maximum
intensity over the mesh. In the far field (Figutéc)), the profile of propagation is mainly composed
of two lobes: the lobes in the near field disappear. Moreavean be noted that the maximum is
about 82 dB. The three previous Figures also show that l@fedeund pressure decrease with the
distance from the source. Figurégd), (e), (f) and (g) show.,5 over F,. Only profiles of propaga-
tion are presented, the levels are not displayed and the ow@p has been chosen to emphasize the
wave front lines. It can be seen that the patterns of dirggtowver £, and P, (Figures4 (d) and
(e)) are similar, both present a central lobe and the prdapage mainly along z-axis: sound pres-
sure is unidirectional. OvePs,,, and P, », it can be noted that the propagation is omnidirectional as
illustrated in Figuregl (f) and (g). In [L1], the author proposes a numerical and experimental study of
brake squeal which presents a single instability (as foctse 1). Temporal integration is performed
with the same conditions as for the case 1. The numericaltseme similar with those of case 1: the
amplitude of velocity are close and the spectrums are coaetpotf; and its harmonic. The results
of the case 1 are in accordance with the acoustic respondd]ithpt was estimated experimentally
with a similar disc brake system. Another relevant work isgented in12]: the authors numerically
investigate the influence of geometrical and interface nmggbarameters over the squeal noise. It is
important to note that radiations are calculated by exitngotelocity from a forced response and so,
does not match the assumptions of the present study. Hoyieegratterns of directivity presented in
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[12] are composed of several lobes and this is similar with tlselts of the case 1.

For the case 2, acoustic intensityp is presented in Figur. Over the mesh (Figurg (a)) the
acoustic intensity differs from case 1: levels are from 18%@0 dB over the pad, from 120 to 143 dB
over the disc and the maximum is reached over the pad. Thamuaxievel in the near field is about
191 dB in contrast to the of 127 dB for case 1. This is due todlethat the amplitude of velocity for
case 2 is higher than for case 1. Involving the directivityhia near and far fields, Figuréqb) and
(c) show peculiar patterns which are mainly composed olutarcwave front lines generated at the
disc brake center. The directivity of case 2 is differentiroase 1 due to the different predominant
harmonic components which compose the spectrumfi.tar case 1,/; and2f; for case 2).

It can be concluded that a progressive load can significamthgase levels of noise emission and
modify the pattern of directivity.

Conclusion

In this paper a simplified model of a brake system is investigiaClassical formulations of the
non-linear cubic contact law and friction Coulomb law arediso model the friction interface. The
stability analysis associated with this system providassital cases of instabilities (single and multi-



instabilities) and an estimation of the areas of stabiitgerformed with respect to the hydraulic pres-
sure and the friction coefficient. The dynamic responselsutated for two cases: case 1 with a static
loading and case 2 with a ramp loading. These two cases pregimnent velocities and spectrum
analysis shows the appearance of an unexpected secondrfenti frequencyf, for case 2. The
appearance of this second fundamental frequency is dudhicbo-linearities and the ramp loading.
This kind of loading condition is able to activate new harmecaomponents which correspond to the
classical multi-instability case. It can be concluded th&ufficiently” fast ramp loading can contra-
dict the stability analysis about the prediction of the famental unstable frequencies. For the two
previous cases, the sound pressure radiated during staticegime is calculated. It appears that the
levels L, are significantly higher for case 2 than case 1 and this isatieetdifference between the
amplitudes of velocity. The directivity patterns for bothses are significantly different: for case 1,
four and two lobes are present in near and far field whereasafee 2 circular waves can be seen.
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