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Abstract. This work proposes to study the effects of physical parameters and loading conditions
on both dynamic and acoustic responses of a brake system subjected to squeal. A simplified brake
system model composed of a disc and a pad is investigated. Thefriction interface is modeled by
introducing linear and non-linear stiffnesses at several local nodes to model contact. The classical
Coulomb law is applied to model friction and the friction coefficient is assumed to be constant. A
stability analysis of this system is performed with respectto the friction coefficient and the hydraulic
brake pressure. The system presents up to four instabilities and the focus is on a single instability
case with a fundamental frequency of 930 Hz. For this case, self-excited vibrations are investigated
for two loading conditions: static and ramp loadings. Time responses for these cases are significantly
different: the amplitude of the case with ramp loading is 130times higher than the amplitude of
the static load case. Spectrum analysis are performed by theContinuous Wavelet Transform and the
response associated with the static load is composed of the fundamental frequency and its harmonic
components. Time response with the progressive load is composed of two fundamental frequencies,
their harmonic components and linear combinations which are not expected according to the stability
analysis. Noise emissions for these two loading conditionspresent significantly different features in
terms of level and directivity. It is noted that levels in thenear field are about 127 dB for the static
load and 193 dB for the progressive load. Moreover, the directivity patterns in the near and far fields
are composed of lobes for the static load and circular wave front lines for the ramp loading.

Introduction

Disc brake systems are composed of two main components that are a circular disc and a pad.
Over the interface between the disc and the pad, complex phenomena of contact and friction occur
and these non-linearities can lead to self-excited vibrations induced by friction which produce squeal
noise. For a complete background about brake technology andthe problem of contact in automotive
disc brake, one can refer to [1, 2]. Squeal occurrences are still difficult to predict and manymodels
which are capable of reproducing squeal events have been proposed. Mechanisms of friction-induced
vibrations which lead to squeal are complex and references can be found in [3]. Studies that have been
carried out are based on classical stability analysis of linearized equations of motion. In some cases,
they are able to characterize squeal with respect to severalparameters such as the friction coefficient,
geometrical parameters, material properties or damping. However, stability analysis does not allow
for the prediction of the amplitude of the stationary response or the frequencies which compose the
spectrum. So, temporal integration is carried out to characterize cases which lead to squeal [4, 5].
These non-linear time integrations are initialized with the quasi-static sliding equilibrium configura-
tion which corresponds to the brake configuration under the hydraulic braking pressure. Considering
a slight disturbance around the sliding equilibrium point,self-excited vibrations are generated. Gener-
ally, the main neglected phenomena are vibrations during the achievement of the sliding equilibrium
point due to the evolution of the loading conditions [4, 5].

In this paper, we first focus on the influence of physical parameters, such as hydraulic pressure
and friction coefficient, over the stability of a simplified brake system. Secondly, the influence of
loading conditions over the non-linear dynamic response and noise emissions during squeal event is
characterized: static and progressive loads cases are compared.
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Fig. 1: Brake system model. (a): simplified brake system; (b): boundary element mesh; (c): observa-
tion planePθ used to display the acoustic intensity

Brake system model and loading conditions

Brake model. The brake system is modeled with a circular disc, where the inner radius is clamped,
and a pad which can only translate along the normal direction(see Figure1 (a)). There are about
34000 degrees of freedom and eight-node linear hexahedron elements are used. Moreover, a hydraulic
pressure is applied over the back-plate of the pad.

In order to calculate the acoustic radiation, a boundary element model is used and it is composed
of the upper surface of the disc without the friction interface and the upper surface of the pad (see
Figure1 (b)). The friction interface only radiates during loss of contact configurations so it can be
assumed that this area does not contribute to the global acoustic radiation: it is not considered in the
boundary element model. Moreover, the gap between the two previous surfaces contains fluid and
allows acoustic interactions: for example the pad acousticpressure can be reflected over the disc. To
avoid this coupling, pressure fields over the disc and the padmeshes will be calculated separately. In
free space, global radiations composed of both pad and disc noise emissions will be considered. For
the acoustic study, parts of the Open BEM toolbox are used [6]. For more details about the boundary
element method, one can refer to [7].

Contact/friction formulation. The friction interface is modeled by introducing nine uniformly
spaced contact elements. Contact and loss of contact configurations are taken into account so that the
disc and the pad can separate at several local nodes during the braking process. Moreover, the non-
linear contact force is described by a classical cubic law which fits experimental results as explained
in [8]. During contact configuration, the normal contact force isof the formFcontact = kLδ + kNLδ3

along the z-direction, whereδ denotes the penetration between the disc and the pad,kL andkNL

denote the linear and the cubic stiffnesses respectively. During loss of contact,Fcontact = 0.
The friction coefficientµ is assumed to be constant for the sake of simplicity and the classical

Coulomb law is applied. Moreover, the rotation velocity of the disc is assumed to be such that the
orthoradial velocity sign does not change during the braking process. So, the friction force is of the
form Ffriction = µFcontact over the friction interface and along the direction of the orthoradial velocity.

Loading condition. The vectorF(t) denotes the external force vector due to braking pressure. In
the present study, two cases will be studied: the first one considers a static loadFmax by neglecting
the ramp loading. The second one corresponds to a ramp loading defined by Equation1.

F(t) =







t

tR
Fmax if t ≤ tR

Fmax otherwise
(1)



wheretR is the duration of the linear part ofF(t), t is the time andFmax is the force vector associated
with the maximum brake pressurePmax.

Equation of motion of the brake system. The Craig and Bampton method is applied to reduce
the finite element model of the brake system under study. The first hundred eigenmodes of the com-
plete system and all the attachment eigenmodes are retained. This reduction basis provides a good
correlation between the complete and the reduced models up to 20 kHz. This frequency corresponds
to the maximum audible frequency, so it allows for perform squeal noise calculation. Finally, the
equations of motion for the reduced model are given by Equation2:

MẌ + CẊ + KX = FNL(X) + F(t) (2)

whereM,C andK are mass, damping and stiffness matrices,X is the generalized displacement
vector and the dot denotes the derivative with respect to time.FNL(X) corresponds to the non-linear
force vector which contains contact and friction force vectors. The damping matrix is computed by
using a modal damping: we consider a damping percentage of 1%for stable modes and a damping
rate of 10 for modes involved in coalescence.

Evaluation of the disc brake stability

The first step in the stability analysis consists of the calculation of the quasi-static sliding equi-
librium configurationXstatic associated with the hydraulic pressure applied. This configuration is
defined by the non-linear static problem which corresponds to Equation3.

KXstatic = FNL(Xstatic) + Fmax (3)

The non-linear equations of motion are linearized around the sliding equilibrium point and a complex
eigenvalue analysis is performed with respect to the friction coefficient and the braking pressure.
Figure2 shows the stability results for a pressure in the range [1; 100] bars and a friction coefficient
in the range [0; 1]. Figure2 (a) represents the stability results over the complex planeand points
with a positive real part correspond to the unstable slidingequilibriums. Two main areas contain
all the unstable modes: between 9420 and 9480 Hz and between 900 and 1650 Hz. Figure2 (b)
shows the number of unstable modes with respect to the constant pressurePmax applied and the
friction coefficient. Five domains are noted and correspondto sliding equilibrium configurations with
different stability results: from stable (no unstable mode) up to five unstable modes. This analysis
allows for select the couple of parameters (µ, Pmax) which provides the wanted instability. In this
work, the single instability case defined byµ = 0.72 andPmax= 12.5 bars is investigated.

Self-excited vibrations

The previous set of parameters presents one unstable mode at930 Hz but according to Figure2
(b), it can be noted that the system is close to the two unstable modes domain. In the previous section,
the stability analysis does not consider the ramp loading defined byF(t) but only the loading force
vector associated with the maximum pressure (i.e.F(t) = Fmax). So, time integration needs to be
performed to investigate the effects of the progressive load.

This section aims at comparing the time and acoustic responses of the brake system for two kinds
of initial and loading conditions. In the literature, studies are carried out by initializing temporal in-
tegration around the quasi-static sliding equilibrium configurationXstatic with a disturbance around
this point. In [9], the effects of the initial disturbance on the dynamic response is presented. The au-
thor shows that initial condition can significantly change the brake response. The main disadvantages
of this method is the fact that the non-linear vibrations during the achievement of the sliding equilib-
rium are neglected. In this paper, the focus is on the influence of ramp loading with time integration
initialized with the configuration without loading.

Cases under study. The two cases under study both present a single instability and correspond to
the following parameters:
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Fig. 2: Stability analysis calculated forPmax ∈ [1; 100] bars andµ ∈ [0; 1]. (a): real part vs frequency;
(b): Areas of stability: from white to black 0 unstable mode (stable case), 1, 2, 3 and 4 unstable modes

- Case 1:µ = 0.72, F(t) = Fmax, X(t = 0) = Xstatic + ε , Ẋ(t = 0) = 0

- Case 2:µ = 0.72, F(t) ramp loading,tR = 10−3 s (see Equation1), X(t = 0)= 0, Ẋ(t = 0) = 0

whereε defines a small disturbance around the sliding equilibrium point Xstatic. It can be noted that
no disturbance on the dynamic response of the system is introduced for case 2.

Continuous Wavelet Transform. To compare cases 1 and 2, spectrum analysis are performed
by using the Continuous Wavelet Transform method (CWT). Thesignal processing method provides
a good description of the non-linear contributions which occurs during the transient and stationary
responses. The method consists of the decomposition of a signal into wavelets that are well localized
both in time and frequency. For a time signalf(t), the CWT is defined by Equation4:

W (a, b) =

+∞
∫

−∞

f(t)Ψ∗
a,b(t)dt whereΨa,b(t) =

1√
a
Ψ

(

t − b

a

)

(4)

whereΨa,b(t) are the daughter wavelets,a defines the scale parameter, andb corresponds to the
time parameter. The asteriskΨ∗

a,b indicates the complex conjugate ofΨa,b. The daughter wavelets
Ψa,b(t) are given by the kind of mother wavelet that has to be chosen first. The following admis-
sibility condition has to be satisfied0 < CΨ < +∞ whereCΨ defines the admissibility constant

CΨ =
∫ +∞

−∞
|Ψ̂(ω|
|ω|

dω andΨ̂ is the Fourier transform ofΨ. For a time signalf(t) represented byN
sampled, data points (with uniform time stepδt), the Continuous Wavelet Transform of Equation (4)
is a convolution of the data sequencef(n′) (with n′ = 1, ..., N) with a scaled and normalized wavelet.
It can be represented by Equation5:

C(a, n) =

N−1
∑

n′=0

f(n′)

√

δt

a
Ψ∗

0

(

(n′ − n)δt

a

)

(5)

wheren defines the localized time index andδt is the sampling interval. The most important point is
the specification of an appropriate type of mother wavelet toprovide the previously defined daughter
wavelets. In reality, the mother wavelet is scaled and shifted to build basis functions which are the
daughter wavelets. In this study, the Morlet mother wavelethas been chosen due to the fact that it is
one of the most commonly used CWT wavelets (and it is well localized in both the time and frequency

domain). It is defined in the time domain by:Ψ0(η) = π− 1

4 eimηe−
η
2

2 wherem is the wave number
andη is a non-dimensional time parameter. The wavelet function contains unit energy at every scale
due to the normalization of the mother wavelet. The wavelet power is then defined as|C(a, n)|2. A



complete theoretical background can be found in [10].
Time responses. Figure3 (a) presents the velocity calculated for case 1 for a normal dof of the

friction interface. This response presents the classical features of self-excited vibrations with a single
instability and similar responses can be found in [9, 4]. Actually, the amplitude of velocity increases
during a transient regime until it reaches a stationary regime. A spectrum analysis is performed by us-
ing the CWT previously defined. Figure3 (b) shows the wavelet power spectrum for case 1. It can be
noted that the frequencyf1 and its harmonic components such as2f1 are present but the component
f1 is predominant. The fundamental frequencyf1 is predicted by the stability analysis and appearance
of its harmonic is due to non-linearities.

Figure3 (c) illustrates the time response for case 2 and it can be noted that it is significantly dif-
ferent from the case 1. Actually, the profile of the velocity exhibits a short transient regime where
the amplitude is much greater than stationary (fort ∈ [0.1; 0.2] s). By comparing the velocities of
cases 1 and 2, it can be noted that the amplitude for case 2 is about 130 times higher than for case 1.
Moreover, the wavelet power spectrum associated with case 2shows a spectrum with more harmonic
components than for the case 1 (see Figure3 (d)). The two frequenciesf1 = 944 Hz andf2 = 9424
Hz and several harmonic combinations appears in the spectrum. The first frequencyf1 is not predicted
by the stability analysis but it is close to the prediction of930 Hz: there is an evolution off1 due to the
evolution of the quasi-static sliding equilibrium and non-linearities. Actually, the comparison between
the sliding equilibrium and temporal evolution of the average of the displacement shows an important
gap of about 40%: the system does not oscillate around its sliding equilibirum. In case 1, this gap does
not exist, the brake system position is near the sliding equilibrium throughout the response. In case 2,
the wavelet power spectrum is composed of the frequencyf1 and its harmonic components2f1, 3f1,
4f1 etc. The second frequencyf2 is present at the begining of the response but disappears fort ≥ 1.5
s and this is sufficient to activate the component−10f1 + f2 throughout the response. However, it can
be seen that the componentsf1 and2f1 are predominant and lead the response. Involving the com-
ponentf2, it is not predicted by the stability associated with the current set of parameters (µ = 0.72,
Pmax = 12.5 bars) but with another wich provides two unstable modes (forexampleµ = 0.74 and
Pmax = 12.5 bars).

To conclude, case 1 provides a response led byf1 = 930 Hz, whereas case 2 provides a response
wheref1 = 944 Hz and2f1 are predominant. The frequencyf2 = 9424 Hz appears in case 2 and
activates harmonic components of the form±mf2 ±nf2 (wheren andm are positive integers) which
are not predominant. So, the case 1 is a single instability case with low amplitude whereas case 2
seems to be a multi-instability case with high amplitude. Itcan be noted that stability analysis does
not predict all the unstable modes that govern the dynamic response for case 2 and the brake system
can jump into another area of stability for a sufficiently fast progressive load.

Acoustic radiation. In this paragraph, sound pressure radiated during squeal event is character-
ized in terms of level and directivity. The method applied toperform this calculation is based on the
three following steps. Firstly, non-linear time integrations are performed. Secondly, a Fourier trans-
form is applied in order to build a Fourier basis which contains all the harmonic components present
in the response and the field of velocity is decomposed by order. For the following calculations, all
the orders previously found in the non-linear response are retained. Thirdly, the boundary element
method is applied for each order due to the fact that the pressure needs to be calculated for a unique
frequency. Then the global sound pressure is obtained by superposition. The level of acoustic intensity
is defined by the following expression:LdB = 10log10

(

PP
∗/P 2

ref

)

, whereP denotes the calculated
sound pressure andPref is the minimum audible sound pressure (Pref = 2×10−5 Pa). The estimation
of LdB in the far and near fields is performed over two observation planes placed at5 × 10−2 and 1
meter high from the top of the pad. The directivity pattern isevaluated over four planes defined by
P0, Pπ

4
, Pπ

2
andP 3π

4

(see Figure1 (c)).
Figure4 shows the acoustic intensityLdB corresponding to the case 1. Over the mesh (Figure4

(a)), LdB presents variations from 100 to 124 dB over the pad, 93 to 115 dB over the disc and the
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Fig. 3: Time responses and wavelet power spectrum associated with a normal dof of the interface. (a):
velocity in case 1; (b): wavelet power spectrum in case 1; (c): velocity in case 2 (d): wavelet power
spectrum in case 2

maximum is reached over the pad. In the near field (Figure4 (b)), a peculiar intensity pattern can be
noted, four directivity lobes clearly appear and the maximum level is about 127 dB. By comparing
Figures4 (a) and (b), it can be seen that the intensity pattern in the near field corresponds to the pat-
tern over the mesh: the four lobes present in the near field correspond to the four areas of maximum
intensity over the mesh. In the far field (Figure4 (c)), the profile of propagation is mainly composed
of two lobes: the lobes in the near field disappear. Moreover,it can be noted that the maximum is
about 82 dB. The three previous Figures also show that levelsof sound pressure decrease with the
distance from the source. Figures4 (d), (e), (f) and (g) showLdB overPθ. Only profiles of propaga-
tion are presented, the levels are not displayed and the color map has been chosen to emphasize the
wave front lines. It can be seen that the patterns of directivity over P0 andPπ/4 (Figures4 (d) and
(e)) are similar, both present a central lobe and the propagation is mainly along z-axis: sound pres-
sure is unidirectional. OverP3π/4 andPπ/2, it can be noted that the propagation is omnidirectional as
illustrated in Figures4 (f) and (g). In [11], the author proposes a numerical and experimental study of
brake squeal which presents a single instability (as for thecase 1). Temporal integration is performed
with the same conditions as for the case 1. The numerical results are similar with those of case 1: the
amplitude of velocity are close and the spectrums are composed off1 and its harmonic. The results
of the case 1 are in accordance with the acoustic response in [11] that was estimated experimentally
with a similar disc brake system. Another relevant work is presented in [12]: the authors numerically
investigate the influence of geometrical and interface meshing parameters over the squeal noise. It is
important to note that radiations are calculated by extracting velocity from a forced response and so,
does not match the assumptions of the present study. However, the patterns of directivity presented in
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Fig. 5:LdB for case 2 during the final stationary regime. (a): boundary element mesh; (b): near field;
(c): far field

[12] are composed of several lobes and this is similar with the results of the case 1.
For the case 2, acoustic intensityLdB is presented in Figure5. Over the mesh (Figure5 (a)) the

acoustic intensity differs from case 1: levels are from 135 to 160 dB over the pad, from 120 to 143 dB
over the disc and the maximum is reached over the pad. The maximum level in the near field is about
191 dB in contrast to the of 127 dB for case 1. This is due to the fact that the amplitude of velocity for
case 2 is higher than for case 1. Involving the directivity inthe near and far fields, Figures5 (b) and
(c) show peculiar patterns which are mainly composed of circular wave front lines generated at the
disc brake center. The directivity of case 2 is different from case 1 due to the different predominant
harmonic components which compose the spectrum (i.e.f1 for case 1,f1 and2f1 for case 2).

It can be concluded that a progressive load can significantlyincrease levels of noise emission and
modify the pattern of directivity.

Conclusion

In this paper a simplified model of a brake system is investigated. Classical formulations of the
non-linear cubic contact law and friction Coulomb law are used to model the friction interface. The
stability analysis associated with this system provides classical cases of instabilities (single and multi-



instabilities) and an estimation of the areas of stability is performed with respect to the hydraulic pres-
sure and the friction coefficient. The dynamic response is calculated for two cases: case 1 with a static
loading and case 2 with a ramp loading. These two cases present different velocities and spectrum
analysis shows the appearance of an unexpected second fundamental frequencyf2 for case 2. The
appearance of this second fundamental frequency is due to both non-linearities and the ramp loading.
This kind of loading condition is able to activate new harmonic components which correspond to the
classical multi-instability case. It can be concluded thata “sufficiently” fast ramp loading can contra-
dict the stability analysis about the prediction of the fundamental unstable frequencies. For the two
previous cases, the sound pressure radiated during stationary regime is calculated. It appears that the
levelsLdB are significantly higher for case 2 than case 1 and this is due to the difference between the
amplitudes of velocity. The directivity patterns for both cases are significantly different: for case 1,
four and two lobes are present in near and far field whereas forcase 2 circular waves can be seen.
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