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Complex Gaussian multiplicative chaos

Hubert Lacoin 1, Rémi Rhodes 12, Vincent Vargas 12

Abstract

In this article, we study complex Gaussian multiplicative chaos. More precisely, we study
the renormalization theory and the limit of the exponential of a complex log-correlated Gaus-
sian field in all dimensions (including Gaussian Free Fields in dimension 2). Our main working
assumption is that the real part and the imaginary part are independent. We also discuss ap-
plications in 2D string theory; in particular we give a rigorous mathematical definition of
the so-called Tachyon fields, the conformally invariant operators in critical Liouville Quantum
Gravity with a c = 1 central charge, and derive the original KPZ formula for these fields.
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1 Introduction

In dimension d, a real Gaussian multiplicative chaos is a random measure on a given domain D
of Rd that can be formally written, for any Borel set A ⊂ D as:

Mγ(A) =

∫

A
eγX(x)− γ2

2
E[X2(x)] dx, (1.1)

where dx stands for the Lebesgue measure on D (or more generally any Radon measure instead
of dx: see [49] for a recent review on Gaussian multiplicative chaos) and X is a centered Gaussian
distribution possessing a covariance kernel of the form:

E[X(x)X(y)] = ln+
1

|x− y| + g(x, y), (1.2)
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with ln+(u) = max(lnu, 0) and g a continuous function over D × D. The covariance kernel
thus possesses a singularity along the diagonal and it is clear that giving sense to (1.1) is not
straightforward (how do you define the exponential of a distribution?). The standard approach
consists in applying a “cut-off ” to the distribution X, that is in regularizing the field X in order
to get rid of the singularity of the covariance kernel and get a nicer field. The regularization
usually depends on a small parameter, call it ε, that stands for the extent to which the field has
been regularized. The measure (1.1) is naturally understood as the limit of the random measures:

Mγ
ε (A) =

∫

A
eγXε(x)−

γ2

2
E[X2

ε (x)] dx (1.3)

when the regularization parameter ε goes to 0. It is well known [35, 3, 49] that this procedure
produces non trivial limiting objects when the real parameter γ is strictly less than some critical
value γc =

√
2d.

The critical case, i.e. γ = γc, has been investigated in [22, 23]. An extra renormalization term
is necessary to obtain a random measure M ′ . This limiting measure is also called the derivative
Gaussian multiplicative chaos because it can also be obtained by differentiating (1.1) with respect
to the parameter γ:

M ′(A) = lim
ε→0

∫

A

(
γcE[X

2
ε (x)]−Xε(x)

)
eγcXε(x)−

γ2c
2
E[X2

ε (x)] dx. (1.4)

This object has recently received much attention because of its fundamental role in analyzing the
behaviour of the maximum of log-correlated Gaussian fields. The reader is referred to the papers
[10, 9, 43] for substantial recent advances on this topic. The super-critical case γ > γc is still
open but some conjectures are stated in [6, 22, 49], based on recent results [8, 42, 56] obtained in
simpler but related models (see Section 5).

Standard theory of Gaussian multiplicative chaos has found many applications in finance,
Liouville Quantum Gravity or turbulence (see [49] and references therein). Yet, the need of un-
derstanding the renormalization theory of Gaussian multiplicative chaos with a complex value of
the parameter γ has emerged. This is for instance the case in 2D-string theory and more precisely
when looking at conformal matter fields coupled to gravity (see below).

In this paper, we consider two independent identically distributed centered Gaussian distri-
butions X and Y , each of which with covariance kernel of the type (1.2). By considering their
respective regularizations (Xε)ε and (Yε)ε, the problem addressed here is to find a proper renor-
malization as well as the limit of the family of complex random measures :

Mγ,β
ε (A) =

∫

A
eγXε(x)+iβYε(x) dx (1.5)

where γ, β are real constants. Notice that we may restrict to the case when γ, β are nonnegative
by symmetry of the Gaussian law. We will see that the renormalization theory of these measures
presents three phases, summarized in Figure 1, depending on the considered values of γ and β.

1.1 Previous related works

We first mention the recent work [34] where the authors conduct a thorough study of all phases
(inner and frontier) in the simpler context of the Random Energy Model (REM) partition function.
They give the precise asymptotics of all phases. Note that in this context, phase I (inner and
frontier) is trivial at order 1 as the (mean) renormalized partition function converges to a non

3



γ

β

γ =
√

d
2

γ
+
β
= √

2d

γ
2
+
β
2
=
d

Phase I

Phase II

Phase III

Figure 1: Phase diagram

vanishing constant: this is due to the lack of correlations in the model. Hence, in [34], the authors
go one step further as they give the fluctuations.

As is now well known, correlations may be added for instance on a tree structure like Man-
delbrot multiplicative cascades. In this context, this problem is investigated in [15, 4, 5]. In the
pioneering work [15], the authors computed the free energy and deduced a phase diagram similar
to our Figure 1. In [4], the authors treat the case of dyadic multiplicative cascades. Since this

model is 1-dimensional, we may see the complex random measure Mγ,β
ε (A) as a random function

t 7→Mγ,β
ε ([0, t]). Translated in our context, the results in [4] are the following:

• Phase I: the authors prove that there is almost sure convergence in the space of continuous
functions. In fact, in the companion paper [5], the authors show almost sure convergence
in the space of continuous functions for a class of models that includes the one we consider
here (except for free fields).

• Phase II, frontier I/II, frontier II/III and triple point: not investigated.

• Phase III and frontier I/III:: the authors show that the sequence is tight when properly
renormalized. Convergence is not investigated.

We further stress that the authors in [4, 5] do not prove the convergence in law in phase III but
claim that if convergence holds then every possible limit is a Brownian motion in multifractal
time. The argument is based on the uniqueness property of the solution of some fixed point
equation, the star equation for multiplicative cascades. The corresponding equation for Gaussian
multiplicative chaos has been introduced in [1] but uniqueness has only been established in the
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real subcritical case so far. So the same argument cannot be used in the context of Gaussian
multiplicative chaos. On the other hand, we also point out that the approach developed in [4, 5]
is general enough in the inner phase I to treat situations where the real part and imaginary part
are not necessarily independent.

1.2 Content of the paper

The purpose of this manuscript is not only to investigate the phase diagram in the context
of Gaussian multiplicative chaos but also to describe the limiting object that we obtain when
renormalizing properly the family (Mγ,β

ε )ε as ε → 0. We will first show that the model exhibits
three phases, which are represented in Figure 1. We will also describe the limiting objects after
renormalization. Apart from the inner phase I and the frontier of phases I/II where the renor-
malization procedure produces new objects, we prove that the renormalization procedure leads
to objects that can be described in terms of the limiting measures that we get on the real line
β = 0. Roughly speaking, we get a complex Gaussian random measure with a random intensity:
the real part Xε governs the description of the intensity whereas all the information about the
field Y is lost into a white noise (a similar phenomenon is observed in [18] for a different model).
Figure 2 is a brief yet complete description of the picture we draw. Actually, we do not treat
the triple point and the description we give in the inner phase II is a conjecture: our method
to explain how the complex Gaussian random measure appears indicates that the inner phase II
can be described by a complex Gaussian random measure with random intensity given by the
objects we get in the real supercritical case (γ >

√
2d), which remains conjectural so far. We will

also detail applications in Conformal Field Theories (CFT) and 2D-Liouville Quantum Gravity
(LQG), which are summarized below.

1.3 Applications in 2D-string theory

Polyakov [47] showed that 2D string theory could be interpreted as a theory of two dimensional
quantum gravity, where the string coordinate is considered as a c-dimensional matter field defined
on some two dimensional worldsheet Σ equipped with a metric g. The coupling between the matter
field and the metric is governed by the Polyakov action, which factorizes as a tensor product of the
classical Liouville action and that of a Gaussian Free Field Y . The metric on Σ is thus a random
variable, which roughly takes on the form [47, 40, 12] (we consider an Euclidean background
metric for simplicity):

g(z) = ebX(z)dz2, (1.6)

where b is a coupling constant expressed in terms of the central charge c of the matter field and
X is a random field, the fluctuations of which are governed by the Liouville action. In critical 2D-
Liouville Quantum Gravity , this action turns the fieldX into a Free Field, with appropriate mean
and boundary conditions. Two-dimensional string theory corresponds to the case c = 1, b = 2.
The Liouville Quantum Gravity with c = 1 is the conjectured scaling limit of critical statistical
physical models having a c = 1 central charge (like the O(n = 2) loop model or the Q = 4-states
Potts model) defined on random lattices. We do not review here the huge amount of works on
this topic and we refer the reader to [13, 12, 25, 16, 17, 28, 30, 31, 38, 40, 45, 47] for further
insights.

In critical 2D-Liouville Quantum Gravity, the so-called tachyon fields T are the operators
which are conformally invariant within the theory (see the excellent reviews [38, 45]). In this
paper, we will mathematically construct the tachyon fields for a c = 1 central charge

eγX(x)+iβY (x) dx
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Figure 2: Limiting measure diagram. We indicate between brackets how to renormalize the field

Mγ,β
ε and the limiting field. For instance in phase III, ”Limit Wσ2M2γ (εγ

2− d
2 )” means that

the field εγ
2− d

2Mγ,β
ε converges as ε → 0 towards Wσ2M2γ . Now we explain the description of

the limiting law: conditionally on µ, Wµ stands for a complex Gaussian random measure with
intensity µ. Conditionally on µ, Nα

µ is a α-stable Poisson random measure with intensity µ. M ′ is
the derivative martingale andM2γ is a standard Gaussian multiplicative chaos with intermittency
parameter 2γ. The constant σ2 depends on γ and β.

for γ ± β = 2 and γ ∈]1, 2[, where following the above discussion X and Y are two independent
Gaussian Free Fields. We will further argue that the Wick ordering (see section 7 for a discussion
about this notion) of the above field does not produce tachyons for γ±β = 2 and γ 6 1. The main
reason is that, below the threshold γ = 1, a nonstandard renormalization procedure is necessary
(we enter phase III on Figure 2), and this deeply modifies the conformal dimension of these fields.

Finally, we will also derive the corresponding KPZ formula (see [40])

∆0
iβ = ∆q

iβ +
b2

4
∆q
iβ(∆

q
iβ − 1),

which is a relation between the conformal dimension ∆0
iβ of the spinless vertex operator eiβY and

the quantum dimension ∆q
iβ (or gravitational dimension) of this operator gravitationally dressed.

The reader is referred to section 7 for further details.
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1.4 Chodos-Thorn/Feigin-Fuks Theory

In subsection 7.4, we will also discuss some connections between our work and the vertex oper-
ators of the so-called Chodos-Thorn/Feigin-Fuks Theory (CTFF), which is a Gaussian free field
conformal theory where a background charge is inserted in order to lower the central charge be-
low the c = 1 value (see [11, 19, 20, 30, 36]). Connections (and questions) with the imaginary
geometry developed in [44, 54] are also mentioned.

Acknowledgements

We would like to thank F. David, P. Le Doussal, B. Duplantier and S. Sheffield for interesting
discussions on these topics. Special thanks are addressed to R. Allez for his help during the early
stages of this project.

2 Setup

Let us introduce a canonical family of log-correlated Gaussian distributions, called star scale
invariant, and their cut-off approximations, which we will work with in the first part of this
paper. Of course, other natural choices are possible and they are discussed in subsection 2.1
below.

Let us consider a continuous covariance kernel k on R
d such that:

Assumption (A). The kernel k satisfies the following assumptions, for some constant Ck inde-
pendent of x ∈ R

d:

A1. k is normalized by the condition k(0) = 1,

A2. k(x) 6 Ck(1 + |x|)−ν for some ν > d.

A3. |k(x)− k(0)| 6 Ck|x| for all x ∈ R
d.

We set for ε ∈]0, 1] and x ∈ R
d

Kε(x) =

∫ 1
ε

1

k(xu)

u
du

and
Gε(x) = e−Kε(x).

We consider two independent families of centered Gaussian processes (Xε(x))x∈Rd,ε∈]0,1] and
(Yε(x))x∈Rd,ε∈]0,1] with covariance kernel given by:

∀ε, ε′ ∈]0, 1], E[Xε(x)Xε′(y)] = E[Yε(x)Yε′(y)] = Kε∨ε′(y − x),

where ε∨ε′ := sup(ε, ε′). The construction of such fields is possible via a white noise decomposition
as explained in [1]. We set:

FX
ε = σ{Xu(x);x ∈ R

d, u > ε} and FY
ε = σ{Yu(x);x ∈ R

d, u > ε}
FX = σ{Xu(x);x ∈ R

d, u ∈]0, 1]} and FY = σ{Yu(x);x ∈ R
d, u ∈]0, 1]}

and
Fε = σ{Xu(x), Yu(x);x ∈ R

d, u > ε}.
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We stress that, for u < ε, the field (Xu(x)−Xε(x))x∈Rd is independent from Fε. Then we consider
the following locally finite complex measure:

∀A ∈ B(Rd), Mγ,β
ε (A) =

∫

A
eγXε(x)+iβYε(x) dx. (2.1)

Let us finally notice that K can be approximated as follows

∀x ∈ B(0, R),
∣∣Kε(x)− | ln(|x| ∨ ε)|

∣∣ 6 CR. (2.2)

2.1 Examples

Let us also mention here some important Gaussian fields covered by our methods:

1. Exact scale invariant kernels like the one studied in [2, 50]). At first sight, these kernels

do not satisfy Assumption (A) as they cannot be written as
∫∞
1

k(ux)
u du. Yet, they can be

written as
∫∞
1

k(ux)
u du +H(x) for some continuous translation invariant covariance kernel

H. And our proof are easy to adapt if one adds a smooth field to Xε and Yε.

2. Massive Gaussian Free Field (MFF for short) on R
2. The whole plane MFF is a centered

Gaussian distribution with covariance kernel given by the Green function of the operator
2π(m2 −△)−1 on R

2, i.e. by:

∀x, y ∈ R
2, Gm(x, y) =

∫ ∞

0
e−

m2

2
u− |x−y|2

2u
du

2u
. (2.3)

The real m > 0 is called the mass. This kernel is of σ-positive type in the sense of Kahane
[35] since we integrate a continuous function of positive type with respect to a positive
measure. It is furthermore a star-scale invariant kernel (see [1, 48]): it can be rewritten as

Gm(x, y) =

∫ +∞

1

km(u(x− y))

u
du. (2.4)

for some continuous covariance kernel km = 1
2

∫∞
0 e−

m2

2v
|z|2− v

2 dv.

3. Gaussian Free Fields in a compact domain. In dimension 2, an important family of Gaussian
distributions is the family of Gaussian free fields (see [31, 53] for instance). They do not
satisfy Assumption (A) (in particular they are not translation invariant) and substantial
modifications are needed to adapt the proofs to this case. Because of the importance of
applications in this context, we treat specifically these fields in section 6. Applications are
given in section 7.

4. Log-correlated Gaussian Fields (LGF) with covariance kernel given by (m2−△)−d/2 in any
dimension d for m > 0 (see [24, 41] for instance). Furthermore, in the case of the whole
plane and m > 0, the Green function of the operator (m2 −△)−d/2 is a star scale invariant
kernel.

Remark 2.1. The reader may skip this remark upon the first reading. One may also wish to
extend our methods to kernels possibly depending on the scale and non stationary, i.e. of the type

K(x, y) =

∫ ∞

1

k(ux, uy, u)

u
du

8



where ((x, y) 7→ k(x, y, u))u > 1 is a family of (non necessarily stationary) covariance kernels. By
modifying properly Assumption (A) to fit to this case, one can see that our methods apply provided
that one takes care of the following subtlety. In the case of non-stationary kernels: the Wick
ordering of the field eγXε(x)+iβYε(x) dx yields a different limit from the martingale renormalization.
Let us illustrate this with Theorem 3 for instance. This theorem may be directly applied to the
martingale ∫

A
eγXε(x)+iβYε(x)−

(
γ2

2
−β2

2

)
E[Xε(x)2] dx,

which converges towards a limit Mγ,β. Notice the renormalization by the variance instead of the
appropriate power of ε. Yet, one may be instead interested in the Wick ordering of the field
eγXε(x)+iβYε(x) dx, i.e. in the limit of the field

ε
γ2

2
−β2

2

∫

A
eγXε(x)+iβYε(x) dx.

By evaluating the difference between ln 1
ε and E[Xε(x)

2], formally, we have

lim
ε→0

ε
γ2

2
−β2

2

∫

A
eγXε(x)+iβYε(x) dx =

∫

A
e−
(
γ2

2
−β2

2

) ∫∞
1

1−k(ux,ux,u)
u

duMγ,β(dx).

In the important case of Gaussian Free Fields, this exponential term in the Wick ordering
limit makes the conformal radius appear. Details are given in the case of the GFF in Section 6.
We let the reader adapt the argument to the other fields he might be interested in.

2.2 Notations

We will further denote by C(E,F ) the space of continuous functions from E to F . The notation
f(x) ≃x→x0 g(x) means that

lim
x→x0

f(x)

g(x)
= 1.

Ck(Rd) (resp. Ckc (R
d) ) denotes the space of functions defined on R

d that are k times continuously
differentiable (resp. k times continuously differentiable with a compact support) on D equipped
with the topology of uniform convergence on D for the derivatives up to order k. The random
variables in this paper are defined on a probability space (Ω,F ,P) and we denote by E the
corresponding expectation. The space of random variables with integrable p-th power is denoted
Lp . The space of measurable functions defined on a Borel set D with integrable p-th power will
be denoted Lp(D).

When we make use of one of the two following inequalities

(
∑

i∈I
ai

)θ
>
∑

i∈I
aθi when θ > 1,

(
∑

i∈I
ai

)θ
6
∑

i∈I
aθi when θ 6 1 (2.5)

which are valid for any collection of positive numbers (ai)i∈I we will simply say, by superadditivity

or by subadditivity.

2.3 A toolbox of useful results

Let us introduce here some useful result that we will massively use in the proofs. The following
convexity inequality is proved in [35] by interpolation and Gaussian integration by parts, we
present also a special consequence of it.
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Proposition 2.2 (Kahane’s convexity inequality). Let Z1 and Z2 be two centered Gaussian fields
on R

d (or on any metric space) with covariance kernels K1(x, y) and K2(x, y) respectively.

If ∀x, y ∈ R
d, K1(x, y) 6 K2(x, y) then, for all real convex function F and all positive

measure σ on R
d, we have

E

[
F

(∫

Rd

eZ1(x)−E[Z2
1 (x)]/2σ(dx)

)]
6 E

[
F

(∫

Rd

eZ2(x)−E[Z2
2 (x)]/2σ(dx)

)]
. (2.6)

As a consequence if ∀x, y ∈ R
d, K1(x, y) 6 K2(x, y) + α for some α ∈ R then we have for

p > 0

E

[(∫

Rd

eZ1(x)−E[Z2
1 (x)]/2σ(dx)

)p]
6 e

1
2
αp(p−1)

E

[(∫

Rd

eZ2(x)−E[Z2
2 (x)]/2σ(dx)

)p]
if p > 1

E

[(∫

Rd

eZ1(x)−E[Z2
1 (x)]/2σ(dx)

)p]
> e

1
2
αp(p−1)

E

[(∫

Rd

eZ2(x)−E[Z2
2 (x)]/2σ(dx)

)p]
if p < 1.

(2.7)

Proof of (2.7). We consider the case α > 0. In that case we apply (2.6) to the fields Z1 and
Z2 + Ω where Ω a Gaussian of variance α which is independent of Z2 (the kernel of Z2 + Ω is
K2+α). Then the inequalities (2.7) are obtained by integrating over the variable Z. When α < 0
we consider Z1 +Ω and Z2 instead.

The above proposition allows us to compare moments of order p for two different log-normal
multiplicative chaos integrated on a measure σ. We will sometimes use it to make comparisons
with a chaos which present a nice property of stochastic scale invariance and is constructed in
[50, Proposition 2.9]

Proposition 2.3. For every dimension d and T > 0, one can construct a sequence of Gaussian
fields {(Xε(x))x∈Rd , ε > 0} whose covariance structures are given by

E[Xε(x)Xε(y)] =

∫

m∈O(d)
gε(m(x− y))σd(dm), (2.8)

where O(d) is the orthogonal group on R
d, σd is the Haar measure on it and

gε(x) :=

{
ln(T/ε) + 1− |x1|

ε when |x1| 6 ε,

ln+(T/|x1|) when |x1| > ε.
(2.9)

where x1 is the first real-coordinate of x in R
d.

For any fixed λ ∈ (0, 1),

(Xλε(λx))x∈B(0,T/2) = Ωλ + (Xε(x))x∈B(0,T/2), (2.10)

where Ωλ is a Gaussian variable of variance | lnλ| which is independent of Xε. Finally given
T > 0, R > 0 there exists a constant C such that for all z ∈ B(0, R)

| ln(|z| ∨ ε)| − C 6 E[Xε(x)Xε(x+ z)] 6 | ln(|z| ∨ ε)|+ C. (2.11)
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3 Study of phase I and its I/II boundary

3.1 Study of the inner phase

We study the inner phase I, namely

PI :=
{
γ + β <

√
2d, γ ∈

[
√
d

2
,
√
2d
[}

∪
{
γ2 + β2 < d

}
. (3.1)

Throughout the paper, we will use the terminology ”inner phase I” to denote the couples of
parameters (γ, β) satisfying (3.1) in order to avoid heavy notations.

We are interested in the martingale (ε
γ2

2
−β2

2 Mγ,β
ε (dx))ε. The reader can check that (3.1) is

equivalent to the existence of some p ∈]1, 2[ such that ζ(p) > d where:

ζ(p) = (d+
γ2

2
− β2

2
)p − γ2

2
p2.

As a warm-up, the reader may check that if one considers p > 2 such that ζ(p) > d then the
martingale is bounded in L2. This corresponds to the parameters (γ, β) such that γ2 + β2 < d.
This L2 phase is rather straightforward to study. Also, if one introduces

pc(γ, β) := sup{p > 1; ζ(p) > d}, (3.2)

one gets that pc ∈]
√
2d
γ , 2d

γ2
]. We have the following behaviour inside phase I:

Theorem 3.1. (Convergence) Let (β, γ) belongs to inner phase I. Consider p ∈]1, 2[ such that
ζ(p) > d.
1. For all compactly supported bounded measurable function f , the martingale

(ε
γ2

2
−β2

2

∫

Rd

f(x)Mγ,β
ε (dx))ε

is uniformly bounded in Lp. Furthermore, for all R > 0, there exists a constant Cp,R (only
depending on p,R) such that for all bounded measurable function f with compact support in
B(0, R):

E

[
sup
ε∈]0,1]

∣∣∣ε
γ2

2
−β2

2

∫

Rd

f(x)Mγ,β
ε (dx)

∣∣∣
p]

6 Cp,R‖f‖p∞.

2. The D′(Rd)-valued martingale:

ε
γ2

2
−β2

2 Mγ,β
ε : ϕ→ ε

γ2

2
−β2

2

∫

Rd

ϕ(x)eγXε(x)+iβYε(x)dx

converges almost surely in the space D′
d(R

d) of distributions of order d towards a non trivial limit
Mγ,β. More precisely, for each R > 0, there exists a random variable ZR ∈ Lp such that for all
functions ϕ ∈ Cdc (B(0, R)):

|Mγ,β(ϕ)| 6 ZR sup
x∈B(0,R)

| ∂dϕ(x)

∂x1 · · · ∂xd
|.

3. In dimension 1, we have convergence of (ε
γ2

2
−β2

2 Mγ,β
ε [0, t])t∈[0,T ] in the space of continuous

functions.
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Remark 3.2. For the reader who wishes to skip the proofs, we stress here that item 1. of Theorem
3.1 is proved in dimension 1 in [5, Prop. 3.1] in greater generality. Actually, their argument is
quite elegant and flexible: it may be extended to treat situations like

∫

R2

f(x)eγXε(x)+iβYε(x) σ(dx)

for general possibly correlated Xε and Yε and σ a Radon measure. In our context, their main
assumptions is that the kernel k introduced in section 2 has compact support. Their proof is written
in dimension 1 but clearly adapts to higher dimensions. However, the proofs of their paper can
not be adapted to the case of long range correlated fields like Gaussian Free Fields (see section
6). Furthermore their tightness criterion clearly works in dimension 1 but extension to higher
dimension does not make sense. Here, we suggest to study tightness in the space of distributions
of order d as this will turn out to be important in view of the applications in Euclidean Field
Theory. This step is carried out via a sharp analysis of capacity of the involved measures (see
Lemma 3.13). Other choices of spaces for tightness may be investigated as well.

Remark 3.3. Important enough, we point out that the strategy developed in [5] is not robust
enough to treat the frontier of phases 1 and 2. This point will be developed in subsection 3.2 via
a lemma that guarantees at least the existence of some p > 1 (maybe not sharp) such that the
martingale is bounded in Lp.

Remark 3.4. Item 1. of the above theorem describes a sufficient condition on p ∈]1, 2[ in order
for the martingale to be uniformly bounded in Lp. We do not know if this condition is sharp as in
the real case β = 0. We prove a weaker statement in Proposition 3.5 by proving that the condition
ξ(p) > d is necessary when p > 2.

The fact that for any f

(ε
γ2

2
−β2

2

∫

Rd

f(x)Mγ,β
ε (dx))ε∈[0,1]

is a martingale for decreasing ε simply follows from our construction of the Xε, which are sums
of independent infinitesimal fields, and the choice of the renormalization which guarantees that
the mean is constant. The martingale property is not required to prove convergence in L

p (see
for instance the circle average construction of the GFF exponential in Section 6) but it allows to
have shorter and perhaps more elegant proofs. An important step in the proof of the Theorem
is the uniform control of the capacity of the measure Mγ,0

ε which we prove only later in Lemma
3.10.

Proof of Theorem 3.1.
Item 1. We do not follow the proof of [5, Prop. 3.1] as we want to give a proof that is also valid for
fields with long range correlations. Let us consider a bounded measurable function ϕ : Rd → R

with support included in B(0, 1) and p ∈]1, 2[ such that ζ(p) > d. We have by Jensen’s inequality:

E

[∣∣∣ε
γ2

2
−β2

2

∫

Rd

ϕ(x)Mγ,β
ε (dx)

∣∣∣
p]

6 E

[
E

[
εγ

2−β2
∫

B(0,1)2
ϕ(x)ϕ(y)Mγ,β

ε (dx)Mγ,β
ε (dy)|FX

]p/2]

6 ‖ϕ‖p∞E

[
E

[(
εγ

2

∫

B(0,1)2

1

|x− y|β2 M
γ,0
ε (dx)Mγ,0

ε (dy)
)p/2]

.

We can then conclude with Lemma 3.10.
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Item 2. We consider the mapping

x = (x1, . . . , xd) ∈ R
d 7→ F γ,βε (x1, . . . , xd) := ε

γ2

2
−β2

2

∫

[0,x1]×···×[0,xd]
ϕ(x)eγXε(x)+iβYε(x) dx.

Let ϕ be a smooth test function with support in ]0, 1[d. By integration by parts, we get:

ε
γ2

2
−β2

2

∫

]0,1[d
ϕ(x)eγXε(x)+iβYε(x)dx

= (−1)dε
γ2

2
−β2

2

∫

]0,1[d

∂dϕ(x)

∂x1 · · · ∂xd

(∫

[0,x1]×···×[0,xd]
eγXε(u)+iβYε(u)du1 · · · dud

)
dx,

where u = (u1, · · · , ud). Therefore, we conclude that:

|Mγ,β
ε (ϕ)| 6 sup

x∈]0,1[d

∣∣∣ ∂dϕ(x)

∂x1 · · · ∂xd

∣∣∣Zε,

where:

Zε =

∫

]0,1[d
|F γ,βε (x1, . . . , xd)|dx.

Observe that (Zε)ε is a positive submartingale. Furthermore, from Item 1, we deduce that

E[|Zε|p] 6
∫

]0,1[d
E[|F γ,βε (x1, . . . , xd)|p]dx 6 Cp,1.

Item 3. One applies [5, Prop 3.2].

Proposition 3.5. (Necessary conditions for Lp convergence for p > 2) If the martingale

(
ε
γ2

2
−β2

2 Mγ,β
ε ([0, 1]d)

)
ε

is bounded in Lp for some p > 2 then ξ(p) > d.

Proof. We consider p > 2 such that E[|Mγ,β([0, 1]d)|p] <∞. We have the following inequalities:

E[|ε
γ2

2
−β2

2 Mγ,β
ε ([0, 1]d)|p] = E[E[(|ε

γ2

2
−β2

2 Mγ,β
ε ([0, 1]d)|2)p/2|FX ]]

> E[E[(|εγ
2

2
−β2

2 Mγ,β
ε ([0, 1]d)|2)|FX ]]p/2

= E

[(∫

[0,1]d×[0,1]d
εγ

2Mγ,0
ε (dx)Mγ,0

ε (dy)

Gε(x− y)β2

)p/2]

> ndE
[(∫

[0,1/n]d×[0,1/n]d
εγ

2Mγ,0
ε (dx)Mγ,0

ε (dy)

Gε(x− y)β2

)p/2]

where the first inequality is Jensen’s inequality for the conditional expectation and in the last one
we have used super-additivity and stationarity. Now from Kahane’s inequality (2.7), we can, at
the cost of a multiplicative constant, replace X in the last line by the scale invariant field given
by Proposition 2.3. This gives

E[|Mγ,β[0, 1]|p] > Cnd−ζ(p)E
[(∫

[0,1]d×[0,1]d

Mγ,0(dx)Mγ,0(dy)

|y − x|β2

)p/2]
,

for some fixed constant C > 0. Hence the desired result by letting n→ ∞.
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Theorem 3.6. (Multifractal spectrum) We consider p ∈]1, 2] such that ζ(p) > d. Then for
all q ∈ [0, p] and some constant Cq > 0:

E[|Mγ,β(B(0, r))|q ] ≃
r→0

Cqr
ζ(q).

Remark 3.7. We stress here that the above result is standard in the real case β = 0. Yet,
in the general case β 6= 0, the proof is far from straightforward. The difficulty here is that the
fluctuations of the process Y in the term eiβYε may cause a faster decay of Mγ,β

ε than expected, a
kind of Riemann-Lebesgue averaging to 0. We have to make sure that this does not happen. We
further stress that this averaging to 0 occurs outside the phase I and that the phases II and III
may be seen as the study of the fluctuations along this averaging.

Furthermore, we stress that the results holds as well if we replace the ball B(0, r) by ϕ(·/r)
for some continuous and compactly supported function ϕ.

Proof. We carry out the proof in dimension 1. Observe that the martingale (ε
γ2

2
−β2

2 Mγ,β
ε (K))ε

is uniformly bounded in Lp for all compact sets K. Let us fix r > 0. Let us consider a family of
complex random measures for r > ε > 0:

Mγ,β
r,ε (dx) = eγ(Xε−Xr)(x)+iβ(Yε−Yr)(x)−(γ

2

2
−β2

2
) ln r

ε dx.

Observe thatMγ,β
r,ε (dx) is independent of the fieldsXr and Yr and has the same law as r

(
ε
r

) γ2
2
−β2

2
Mγ,β

ε
r

(dx/r).

For ε < r, we can decompose Mγ,β
ε as

ε
γ2

2
−β2

2 Mγ,β
ε (dx) = eγXr(x)+iβYr(x)−(γ

2

2
−β2

2
) ln 1

rMγ,β
r,ε (dx). (3.3)

Therefore we have:

E
[∣∣εγ

2

2
−β2

2 Mγ,β
ε ([0, r])

∣∣q]

=E

[∣∣∣
∫

[0,r]
eγXr(x)+iβYr(x)−(γ

2

2
−β2

2
) ln 1

rMγ,β
r,ε (dx)

∣∣∣
q]

=rq(
γ2

2
−β2

2
)− q2γ2

2 E

[
eqγXr(0)−

q2γ2

2
ln 1
r

∣∣∣
∫

[0,r]
eγ(Xr(x)−Xr(0))+iβ(Yr(x)−Yr(0))Mγ,β

r,ε (dx)
∣∣∣
q]

=rq(1+
γ2

2
−β2

2
)− q2γ2

2 E

[
eqγX

′
r(0)− q2γ2

2
ln 1
r

∣∣∣
∫

[0,r]
eγ(X

′
r(x)−X′

r(0))+iβ(Y
′
r (x)−Y ′

r (0))
(ε
r

) γ2
2
−β2

2
Mγ,β

ε
r

(dx/r)
∣∣∣
q]
,

where X ′ and Y ′ are fields that are independent of X and Y with the same law (and hence

(r
(
ε
r

) γ2
2
−β2

2 Mγ,β
ε
r

(dx/r),X ′
r , Y

′
r ) has the same law as (Mγ,β

r,ε (dx),Xr , Yr) ).

Now we make a change of variables in the integral and the use the Girsanov transform to get:

E
[∣∣εγ

2

2
−β2

2 Mγ,β
ε ([0, r])

∣∣q]

=rζ(q)E
[
eqγX

′
r(0)− q2γ2

2
ln 1
r

∣∣∣
∫

[0,1]
eγ(X

′
r(rx)−X′

r(0))+iβ(Y
′
r (rx)−Y ′

r (0))
(ε
r

)γ2
2
−β2

2
Mγ,β

ε
r

(dx)
∣∣∣
q]

=rζ(q)E
[∣∣∣
∫

[0,1]
eγZ

X
r (x)+iβZYr (x)− γ2−β2

2
E[ZXr (x)]+fr(x)

(ε
r

) γ2
2
−β2

2
Mγ,β

ε
r

(dx)
∣∣∣
q]

(3.4)
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where we have set ZXr (x) = X ′
r(rx)−X ′

r(0), Z
Y
r (x) = Y ′

r (rx)− Y ′
r (0) and

fr(x) =
(2q − 1)γ2 + β2

2

∫ 1

r

k(ux)− 1

u
du.

To conclude the proof, we have to show that

lim
r→0

lim
ε→0

E

[∣∣∣
∫

[0,1]
eγZ

X
r (x)+iβZYr (x)− γ2−β2

2
E[ZX(x)]+fr(x)ε

γ2

2
−β2

2 Mγ,β
ε (dx)

∣∣∣
q]

(3.5)

exists and is non-zero. We do it using a martingale argument. The covariance kernel of Z is given
by,

E[ZXr (x)ZXr (x′)] =
∫ 1/r

1

k(r(x− x′)u)− k(rxu)− k(rx′u) + 1

u
du (3.6)

=

∫ 1

r

k((x− x′)v)− k(xv)− k(x′v) + 1

v
dv. (3.7)

Due to this structure of covariance, one can construct a process whose marginal have the same
law (we also name it Z = (ZX , ZY ) as it brings no confusion) indexed by r 6 1 such that for
each x and r′ < r, E[Zr′(x) | Zr(x)] = Zr(x). With this construction the process

Aε,r =

(∫

[0,1]
eγZ

X
r (x)+iβZYr (x)− γ2−β2

2
E[ZX(x)]+f0(x)ε

γ2

2
−β2

2 Mγ,β
ε (dx)

)

ε∈[0,1],r∈[0,1]

is a doubly indexed martingale (note that fr has been changed to f0) and thus

lim
r→0

lim
ε→0

E[|Aε,r|q] = sup
ε,r

E[|Aε,r|q] > 0 (3.8)

exists and we just have to show uniform boundedness of |Aε,r|q. Let FZ denote the sigma algebra
generated by Z, by Jensen’s inequality

E[|Aε,r|q] 6 E

[(
E
[
|Aε,r|2|FY ,FZ

])q/2]

6 CE

[(
εγ

2
∫

[0,1]2

1

|x− y|β2 M
γ,0
ε (dx)Mγ,0

ε (dy)
)q/2]

. (3.9)

for some universal constant C (where the second inequality is obtained by computing explicitly
the average as in the proof of Theorem 3.1) and we conclude using Lemma 3.10. What remains
to show is that replacing f0 by fr does not change the limit. This is easy: if Âε,r denotes the
process where f0 is replaced by fr we obtain after redoing the same computation with an extra
efr−f0 − 1 factor that

E[|Aε,r − Ãε,r|q = o(1)E
[(
εγ

2

∫

[0,1]2

1

|x− y|β2 M
γ,0
ε (dx)Mγ,0

ε (dy)
)q/2]

(3.10)

when r tends to zero, and conclude.
We also have:
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Theorem 3.8. (Star scale invariance). Assume that the kernel k is of class C2d with deriva-
tives of order 2d Hölder. The distribution of order d Mγ,β is star scale invariant in the sense that
it can be written as

Mγ,β(dx) = eγXr(x)+iβYr(x)−(γ
2

2
−β2

2
) ln 1

r M̃γ,β
r (dx)

where M̃γ,β
r is a distribution of order d, is independent of the fields Xr and Yr and has the same

law as rdMγ,β(dx/r).

Remark 3.9. The scaling relation (3.3) or that of Theorem 3.8 is only valid for star scale
invariant kernels as those described in section 2. If one wishes to apply this argument to more
general situations than those described in sections 2.1 or 6, the difference is that we have a
decomposition

Mγ,β(dt) = rdeγXr(t)−(γ
2

2
−β2

2
)E[Xr(t)2]M

γ,β,r
(
dt

r
)

where the measure M
γ,β,r

is independent of Xr, Yr and the family of complex valued distributions

(M
γ,β,r

)r is tight in the space of distributions of order d.

Proof. We stick to the notations of the beginning of the proof of Theorem 3.6 and write

ε
γ2

2
−β2

2 Mγ,β
ε (dx) = eγXr(x)+iβYr(x)−(γ

2

2
−β2

2
) ln 1

rMγ,β
r,ε (dx). (3.11)

whereMγ,β
r,ε (dx) is independent of the fieldsXr and Yr and has the same law as rd

(
ε
r

)γ2
2
−β2

2
Mγ,β

ε
r

(dx/r).

From item 2 of Theorem 3.1, the left-hand side converges in the sense of distributions of order d to-

wardsMγ,β(dx). Concerning the right-hand side, for all r > 0, the family rd
(
ε
r

) γ2
2
−β2

2
Mγ,β

ε
r

(dx/r)

converges in law as ǫ → 0 in the sense of distributions of order d towards Mγ,β
r (dx), which has

the same law as rdMγ,β(dx/r) and is independent of Xr, Yr. Because of our assumption on the
regularity of k, we can apply Proposition B.2 to prove that both processes Xr, Yr are almost
surely of class Cd. We can then pass to the limit in (3.11) to complete the proof of Theorem
3.8.

Analysis of the capacity

The following lemma settles the case where (β, γ) belongs to the inner phase I. Recall that this
implies the existence of p ∈]1, 2[ such that ζ(p) > d.

Lemma 3.10. Let (β, γ) belong to the inner phase I. If p ∈]1, 2] is such that ζ(p) > d, there
exists C > 0 such that we have for all ε < 1:

E



(∫

x,y∈[0,1]d
εγ

2Mγ,0
ε (dx)Mγ,0

ε (dy)

|y − x|β2

)p/2
 6 C.

Proof. For simplicity, we suppose that d = 1. From Proposition 2.2, (2.2) and (2.11), it is sufficient
to prove the result when Xε(x) = Z is the scale invariant Gaussian log-correlated fields described
in Proposition 2.3 (we apply (2.7) to the field Xε(x) +Xε(y) indexed by R

2) with T = 2. Now,

16



by subadditivity of x 7→ xp/2, we get:

E



(∫

x,y∈[0,1]
(
ε

2
)γ

2M
γ,0
ε/2(dx)M

γ,0
ε/2(dy)

|y − x|β2

) p
2


 6 2E



(∫

x,y∈[0, 1
2
]
(
ε

2
)γ

2M
γ,0
ε/2(dx)M

γ,0
ε/2(dy)

|y − x|β2

) p
2




+2E



(∫

x∈[0, 1
2
],y∈[ 1

2
,1]
(
ε

2
)γ

2M
γ,0
ε/2(dx)M

γ,0
ε/2(dy)

|y − x|β2

) p
2


 .

We first handle the second term in the above sum. We have by Jensen’s Inequality that:

E



(∫

(x,y)∈[0, 1
2
]×[ 1

2
,1]
(
ε

2
)γ

2M
γ,0
ε/2(dx)M

γ,0
ε/2(dy)

|y − x|β2

) p
2


 6 C

(∫

(x,y)∈[0, 1
2
]×[ 1

2
,1]

dxdy

|y − x|γ2+β2

) p
2

6 C

∫ 1

0

du

uγ2+β2

∫ u

0
dv.

This latter quantity is finite since γ2 + β2 < 2. Hence, we get the existence of some constant
C > 0 such that:

E



(∫

x,y∈[0,1]
(
ε

2
)γ

2M
γ,0
ε/2(dx)M

γ,0
ε/2(dy)

|y − x|β2

) p
2


 6 2E



(∫

x,y∈[0, 1
2
]
(
ε

2
)γ

2M
γ,0
ε/2(dx)M

γ,0
ε/2(dy)

|y − x|β2

) p
2


+ C.

(3.12)

By stochastic scale invariance (2.10) for λ = 1/2, we have

E



(∫

(x,y)∈[0, 1
2
]2
(
ε

2
)γ

2M
γ,0
ε/2(dx)M

γ,0
ε/2(dy)

|y − x|β2

)p/2


=
1

2p(1+γ2/2−β2/2)
E



(∫

(x,y)∈[0,1]2
εγ

2 eγXε/2(x/2)+γXε/2(y/2)dxdy

|y − x|β2

)p/2


=
1

2p(1+γ
2/2−β2/2)

E[epγΩ1/2 ]E



(∫

(x,y)∈[0,1]2
εγ

2 eγXε(x)+γXε(y)dxdy

|y − x|β2

)p/2


=
1

2ζ(p)
E



(∫

(x,y)∈[0,1]2
εγ

2 eγXε(x)+γXε(y)dxdy

|y − x|β2

)p/2
 .

If we set un = E

[(∫
(x,y)∈[0,1]2 ε

γ2
n
eγXεn (x)+γXεn (y)dxdy

|y−x|β2
)p/2]

where εn = 1
2n then inequality (3.12)

amounts to un+1 6 ρun + C where ρ = 2
2ζ(p)

< 1. Hence the sequence (un)n > 1 is bounded,
yielding the result.

3.2 Phase transition I/II

Theorem 3.11. Let us consider the frontier I/II: β + γ =
√
2d and γ ∈]

√
d
2 ,
√
2d[. We further

consider any p ∈]1,
√
2d
γ [.
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1. For all compact compactly supported bounded measurable function f , the martingale

(ε
γ2

2
−β2

2

∫

Rd

f(x)Mγ,β
ε (dx))ε

is uniformly bounded in Lp. Furthermore, for all R > 0, there exists a constant Cp,R (only
depending on p,R) such that for all bounded measurable function f with compact support in
B(0, R):

E

[
sup
ε∈]0,1]

∣∣∣ε
γ2

2
−β2

2

∫

Rd

f(x)Mγ,β
ε (dx)

∣∣∣
p]

6 Cp,R‖f‖p∞.

2. The D′(Rd)-valued martingale:

Mγ,β
ε : ϕ→ ε

γ2

2
−β2

2

∫

Rd

ϕ(x)eγXε(x)+iβYε(x)dx

converges almost surely in the space D′
d(R

d) of distributions of order d towards a non trivial limit
Mγ,β. More precisely, for each R > 0, there exists a random variable ZR ∈ Lp such that for all
functions ϕ ∈ Cdc (B(0, R)):

|Mγ,β(ϕ)| 6 ZR sup
x∈B(0,R)

| ∂dϕ(x)

∂x1 · · · ∂xd
|.

3. For all p <
√
2d
γ , we set ζ(p) = (d + γ2

2 − β2

2 )p − γ2

2 p
2 =

√
2dγp − γ2

2 p
2. There exists some

constant Cp > 0 such that:

E[|Mγ,β(B(0, r))|p] ≃
r→0

Cpr
ζ(p).

4. Assume that the kernel k is of class C2d with derivatives of order 2d Hölder. The distribution
of order d, Mγ,β is star scale invariant in the sense that it can be written as

Mγ,β(dx) = eγXr(x)+iβYr(x)−(γ
2

2
−β2

2
) ln 1

r M̃γ,β
r (dx)

where M̃γ,β
r is a distribution of order d, is independent of the fields Xr and Yr and has the same

law as rMγ,β(dx/r).

Remark 3.12. In this case, ζ is increasing on ]0,
√
2d
γ [ with ζ(

√
2d
γ ) = d and ζ ′(

√
2d
γ ) = 0. Hence

the continuity of Mγ,β in dimension 1 is not obvious.

Proof. The argument for item 1 and 2 is the same as in the proof of Theorem 3.1 except that
we use Lemma 3.13 below instead of Lemma 3.10 (indeed, we can choose p such that α = p/2 ∈
]
√
2d
3γ ,

√
d
2
1
γ [ and 3αγ/

√
2d > 1.). Items 3 and 4 are proved as in Theorem 3.6 and 3.8.

Analysis of the capacity

The following lemma settles the case β + γ =
√
2d and γ ∈]

√
d
2 ,
√
2d[:

Lemma 3.13. Let γ ∈]
√

d
2 ,
√
2d[. Let l > 0. For all α ∈]

√
2d
3γ ,

√
d
2
1
γ [, there exists C > 0 such that

for all ε, ε′ 6 1
2l
:

E

[(∫

x∈[0,1]d; |y−x| 6 1

2l

(ε′)γ
2/2εγ

2/2M
γ,0
ε′ (dx)Mγ,0

ε (dy)

|y − x|(
√
2d−γ)2

)α]
6 C

∑

j > l

1

j
3√
2d
αγ
.
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Proof. For simplicity, we suppose that ε = εk = 1
2k

and ε′ = εk′ = 1
2k′

with k 6 k′. We set

Xk(x) = Xεk(x) (Xk′(x) = Xεk′ (x)), Mk(x) = Mγ,0
εk (x) ( Mk′(x) = Mγ,0

εk′ (x)) and Fk = Fεk
(Fk′ = Fεk′ ). We further define

Aj = {(x, y) ∈ ([0, 1]d)2; |x− y| 6 2−j} Dj = {(x, y) ∈ ([0, 1]d)2; 2−j < |y − x| < 2−j+1}

We have:

∫

Al

1

2kγ
2/2

1

2k
′γ2/2

Mk(dx)Mk′(dy)

|y − x|(
√
2d−γ)2

6 C
k∑

j=l+1

2j(
√
2d−γ)2

∫

Dj

1

2kγ
2/2

1

2k
′γ2/2

Mk(dx)Mk′(dy)

+

∫

Ak

1

2kγ
2/2

1

2k
′γ2/2

Mk(dx)Mk′(dy)

|y − x|(
√
2d−γ)2

.

Therefore, if α < 1, we get the following inequality:

(∫

Al

1

2kγ2/2
1

2k′γ2/2
Mk(dx)Mk′(dy)

|y − x|(
√
2d−γ)2

)α
6 C

k∑

j=l+1

2αj(
√
2d−γ)2

(∫

Dj

1

2kγ2/2
1

2k′γ2/2
Mk(dx)Mk′(dy))

)α

+

(∫

Ak

1

2kγ2/2
1

2k′γ2/2
Mk(dx)Mk′(dy)

|y − x|(
√
2d−γ)2

)α
. (3.13)

Now, we estimate each quantity in the sum on the right hand side. We start with the last term
above. We have by Jensen’s inequality

E

[(∫

Ak

1

2kγ2/2
1

2k′γ2/2
Mk(dx)Mk′(dy)

|y − x|(
√
2d−γ)2

)α]
6 E

[(
E

[∫

Ak

1

2kγ2/2
1

2k′γ2/2
Mk(dx)Mk′(dy)

|y − x|(
√
2d−γ)2

|Fk
])α]

=E

[(∫

Ak

1

2kγ
2

Mk(dx)Mk(dy)

|y − x|(
√
2d−γ)2

)α]
.

Now we use the inequality ab 6 a2 + b2/2 and obtain (for some constant C(γ, d))

E

[(∫

Ak

1

2kγ2/2
1

2k′γ2/2
Mk(dx)Mk′(dy)

|y − x|(
√
2d−γ)2

)α]
6 E

[(∫

Ak

1

2kγ2
e2γXk(x)dxdy

|y − x|(
√
2d−γ)2

)α]

= C2αk((
√
2d−γ)2−d)

E

[(∫

[0,1]d

1

2kγ2
e2γXk(x)dx

)α]

= CE

[(∫

[0,1]d
2dke2γ(Xk(x)−

√
2d ln 2k)dx

)α]
.

To conclude the proof we need the following result which is a refined version of [33, Theorem
1.6] coming from [42, Prop 2.1] or [7, Lemma 9], the proof of which is postponed to the end of
this section.

Lemma 3.14. For any γ >
√

d
2 and any α <

√
d
2
1
γ , there exists C (depending on γ and α) such

that for all ε we have

E

[(∫

[0,1]d
ε−de2γ(Xε(x)−

√
2d ln 1

ε)dx

)α]
6

C

| ln ε|
3√
2d
αγ
. (3.14)
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Let us admit this lemma for a while. We get the bound

E

[(∫

[0,1]d
2dke2γ(Xk(x)−

√
2d ln 2k)dx

)α]
6

C

k
3√
2d
αγ
.

Now, we handle the terms in the sum (3.13). Without loss of generality, we may assume that
the kernel k appearing in Assumption (A) has a compact support included in the ball B(0, 1).
Indeed if not, we can use Proposition 2.2 and (2.2) to get a comparison with the compactly
supported case. In particular, we will use the fact that, conditionally to Fj , the sigma algebras
σ{Mk(A);A ⊂ B1} and σ{Mk(A);A ⊂ B2} are independent as soon as dist(B1, B2) > 2−j . Thus
we get

E

[(∫

Dj

1

2kγ2
Mk(dx)Mk(dy))

)α]
6 E

[(
E[

∫

Dj

1

2kγ2
Mk(dx)Mk(dy))|Fj ]

)α]

6 E

[(∫

Dj

1

2jγ
2Mj(dx)Mj(dy))

)α]

6 E

[(∫

|y−x|< 1

2j−1

1

2jγ2
Mj(dx)Mj(dy))

)α]
.

Now, one can conclude similarly to the previous term.

Proof of Lemma 3.14. We assume that ε = 1
2k

(this brings no loss of generality since by Propo-
sition 2.2, one can compare the l.h.s. of 3.14 for two ε within a factor of 2).

For r ∈ N let us cover the interval [0, 1]d by the dyadic cubes of the form:

I
(r)
z :=

∏

1 6 i 6 d

[
zi
2r

+
zi + 1

2r

[
,

where z = (z1, · · · , zd) ∈ {0, . . . , 2r − 1}d. Let (Y (k)(x))x∈[0,1]d be a standard Gaussian 2d-adic

cascade defined on [0, 1]d by the covariance function

E[Y (k)(x)Y (k)(y)] := ln
1

d2(x, y) ∨ 2−k
,

where d2(x, y) is the dyadic distance defined on [0, 1]d, i.e. d2(x, y) is an inverse power of 2 and
we have

d2(x, y) 6 2−r ⇔
(
∃z, x, y ∈ I

(r)
z

)
.

Note that the process Y is a particular case of branching random walk (studied in e.g. [33, 42])
with i.i.d Gaussian step, and deterministic branching number 2d.

From (2.2), there exists C such that

E[Xk(x)Xk(y)] + C > E[Y (k)(x)Y (k)(y)].

Hence, by Proposition 2.2, we get that there exists some C > 0 such that:

E

[(∫

[0,1]d
2dke2γ(Xk(x)−

√
2d ln 2k)dx

)α]
6 CE

[(∫

[0,1]d
2dke2γ(Y

(k)(x)−
√
2d ln 2k)dx

)α]

= CE




 ∑

z∈{0,...,2k−1}d
e2γ(Y

(k)(2−kz)−
√
2d ln 2k)



α
 .
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Now, by using [42, Prop 2.1] or [7, Lemma 9], we know that for all β > 1 and α < 1
β :

E




 ∑

z∈{0,...,2k−1}d
eβ(

√
2dY (k)(2−kz)−2d ln 2k)



α
 6

C

k
3
2
αβ

Now, recall that γ >
√

d
2 and hence for all α <

√
d
2
1
γ :

E




 ∑

z∈{0,...,2k−1}d
e2γ(Y

(k)(2−kz)−
√
2d ln 2k)



α
 6

C

k
3√
2d
αγ
.

4 Study of the phase III and its I/III and II/III boundaries

4.1 Results and organization of the proofs

In the inner phase III, the limit object describing the renormalized measure is a complex white-
noise whose intensity depends on X and is given by M2γ,0(dx) (all the information about Y is
lost in the limit).

The frontiers I/III and II/III present similar behaviors but there are additional technical
difficulties especially for the frontier II/III. Indeed, in that case, the intensity measure M2γ,0(dx)
is the so-called derivative martingale (see [22, 23]).

Now, we define the function σ2 that will appear throughout the following convergence results

Definition 4.1. Function σ2. In dimension d, we define the function the function of the pa-
rameters (γ, β):

σ2(β2 + γ2) :=





∫
Rd

exp
(
− (γ2 + β2)

∫ 1
0

1−k(uz)
u du

)
dz if β2 + γ2 > d

∫
z∈Sd−1 νd−1(dz) exp

(∫∞
0

k(uz)−1[0,1](u)

u du
)

if β2 + γ2 = d
(4.1)

where νd−1(z) denotes the surface measure on S
d−1 (the d− 1 dimensional unit sphere).

Observe that in dimension 1, for β2 + γ2 = 1, σ2 takes the simpler form

σ2(1) = 2 exp

(∫ ∞

0

k(u)− 1[0,1](u)

u
du

)
.

We also stress that we have the following asymptotic behaviour for large z and β2 + γ2 > d:

exp
(
− (γ2 + β2)

∫ 1

0

1− k(uz)

u
du
)
≃ 1

(1 + |z|)γ2+β2 .

Therefore σ2 is well defined for β2 + γ2 > d.
We are now in position to state the main results of this section:

21



Theorem 4.2. • When γ ∈ [0,
√

d
2 [ and β

2 + γ2 > d, we have

(
εγ

2− d
2Mγ,β

ε (A)
)
A⊂Rd

⇒ (Wσ2M2γ,0(A))A⊂Rd
. (4.2)

where σ2 = σ2(β2 + γ2) and W is a standard complex Gaussian measure on R
d with inten-

sity σ2M2γ,0. The above convergence holds in the sense of convergence in law of the finite
dimensional distributions.

• When γ ∈ [0,
√

d
2 [ and β

2 + γ2 = d, we have

(
εγ

2− d
2 | ln ε|−1/2Mγ,β

ε (A)
)
A⊂Rd

⇒ (Wσ2M2γ,0(A))A⊂Rd
. (4.3)

where σ2 = σ2(d) and W is a standard complex Gaussian measure on R
d with intensity

σ2M2γ,0. The above convergence holds in the sense of convergence in law of the finite di-
mensional distributions.

Concerning the frontier II/III, we will need to use the results in [22, 23]. Further assumptions
must be made in order to make sure that one can construct the derivative martingale and prove
the Seneta-Heyde renormalization (see [23, Section D and Remark 31]):

Assumption (A). We consider the following assumptions:

A4. k is nonnegative,

A5. k has compact support,

A5’. k admits a nonnegative convolution square root g, i.e. k(x) =
∫
Rd
g(y)g(x+ y) dy, such that

g is nonnegative, g and ∂g are integrable, and for some constants C > 0, α > 1

sup
|x| > 2

g(x)+|∂g(x)| < +∞,

∫ ∞

1
v−1

∫

B(0,lnα v)
g2(y) dy dv <∞, k(x)+|∂k(x)| 6 Ce−|x|1/α .

Theorem 4.3. Assume that k satisfies assumptions A.1-4 and either A.5 or A.5’. When γ =√
d/2 and β2 + γ2 > d, we have

(
(− ln ε)1/4Mγ,β

ε (A)
)
A⊂Rd

⇒ (Wσ2M ′(A))A⊂Rd
. (4.4)

with

σ2 =

√
2

π
σ2(β2 + d/2),

and the law of Wσ2M ′(·) is, conditionally to X, that of a complex Gaussian random measure
with intensity σ2M ′. The above convergence holds in the sense of convergence in law of the finite
dimensional distributions.

In dimension 1, the law of (Wσ2M ′([0, t]))t > 0 coincides with (Bσ2M ′([0,t]))t, where B is a
complex Brownian motion independent of X.

To carry out the proof, we compute the limit of the moments conditionally to X and prove
that they match those of the prescribed Gaussian random measure. The first important step is

to identify the second moment of E
[
|Mγ,β

ε (A)|2|X
]
in each case. This work is done in Sections

4.2 to 4.4.
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Then in a second step, we conclude the proof of the above theorems in Section 4.5. The main
idea is to consider the higher order moments and to show that they are those of a Gaussian
variable. The main technical material on these moments is gathered in appendix A.

Remark 4.4. In dimension 1, it is enough to assume k to be twice differentiable on some interval
[0, δ] for some δ > 0. The left and right derivative at 0 need not be the same. For instance, one
can consider the kernel k(u) = (1− |u|)+ in dimension 1.

4.2 The second moments

Let us first focus on computing the second moment. We want to prove the following:

Proposition 4.5. Let A be some compact ball with a non-empty interior.

• When γ2 + β2 > d, γ <
√

d
2 , we have the following L1-convergence

lim
ε→0

E

[∣∣∣εγ2−d/2Mγ,β
ε (A)

∣∣∣
2
|X
]
= σ2(γ2 + β2)M2γ,0(A). (4.5)

where

σ2(γ2 + β2) = lim
ε→0

εγ
2+β2−d

∫

|r| 6 1

dr

Gε(r)β
2+γ2

. (4.6)

• When γ2 + β2 = d, γ <
√

d
2 , we have the following L1-convergence

lim
ε→0

E

[∣∣∣εγ2−d/2| ln(ε)|−1/2Mγ,β
ε (A)

∣∣∣
2
|X
]
= σ2(1)M2γ,0(A). (4.7)

where

σ2(1) = 2 lim
ε→∞

| ln ε|−1

∫ 1

0

dr

Gε(r)
. (4.8)

Proposition 4.6. Let A be some compact ball with non empty interior. When γ2 + β2 > d,

γ =
√

d
2 , we have the following convergence in probability

lim
ε→0

E

[∣∣∣| ln ε|1/4Mγ,β
ε (A)

∣∣∣
2
|X
]
= σ2(γ2 + β2)

√
2

π
M ′(A). (4.9)

First, we point out that computing the limits (4.6) and (4.8) yields the expression of Definition
4.1. This point will be shown in our proofs.

The proof of the above two propositions will be the object of Sections 4.2 to 4.4. For simplicity,
we will consider the case d = 1 since the general case is a straightforward adaptation of this case.
Computing the variance of M(A) for an arbitrary interval is not more difficult than dealing with
the case A = [0, 1] so that we will only consider this case in the proof. Before going to the core
of the proof (in which we will have to deal with the II/III case separately) let us exhibit a more

user-friendly expression for E[|Mγ,β
ε (A)|2|FX ]:

E

[∣∣∣εγ2−1/2Mγ,β
ε ([0, 1])

∣∣∣
2
|FX

]
= ε2γ

2+β2−1

∫

[0,1]2

Mγ,0
ε (dx)Mγ,0

ε (dy)

Gε(x− y)β2 . (4.10)

The right-hand side of (4.10) can be rewritten as

εγ
2+β2−1

∫

[0,1]2

exp
(
γ(Xε(x) +Xε(y))− γ2

2 E[(Xε(x) +Xε(y))
2]
)

Gε(x− y)β2+γ2
dxdy. (4.11)
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By symmetry the integral is equal to 2
∫
{y > x} (of course we cannot do anything of the kind

when d > 2 but this step is just performed for notational convenience here and there is nothing
crucial about it). With the change of variables y − x→ r and setting

Xε,r(z) = Xε(z + r) +Xε(z), (4.12)

we obtain that (4.11) is equal to

2

∫ 1

0

1

Gε(r)β
2+γ2

(∫ 1−r

0
exp

(
γXε,r(z)−

γ2

2
E[(Xε,r(z))

2]

)
dz

)
dr = 2

∫ 1

0

1

Gε(r)β
2+γ2

M̂ε,rdr.

(4.13)

where we have defined

M̂γ
ε,r =

∫ 1−r

0
exp

(
γXε,r(z)−

γ2

2
E[(Xε,r(z))

2]

)
dz,

and Mγ
ε,r =

∫ 1

0
exp

(
γXε,r(z)−

γ2

2
E[(Xε,r(z))

2]

)
dz.

(4.14)

As a conclusion we have

E

[∣∣∣εγ2−1/2Mγ,β
ε ([0, 1])

∣∣∣
2
|FX

]
= εγ

2+β2−1

∫ 1

0

2

Gε(r)β
2+γ2

M̂γ
ε,rdr. (4.15)

Similarly when γ2 + β2 = 1, we have

E

[∣∣∣εγ2−1/2| ln ε|−1/2Mγ,β
ε ([0, 1])

∣∣∣
2
|FX

]
= | ln ε|−1

∫ 1

0

2

Gε(r)
M̂γ
ε,rdr. (4.16)

The first key tool of the argument relies on the following lemma, the proof of which is straight-
forward and thus left to the reader:

Lemma 4.7. We can write:
Gε(εt) = εf(t)gε(t)

with
f(t) = e

∫ |t|
0

1−k(u)
u

du and gε(t) = e−
∫ εt
0

1−k(u)
u

du.

The function f is continuous on R and f(t) ≃ ln |t| for t large. Furthermore, for each fixed t,
gε(t) → 1 as ε→ 0 and supε|t| 6 1 | ln gε(t)| = C <∞.

In (4.15) and (4.16), we integrate M̂γ
ε,r w.r.t. to a measure on [0, 1]: either εγ

2+β2−1 2

Gε(r)β
2+γ2

dr

or | ln ε|−1 2
Gε(r)1

dr. In both cases the total mass of the measure is of order one and converges

when ε→ 0. Furthermore when ε→ 0 most of the mass of these measures is supported by small
r, even by r that are of order ε in the case γ2 + β2 > 1.

Now the idea is that Xε,r(z) ≈ 2Xε when r is small and hence that M̂γ
ε,r (or Mγ

r,ε) can be

replaced by M2γ
ε ([0, 1]) in the integral. This corresponds to proving the following lemma

Lemma 4.8. For γ < 1/
√
2, we have the following convergence in L1,

lim
ε,s→0

M̂γ
ε,s = lim

ε,s→0
Mγ
ε,s =M2γ,0([0, 1]) (4.17)
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When γ = 1/
√
2, M2γ,0([0, 1]) has to be replaced by the derivative martingale, which is not

in L1 so that there is no hope for an equivalent statement to hold. The case is treated separately
in Section 4.4.

Proof of Proposition 4.5 using Lemma 4.8. We first show (4.6) and (4.7). Using the definition of
Gε we can write

εγ
2+β2−1

∫ 1

0

dr

Gε(r)β
2+γ2

= ε−1

∫ 1

0
dr exp

(
(γ2 + β2)

∫ ε−1

1

k(ur)− 1

u
du

)
. (4.18)

Then we use first the change of variables r → r′ = rε−1 and u→ u′ = uε and the above integral
becomes ∫ 1/ε

0
dr′ exp

(
(γ2 + β2)

∫ 1

ε

k(u′r′)− 1

u′
du′
)
, (4.19)

and then we obtain (4.6) by taking the limit when ε → 0 and applying standard integration
theorems.

For (4.7), we have

| ln ε|−1

∫ 1

0

dr

Gε(r)
= | ln ε|−1

∫ ε| ln ε|1/2

0

dr

Gε(r)
+ | ln ε|−1

∫ 1

| ln ε|−1/2

dr

Gε(r)

+ | ln ε|−1

∫ | ln ε|−1/2

ε| ln ε|1/2

dr

r
exp

(∫ ε−1

1

k(ur)− 1[0,r−1](u)

u
du

)
. (4.20)

The first term tends to zero because Gε(r) > Cε, the second term as well because Gε(r) > C/r.
To prove the convergence of the third term, we perform the change of variables u → u′ = ur to
obtain ∫ | ln ε|−1/2

ε| ln ε|1/2
dr

r
exp

(∫ ε−1r

r

k(u′)− 1[0,1](u
′)

u′
du′
)
. (4.21)

The term in the exponential converges uniformly to

∫ ∞

0

k(u′)− 1[0,1](u
′)

u′
du′

on the domain of integration when ε tends to zero and then integrating with respect to r cancels
the | ln ε|−1 in front of the integral.

Now what remains to prove is that in L1:

lim
ε→0

εγ
2+β2−1

∫ 1

0

1

Gε(r)β
2+γ2

|M̂γ
ε,r −M2γ,0([0, 1])|dr = 0, when γ + β < 1

lim
ε→0

| ln ε|−1

∫ 1

0

1

Gε(r)
|M̂γ

ε,r −M2γ,0([0, 1])|dr = 0 when γ + β = 1

(4.22)

Let δ be arbitrarily small. According to Lemma 4.8 we can find η such that if max(r, ε) 6 η and

|M̂γ
ε,r −M2γ,0([0, 1])| 6 δ
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Then for all ε < η we have

E

[
εγ

2+β2−1

∫ 1

0

2

Gε(r)β
2+γ2

|M̂γ
ε,r −M2γ,0([0, 1])|dr

]

6 δεγ
2+β2−1

∫ 1

0

2

Gε(r)β
2+γ2

dr +

∫

r∈[η,1]

2

Gε(r)β
2+γ2

dr. (4.23)

According the proof of (4.6), the first term is smaller than a constant times δ and the second one
can be made arbitrary small for a fixed η if ε is taken sufficiently small. is enough to conclude as
δ is arbitrary. The other limit can be proven in the same manner.

4.3 Proof of Lemma 4.8

First let us notice that it is sufficient to prove the result for Mε,s as

E

[
|Mε,s − M̂ε,s|

]
= s (4.24)

and thus tends to zero.

If ε 6
√
s, we write

|Mγ
ε,s −M2γ,0| 6 |Mγ

ε,s −Mγ√
s,s
|+ |Mγ√

s,s
−M2γ,0√

s
[0, 1]| + |M2γ,0√

s
[0, 1] −M2γ,0[0, 1]| (4.25)

and if ε >
√
s,

|Mγ
ε,s −M2γ,0[0, 1]| 6 |Mγ

ε,s −M2γ,0
ε [0, 1]| + |M2γ,0

ε [0, 1] −M2γ,0[0, 1]|. (4.26)

The last terms in the r.h.s. of both (4.25) and (4.26) converge to 0 in L1 as the martingale
(M2γ,0

e−t )t > 0 is uniformly integrable (see e.g. [35]) and we just have to care about the other terms.
For the second term in (4.25), we use the following result

Lemma 4.9. Let (X,Y ) be a centered Gaussian vector. There exists a universal constant C such
that

E[
∣∣∣eX−E[X2]/2 − eY−E[Y 2]/2

∣∣∣] 6 C
√
E[(X − Y )2]. (4.27)

Proof. We use the Girsanov formula for the measure tilted by X and we obtain

E

[∣∣∣eX−E[X2]/2 − eY−E[Y 2]/2
∣∣∣
]
= E

[
eX−E[X2]

∣∣∣1− eY−X−E[Y 2]/2+E[X2]/2
∣∣∣
]

= E

[∣∣∣1− eY+E[XY ]−X−E[X2]−E[Y 2]/2+E[X2]/2
∣∣∣
]
= E

[∣∣∣1− e(X−Y )−E[(X−Y )2]/2
∣∣∣
]
. (4.28)

Then the reader can check that the last term can be bounded by C
√

E[(X − Y )2] (it is sufficient
to check it when (X − Y ) has small variance because it is always smaller than 2).

By Jensen’s inequality and stationarity, we have

|Mγ√
s,s

−M2γ,0√
s
[0, 1]| 6

∫ 1

0
E

[∣∣∣∣e
γX√

s,s(x)− γ2

2
E[X√

s,s(x)
2] − e2γX

√
s(x)−2γ2E[X√

s(x)
2]

∣∣∣∣
]
dx (4.29)

6 C

√
E

[
X√

s,s(0) −X√
s(0)

]
6 C ′√s, (4.30)
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which tends to zero. The same computation allow to control also the first term in (4.26)

Finally, we control the |Mγ
ε,s −Mγ√

s,s
| term in (4.25) by proving the following Lemma that

ensures that the (Mγ
ε,s)ε > 0 is uniformly Cauchy in L

q for some q > 1 (and hence in L
1) when

ε→ 0.

Lemma 4.10. For any γ < 1/
√
2, for any q ∈ (1,min(2, 1

2γ2
)), there exists C > 0 and α(q, γ) > 0

(not depending on s, but only on q) such that for any ε > ε′ > 0 we have

E

[
|Mγ

ε′,s −Mγ
ε,s|q

]1/q
6 Cεα (4.31)

Proof. In the proof we always consider that ε is small enough. It is sufficient to prove the result
for ε′ ∈ [ε/2, ε) as then we can use telescopic sums i.e. if ε′ ∈ [2−(m+1)ε, 2−mε), we have

E

[
|Mγ

ε′,s −Mγ
ε,s|q

]1/q
6

m−1∑

k=0

E

[
|Mγ

2−(k+1)ε,s
−Mγ

2−kε,s|
q
]1/q

+ E

[
|Mγ

ε′,s −Mγ
2−mε,s|

q
]1/q

6 Cεα
m∑

k=0

2−kα. (4.32)

Recall that Fε is the σ-algebra generated by Xt, t > ε. We have for all q ∈ (1, 2):

E

[
|Mγ

ε′,s −Mγ
ε,s|q

]
6 E

[
E

[
(Mγ

ε′,s −Mγ
ε,s)

2 | Fε
]q/2]

(4.33)

The conditional expectation E

[
(Mγ

ε′,s −Mγ
ε,s)2 | Fε

]
is in fact a conditional variance as E[Mγ

ε′,s | Fε] =
Mγ
ε,s. Then the conditional variance can be expanded as a double integral:

∫

[0,1]2
dxdy eγ(Xε,s(x)+Xε,s(y))−

γ2

2
E[X2

ε,s(x)+X
2
ε,s(y)]

× Cov

(
eγ(Xε′ ,s−Xε,s)(x)−

γ2

2
E[(Xε′,s−Xε,s)2(x)], eγ(Xε′ ,s−Xε,s)(y)−

γ2

2
E[(Xε′,s−Xε,s)2(y)]

)
(4.34)

Now we try to control the covariance term in x and y, with a simple function. We have

Cov

(
eγ(Xε′ ,s−Xε,s)(x)−

γ2

2
E[(Xε′,s−Xε,s)2(x)], eγ(Xε′ ,s−Xε,s)(y)−

γ2

2
E[(Xε′,s−(Xε,s)2(y)]

)

= eγ
2
E((Xε′,s−Xε,s)(x)(Xε′ ,s−Xε,s)(y)) − 1

6 CE
(
(Xε′,s −Xε,s)(x)(Xε′,s −Xε,s)(y)

)
, (4.35)

where the last inequality uses the fact that ε/2 6 ε′ (so that the covariances are uniformly
bounded by 4 ln 2). Then using translation invariance we have

E
(
(Xε′,s −Xε,s)(x)(Xε′,s −Xε,s)(y)

)

= 2E ((Xε′ −Xε)(x)(Xε′ −Xε)(y)) +E ((Xε′ −Xε)(x+ s)(Xε′ −Xε)(y))

+ E ((Xε′ −Xε)(x− s)(Xε′ −Xε)(y)) . (4.36)

The first term is equal to

∫ 1/ε′

1/ε

k(u(x− y))

u
du 6 ln 2 max

v >
|x−y|
ε

k(v) := g((x− y)/ε), (4.37)
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and one can find similar bounds for the two others. Note that by our assumption on k, g is an
integrable function. Using the inequality ab 6 a2/2 + b2/2 together with the symmetry in x and
y for the exponential term in (4.34) and combining it with the bound we have just obtained for
the covariance we obtain

E[(Mγ
ε′,s −Mγ

ε,s)
2 | Fε] 6 C

∫

[0,1]2
e2γXε,s(x)−γ

2E[X2
ε,s(x)]

×
(
2g

(
x− y

ε

)
+ g

(
x− y − s

ε

)
+ g

(
x− y + s

ε

))
dxdy. (4.38)

Now we can extend the above integral to y ∈ R to obtain an upper bound (and then three terms
in the second line above give the same contribution by translation invariance), and make the
change of variable z = y−x

ε to obtain

E[(Mγ
ε′,s −Mγ

ε,s)
2 | Fε] 6 Cε

(∫ 1

0
e2γXε,s(x)−γ

2E[X2
ε,s(x)]dx

)(∫ ∞

−∞
g(z)dz

)

6 C ′ε

(∫ 1

0
e2γXε,s(x)−γ

2E[X2
ε,s(x)]dx

)
. (4.39)

Plugging this inequality into (4.33), we have

E

[
|Mγ

ε′,s −Mγ
ε,s|q

]
6 Cεq/2E

[(∫ 1

0
e2γXε,s(x)−γ

2E[X2
ε,s(x)]dx

)q/2]
. (4.40)

Now we split the interval [0, 1] into K = ⌈ε−1⌉ disjoint intervals of length 1/K setting

Ijε := [(j − 1)/K, j/K], j = 1..K

Using the inequality (
∑
ai)

θ 6
∑
aθi for θ < 1 we have

E

[(∫ 1

0
e2γXε,s(x)−γ

2E[X2
ε,s(x)]dx

)q/2]
= KE



(∫

I0ε

e2γXε,s(x)−γ
2E[X2

ε,s(x)]dx

)q/2
 . (4.41)

Using the Hölder inequality we have, for any p > 1 (let p′ = p/(p − 1) denote its Hölder
conjugate),

E



(∫

I0ε

e2γXε,s(x)−γ
2E[X2

ε,s(x)]dx

)q/2


6 (1/K)q/2E

[
eγpqXε,s(0)−

pqγ2

2
E[X2

ε,s(x)]
]1/p

E



(
K

∫

I0ε

e2γ(Xε,s(x)−Xε,s(0))dx

)p′q/2

1/p′

. (4.42)

By Jensen’s inequality, if p′q/2 > 1 (which holds whenever p 6 2 as q > 1) the last factor is
smaller than

E

[
K

∫

I0ε

eγp
′q(Xε,s(x)−Xε,s(0))dx

]1/p′
6 exp

(
γ2p′q2

2
max

x∈[0,1/K]
E[(Xε,s(x)−Xε,s(0))

2]

)
.
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which bounded above by a constant that does not depend on ε. On the other hand the first term
is equal to

e
γ2q(pq−1)

2
E[X2

ε,s(x)] 6 ε−2γ2q(pq−1)

because E[Xε,s(x)
2] 6 4E[Xε(x)

2] = 4| ln ε|. In the end, combining (4.40), (4.41) and (4.42) (recall
that K 6 2ε−1), we get that

E

[
|Mγ

ε′,s −Mγ
ε,s|q

]
6 Cεq−1−2γ2q(pq−1). (4.43)

Then the result is proved provided one can find p > 1 such that q − 1 > 2γ2q(pq − 1), which is
possible whenever q < 1/(2γ2).

4.4 Proof of Proposition 4.6

Recall (4.15). The aim of this Section is to show that in probability

lim
ε→0

εβ
2−1/2

∫ 1

0

2dr

Gε(r)β
2+1/2

| ln ε|1/2M̂1/
√
2

ε,r

=

(
lim
ε→0

εβ
2−1/2

∫ 1

0

2dr

Gε(r)β
2+1/2

)√
2

π
M ′[0, 1] = σ2(1/2 + β2)

√
2

π
M ′[0, 1]. (4.44)

The second equality is in fact (4.6) and has already been proved. In fact, we can replace

M̂
1/

√
2

ε,r by M
1/

√
2

ε,r in the l.h.s. as

∫ 1

0
εβ

2−1/2 2dr

Gε(r)β
2+1/2

| ln ε|1/2E[|M̂1/
√
2

ε,r −M1/
√
2

ε,r |] =
∫ 1

0
εβ

2−1/2 2rdr

Gε(r)β
2+1/2

| ln ε|1/2. (4.45)

which tends to 0 thanks to Lemma 4.7. Hence what remains to prove is that

lim
ε→0

εβ
2−1/2

∣∣∣∣∣

∫ 1

0

dr

Gε(r)β
2+1/2

(
| ln ε|1/2M1/

√
2

ε,r −
√

2

π
M ′[0, 1]

)∣∣∣∣∣ = 0 (4.46)

or with a change of variable r → s = r/ε

lim
ε→0

∣∣∣∣∣

∫ ε−1

0

ds

(Gε(εs)/ε)β
2+1/2

(
| ln ε|1/2M1/

√
2

ε,εs −
√

2

π
M ′[0, 1]

)∣∣∣∣∣ = 0. (4.47)

We will split the proof of (4.47) in two lemmas: one taking care of the contribution of the small
s in the integral (which is the most important step) and another one controlling the contribution
of the larger s:

Lemma 4.11. We have in probability

lim
A→∞

lim
ε→0

∣∣∣∣∣

∫ ε−1

A

ds

(Gε(εs)/ε)β
2+1/2

(
| ln ε|1/2M1/

√
2

ε,εs −
√

2

π
M ′[0, 1]

)∣∣∣∣∣ = 0 (4.48)

Lemma 4.12. For all A, we have in probability

lim
ε→0

∣∣∣∣∣

∫ A

0

ds

(Gε(εs)/ε)β
2+1/2

(
| ln ε|1/2M1/

√
2

ε,εs −
√

2

π
M ′[0, 1]

)∣∣∣∣∣ = 0 (4.49)
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The limit (4.47) results from a combination of (4.48) and (4.49). Before proceeding with the
proofs of these lemmas, let us introduce some notations. In what follows, for some κ > 0, we will
consider the set

Bκ = { sup
x∈[0,1]

sup
u∈]0,1]

Xu(x) +
√
2 lnu 6 κ},

Bκ,ε = { sup
x∈[0,1]

sup
u∈[ε,1]

Xu(x) +
√
2 lnu 6 κ}.

(4.50)

Obviously Bκ ⊂ Bκ,ε for all ε > 0, and it is proved in [22, Proposition 19] that

P(Bκ) → 1 as κ→ ∞.

For x ∈ [0, 1] and κ > 0, we also introduce the stopping time

τκx = sup{u ∈]0, 1];Xu(x) +
√
2 lnu > κ}.

It is readily seen that, on Bκ, we have τκx = 0 for all x ∈ [0, 1].

Proof of Lemma 4.11. The reader can check using Lemma 4.7 that

lim
A→∞

lim
ε→0

∫ ε−1

A

ds

(Gε(εs)/ε)β
2+1/2

= 0.

Hence what we have to prove is

lim
A→∞

lim
ε→0

∫ ε−1

A

ds

(Gε(εs)/ε)β
2+1/2

| ln ε|1/2M1/
√
2

ε,εs = 0 in probability. (4.51)

To do so, it is enough to show that the expectation of the above expression restricted to the
event Bκ vanishes, for all κ, as A → ∞ and ε → 0. The key point is to prove that there exists a
constant C such that for all t:

E[M
1/

√
2

ε,εt 1Bκ ] 6

√
2

π

κ+
√
2/2(1 + ln(Ct))

| ln ε|1/2 . (4.52)

Indeed, this implies that for all κ > 0

lim
A→∞

lim
ε→0

E

[
1Bκ

∫ ε−1

A

ds

(Gε(εs)/ε)β
2+1/2

| ln ε|1/2M1/
√
2

ε,εs

]

6 lim
A→∞

lim
ε→0

√
2/π

∫ ε−1

A

κ+
√
2/2(1 + ln(Ct))

(Gε(εs)/ε)β
2+1/2

= 0.

Let us now prove (4.52).

E[M
1/

√
2

ε,εt 1Bκ ] =

∫ 1

0
E

[
1Bκe

1/
√
2Xε,εt(z)− 1

4
E[Xε,εt(z)2]

]
dz

6

∫ 1

0
E

[
1∀u∈[ε,1]Xu(z)+

√
2 lnu 6 κe

√
2Xε,εt(z)− 1

4
E[Xε,εt(z)2]

]
dz.
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By the Girsanov formula, the expectation in the r.h.s. of the above expectation is equal to
(recall that Kε denotes the covariance kernel of Xε):

P

(
sup
u∈[ε,1]

Xu(z) +
√
2/2 ln u+

√
2/2Ku(εt)) 6 κ

)
. (4.53)

Because of Assumption (A), we may find a constant C such that |k(0) − k(x)| 6 C|x| for all
x ∈ R. Thus we have for u ∈ [ε, 1]:

ln
1

u
−Ku(εt) =

∫ u−1

1

1− k(vtε)

v
dv 6

∫ 1

ε

1− k(vt)

v
dv 6

∫ (Ct)−1

ε
Ctdv +

∫ 1

(Ct)−1

dv

v

6 1 + ln(Ct).

For some given z, the process Xu(z)u∈]0,1] has the same law of a time changed standard Brownian
motion (B√

− lnu)u∈]0,1] and hence (4.53) is smaller than

P

(
sup

s∈[0,| ln ε|]
Bs 6 κ+

√
2/2(1 + ln(Ct))

)
=

√
2

π

κ+
√
2/2(1 + ln(Ct))

| ln ε|1/2 ,

which is enough to conclude.

Proof of Lemma 4.12.We set ε′′ =
√
ε, ε′ = ε ln ln(ε−1). From [23], we know that | ln ε|1/2εM

√
2,0

ε′ [0, 1]

converges towards
√

2/πM ′[0, 1] (note that ln ε′/ ln ε → 1) when ε tends to zero and thus it is

enough to prove (4.49) with
√

2/πM ′[0, 1] replaced by | ln ε|1/2εM
√
2,0

ε′ [0, 1].

We introduce X̃ε,ε′,s which is an interpolation between Xε,s and Xε (when ε 6 ε′ 6 1):

X̃ε,ε′,s := 2Xε′ + (Xε,s −Xε′,s).

We then use the following decomposition

∣∣∣∣∣

∫ A

0

| ln ε|1/2ds
(Gε(εs)/ε)β

2+1/2

(
M1/

√
2

ε,εs − εM
√
2,0

ε′

)∣∣∣∣∣

6

∣∣∣∣∣∣

∫ A

0

| ln ε|1/2ds
(Gε(εs)/ε)β

2+1/2




1∫

0

e(1/
√
2)Xε,εt(z)− 1

4
E[Xε,εt(z)2] − e(1/

√
2)X̃ε,ε′′,εt(z)− 1

4
E[X̃ε,ε′′,εt(z)

2] dz



∣∣∣∣∣∣

+

∣∣∣∣∣∣

∫ A

0

| ln ε|1/2ds
(Gε(εs)/ε)β

2+1/2




1∫

0

e(1/
√
2)X̃ε,ε′′,εt(z)− 1

4
E[X̃ε,ε′′,εt(z)

2] − e(1/
√
2)X̃ε,ε′,εt(z)− 1

4
E[X̃ε,ε′,εt(z)

2] dz



∣∣∣∣∣∣

+

∣∣∣∣∣∣

∫ A

0

| ln ε|1/2ds
(Gε(εs)/ε)β

2+1/2




1∫

0

e(1/
√
2)X̃ε,ε′,εt(z)− 1

4
E[X̃ε,ε′,εt(z)

2] − e
√
2Xε(z)−E[Xε(z)2] dz



∣∣∣∣∣∣

and show that each of the three terms converges to zero in probability.
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The first term converges in L1 norm. Indeed, from Lemma 4.9 we have

E



∣∣∣∣∣∣

∫ A

0

| ln ε|1/2dt
(Gε(εt)/ε)β

2+1/2




1∫

0

e(1/
√
2)Xε,εt(z)− 1

4
E[Xε,εt(z)2] − e(1/

√
2)X̃ε,ε′′ ,εt(z)− 1

4
E[X̃ε,ε′′,εt(z)

2] dz



∣∣∣∣∣∣




6

∫ A

0

| ln ε|1/2dt
(Gε(εt)/ε)β

2+1/2

1∫

0

E

[
|e(1/

√
2)Xε,εt(z)− 1

4
E[Xε,εt(z)2] − e(1/

√
2)X̃ε,ε′′,εt(z)− 1

4
E[X̃ε,ε′′,εt(z)

2]|
]
dz

6 C

∫ A

0

| ln ε|1/2dt
(Gε(εt)/ε)β

2+1/2

√
E[(Xε,εt(z)− X̃ε,ε′′,εt(z))2] 6 C ′| ln ε|1/2ε1/4.

The second term converges to zero in probability. This is a bit more tricky to show because
we do not have L1 convergence but we can manage to obtain it by restricting ourselves to the
event Bκ,ε′′ with say κ = ln ln | ln ε| (whose probability tends to one). By Jensen’s inequality, the
expectation of the second term on the event Bκ,ε′′ is smaller than

∫ A

0

| ln ε|1/2dt
(Gε(εt)/ε)β

2+1/2

1∫

0

E

[
1Bκ,ε′′ |e

(1/
√
2)X̃ε,ε′′,εt(z)− 1

4
E[X̃ε,ε′′,εt(z)

2] − e(1/
√
2)X̃ε,ε′,εt(z)− 1

4
E[X̃ε,ε′,εt(z)

2]|
]
dz.

(4.54)
Then, by independence of the increments of (Xe−t)t > 0, we have

E


1Bκ,ε′′

∣∣∣
1∫

0

e(1/
√
2)X̃ε,ε′′,εt(z)− 1

4
E[X̃ε,ε′′,εt(z)

2] − e(1/
√
2)X̃ε,ε′,εt(z)− 1

4
E[X̃ε,ε′,εt(z)

2] dz
∣∣∣


 (4.55)

=

1∫

0

E[1Bκ,ε′′ e
√
2Xε′′ (z)−E[Xε′′(z)

2]]E
[∣∣∣e(1/

√
2)(X̃ε,ε′′ ,εt−2Xε′′ )(z)− 1

4
E[(X̃ε,ε′′ ,εt−2Xε′′ )

2(z)]

− e(1/
√
2)(X̃ε,ε′,εt−2Xε′′ )(z)− 1

4
E[(X̃ε,ε′,εt−2Xε′′ )

2(z)]
∣∣∣
]
dz.

By a Girsanov transform one sees that the first factor in the r.h.s. of (4.55) is equal to

P[ max
u∈(ε′′,1]

Xu(z) 6 κ] = P[|Xε′′(z)| 6 κ] =

√
2

π

κ

(ln ε)1/2
. (4.56)

Using Lemma 4.9 one sees that the second factor is smaller than

C

√
E[(X̃ε,ε′′,εt − X̃ε,ε′,εt)2] 6 C

√
A(ln | ln ε|)−1,

Hence (4.54) is smaller than

C
√
A

∫ A

0

(ln | ln ε|)−1/2dt

(Gε(εt)/ε)β
2+1/2

6 C
√
Aκ(ln | ln ε|)−1/2. (4.57)

Finally we show that

∣∣∣
A∫

0

| ln ε|1/2
(Gε(tε)/ε)β

2+1/2




1∫

0

e(1/
√
2)X̃ε,ε′,εt(z)− 1

4
E[X̃ε,ε′,εt(z)

2] − e
√
2Xε′(z)−E[Xε′ (z)

2] dz


 dt

∣∣∣ (4.58)
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tends to zero in probability. To do so we prove that for some q < 1 the q-th moment converges
to zero. The content of | · | can be rewritten as

| ln ε|1/2
1∫

0

e
√
2Xε′(z)−E[Xε′ (z)

2]ξ(z)dz, (4.59)

where

ξ(z) :=

A∫

0

dt

(Gε(εt)/ε)β
2+1/2

(
e(1/

√
2)(Xε,εt−Xε′,εt)(z)− 1

4
E[(Xε,εt−Xε′,εt)(z)2] − 1

)
.

Then using conditional Jensen’s inequality, we obtain that the q-th moment is smaller than

(− ln ε)q/2E



(∫

[0,1]2
e
√
2(Xε′ (z)+Xε′ (z

′))−2E[Xε′ (z)
2]
E[ξ(z)ξ(z′)]dzdz′

)q/2
 . (4.60)

then we need to have an upper bound on E[ξ(z)ξ(z′)] to conclude.

Lemma 4.13. We stick to the notation of (4.37). For any z and z′ we have

E[ξ(z)ξ(z′)] 6 C

(
ε′

ε

)2

ln(ε′/ε)g

( |z − z′| − εA

ε′

)
.

Proof. Expanding the two integrals we get

E[ξ(z)ξ(z′)] =

A∫

0

A∫

0

1

(Gε(εt)/ε)β
2+1/2(Gε(εt′)/ε)β

2+1/2

×
(
eE[(Xε,εt−Xε′,εt)(z)(Xε,εt′−Xε′,εt′ )(z′)]/2 − 1

)
dtdt′. (4.61)

Using the inequality ex − 1 6 eKx for x 6 K and the fact that

E[(Xε,εt −Xε′,εt)(z)(Xε,εt′ −Xε′,εt′)(z
′)] 6 4E

[
(Xε −Xε′)

2(0)
]
.

we get

eE[(Xε,εt−Xε′,εt)(z)(Xε,εt′−Xε′,εt′ )(z′)] − 1 6

(
ε′

ε

)2

E[(Xε,εt −Xε′,εt)(z)(Xε,εt′ −Xε′,εt′)(z
′)]/2

To get a bound on (4.61), we need a bound on E[(Xε,εt−Xε′,εt)(z)(Xε,εt′ −Xε′,εt′)(z
′)] that does

not depend on t nor t′. We do so by noticing that for any values of t, t′ in [0, A], we have

min(|z − z′|, |z − z′ + εt|, |z − z′ − εt′|, |z − z′ + εt− εt′|) > |z − z′| − εA. (4.62)

Hence, using the notation introduced in (4.37), we have

E[(Xε,εt −Xε′,εt)(z)(Xε,εt′ −Xε′,εt′)(z
′)] 6 C ln(ε′/ε)g

(
(|z − z′| − εA)+

ε′

)
. (4.63)

The result follows from the combination of the above inequalities and the fact that
A∫
0

dt

(Gε(εt)/ε)β
2+1/2

is bounded uniformly in A and ε from Lemma 4.7.
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From Lemma 4.13 and (4.60) we have that the q-th moment of (4.58) is smaller than

C| ln ε|q/2
( ε
ε′

)2
ln(ε/ε′)

× E



(∫

[0,1]2
e
√
2(Xε′ (z)+Xε′ (z

′))−2E[Xε′ (z)
2]g

(
(|z − z′| − εA)+

ε′

)
dzdz′

)q/2
 . (4.64)

In the above expectation, by using the relation

e
√
2(Xε′ (z)+Xε′ (z

′))−2E[Xε′ (z)
2]
6

1

2
e2

√
2Xε′(z)−2E[Xε′ (z)

2] +
1

2
e2

√
2Xε′ (z

′)−2E[Xε′ (z
′)2],

we get the following upper-bound by symmetrization:
∫

[0,1]2
e
√
2(Xε′ (z)+Xε′ (z

′))−2E[Xε′ (z)
2]g

(
(|z − z′| − εA)+

ε′

)
dzdz′

6

∫

[0,1]2
e2

√
2Xε′ (z)−2E[Xε′ (z)

2]g

(
(|z − z′| − εA)+

ε′

)
dzdz′

6 ε′
∫ 1

0
e2

√
2Xε′ (z)−2E[Xε′ (z)

2]dz

∫

R

g
(
(|z′′| − (εA)/ε′)+

)
dz′′

where the last line was obtained by a change of variables and expanding the integral over R. The
function in the second integral is smaller than g (|z′′| − 1)+), which is integrable. And hence it
remains to show that

| ln ε|q/2
(
ε′

ε

)2

ln(ε′/ε)E

[(
ε′
∫ 1

0
e2

√
2Xε′ (z)−2E[Xε′ (z)

2]dz

)q/2]
, (4.65)

tends to zero.
Now, we use Lemma 3.14 with γ = 2

√
2 and α = q/2 < 1/2, and we obtain the following

bound

E

[(
ε′
∫ 1

0
e2

√
2Xε′(z)−2E[Xε′ (z)

2]dz

)q/2]
6 C| ln ε′|−

3q
2 ,

so that the expression (4.65) is smaller than

C| ln ε|−q
(
ε′

ε

)2

ln(ε′/ε),

which tends to zero according to our definition of ε′.

4.5 Proof of Theorem 4.2 and 4.3

Now, we conclude the proofs of Theorem 4.2 and 4.3. For simplicity, we consider the case d = 1.
We only treat the proof of Theorem 4.2 since Theorem 4.3 can be dealt with similarly. We
consider l disjoint intervals A1, · · · , Al. We fix k vectors u1, · · · , ul in R

2. We denote by < u, x >
the Euclidean scalar product on R

2. We also introduce a sequence (fj)j > 1 of continuous and
bounded functions which is dense in the space of continuous functions with compact support. We
want to show that

Zu1,··· ,ulε :=

l∑

i=1

εγ
2− 1

2 < ui,M
γ,β
ε (Ai) >
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converges in law to Zu1,··· ,ul :=
∑l

i=1Wσ2M2γ,0(Ai) as ε goes to 0. If this was not the case, we could
find an index j0 and a subsequence εn going to 0 such that E[fj0(Z

u1,··· ,ul
εn )] does not converge to

E[fk0(Z
u1,··· ,ul)]. By applying a diagonal extraction argument to proposition A.1, we can find a

subsequence (np)p > 1 such that for all k > 1 we get the following almost sure convergence (with
respect to X):

E[(Zu1,··· ,ulεnp
)k|X] →

p→∞
E[(Zu1,··· ,ul)k|X]

By the method of moments, we deduce that almost surely we have:

E[fj0(Z
u1,··· ,ul
εnp

)|X] →
p→∞

E[fj0(Z
u1,··· ,ul)|X]

Hence by dominated convergence, we get that E[fj0(Z
u1,··· ,ul
εnp )] →

p→∞
E[fj0(Z

u1,··· ,ul)] which con-

tradicts our assumption.

5 Conjectures

5.1 Reminder: conjectures on β = 0

In the case β = 0, there is still some open questions about the renormalization of the measures
(Mγ,0

ε )ε. Some conjectures are stated in [6, 22] that we recall here:

Conjecture 5.1. Assume γ >
√
2d and set α =

√
2d
γ . Then

(− ln ε)
3γ

2
√

2d εγ
√
2d−dMγ,0

ε (dx)
law→ cγNα(dx), as ε→ 0 (5.1)

where cγ is a positive constant depending on γ and the law of Nα is given, conditioned on the
derivative martingale M ′, by an independently scattered random measure the law of which is
characterized by

∀A ∈ B(Rd),∀q > 0, E[e−qNα(A)|M ′] = e−q
αM ′(A).

5.2 Conjectures on the inner phase II

We state here conjectures on this phase that we should be able to prove in the case of discrete
cascades thanks to the exact study of the extremal process combined with our argument to
establish convergence in law towards a complex Gaussian random measure conditionally on X.
In the context of Gaussian multiplicative chaos, we have to rely on the conjecture 5.1 to state:

Conjecture 5.2. Let β > 0 and γ >
√

d
2 such that γ + β >

√
2d. Then we get the following

convergence in law:

(
(ln

1

ε
)

3γ

2
√

2d εγ
√
2d−dMγ,β

ε (A)

)

A⊂Rd

⇒
(
Wσ2Nα

M′ (A)
)
A⊂Rd

.

where, conditionally on Nα
M ′, Wσ2Nα

M′ is a complex Gaussian random measure with intensity Nα
M ′

and Nα
M ′ is a α-stable random measure with intensityM ′ and α =

√
d
2
1
γ , namely an independently

scattered random measure whose law is characterized by E[e−qN
α
M′ (A)] = e−q

αM ′(A) for all u > 0
and A bounded Borelian set. The constant σ2 depends on (γ, β).
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5.3 Triple point

Concerning the triple point, the situation is a bit more delicate. When looking at the proof of
subsection 4.4, it is natural to expect:

Conjecture 5.3. For β = γ =
√

d
2 , the following convergence in law holds:

(
| ln ε|− 1

4Mγ,β
ε (A)

)
A⊂Rd

ε→0⇒ (Wσ2M ′(A))A⊂Rd
.

where, conditionally on M ′, Wσ2M ′(·) is a complex Gaussian random measure with intensity
σ2M ′, and σ2 is a constant.

5.4 Continuity in dimension 1 of the limiting process in the frontier I/II

Looking at the proof of lemma 3.13, one can write the following heuristics for k 6 n:

E

[
(2−n)

γ2

2
−β2

2 Mγ,β
1
2n

[0, 2−k]|2 | FX

]
=

∫

[0, 1

2k
]×[0, 1

2k
]
(2−n)γ

2
Mγ,0

1
2n

(dx)Mγ,0
1
2n

(dy)

G 1
2n
(y − x)(

√
2−γ)2

≈
n∑

j=k

2jβ
2
2j−k∑

l=1

1

2jγ2
Mγ,0

1

2j

[
l − 1

2j
,
l

2j

]2

≈
n∑

j=k

2j−k∑

l=1

e
2γ(X

2−j (
l

2j
)−

√
2 ln 2j)

Recall that it is conjectured that
∑2j−k

l=1 e2γ(X2−j (
l

2j
)−

√
2 ln 2j) converges in law to some atomic ran-

dommeasure ν (see (5.1)). Hence, the limitMγ,β should satisfy the boundE[Mγ,β([0, 1
2k
])2|FX ] 6

ν([0, 1
2k
])(k

3γ√
2
−1

)−1 and more generally:

E[Mγ,β([s, t])2|FX ] 6
ν([s, t])

(ln+
1

|t−s|
3γ√
2
−1

)

It is therefore natural to conjecture that in dimension 1, we can reinforce the above result by an
almost sure convergence in the space of continuous functions. Indeed, as soon as one can show
that the limiting measure Mγ,β is cadlag, the above estimates entail continuity.

6 Gaussian Free Fields

The Gaussian Free field with mass m > 0 on a set D ⊂ R
2 (for simplicity we can say that D

is either a planar bounded domain or the whole plane) and Dirichlet boundary condition is the
Gaussian field whose covariance function is given by the Green function of the problem

△u− 2mu = −2πf on D, u|∂D = 0.

Notice the unusual normalization factor 2π in order to get correlations of the form (1.2). When
D = R

2 we have to consider m > 0: otherwise the Green function is infinite everywhere. In the
case of a bounded domain D, we are mostly interested in the case m = 0.
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The Green function can be written as

g(x, y) = π

∫ ∞

0
e−rmp(r, x, y) dr.

where p(t, x, y) will denote the transition densities of the Brownian motion on D killed upon
touching ∂D. A formal way to define the complex Gaussian field X + iY (with X and Y inde-
pendent GFF) is to consider two independent white noises WX ,W Y on R+ ×D and define

X(x) =
√
π

∫ ∞

0

∫

D
e−mr/2p(r/2, x, y)WX(dr, dy),

Y (x) =
√
π

∫ ∞

0

∫

D
e−mr/2p(r/2, x, y)W Y (dr, dy).

(6.1)

To define the exponential of the field X+ iY , we need to use a cut-off procedure. So we define the
approximations Xε and Yε (respectively of the fields X and Y ) by integrating over (ε2,∞) ×D
in (6.1) instead of (0,∞) ×D. The covariance function for these approximations is given by

E[Xε(x)Xε′(y)] = E[Yε(x)Yε′(y)] = π

∫ ∞

ε2∨ε′2
e−rmp(r, x, y) dr. (6.2)

6.1 Massive Gaussian Free Field in the plane

Observe that, in the case of massive Gaussian Free Field on R
2 (see subsection 2.1), the kernel p

is translation invariant and has a simple expression

p(t, x, y) =
1

2πt
e−

|x−y|2
2t .

The whole plane massive Green function then takes the form

∀x, y ∈ R
2, Gm(x, y) =

∫ ∞

0
e−mu−

|x−y|2
2u

du

2u
. (6.3)

and can be rewritten as

Gm(x, y) =

∫ +∞

1

km(u(x− y))

u
du. (6.4)

for some continuous covariance kernel km = 1
2

∫∞
0 e−

m
v
|z|2− v

2 dv. Therefore the whole plane massive
free field strictly enters the framework of the first part of our paper.

6.2 Gaussian Free Field on planar bounded domains

The case of the GFF on a planar bounded domain is a bit more delicate (but nothing too serious)
as p(t, x, y) is not translation invariant this time. We use the change of variables r → r−2 in the
integral in the r.h.s. of (6.2) to find something closer to the setup that we have worked with in
the previous sections and obtain:

E[Xε(x)Xε′(y)] = E[Yε(x)Yε′(y)] = 2π

∫ ε−1∧ε′−1

0
e−m/r

2
r−3p(r−2, x, y) dr. (6.5)

The kernel 2πe−m/r
2
r−3p(r−2, x, y) will have to play the role of k(u(x−y))u .
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We have

2πr−3p(r−2, x, y) 6
e

−(r|x−y|)2
2

r
, ∀(x, y, r). (6.6)

Furthermore the two kernels are asymptotically equivalent in the interior of D in the sense that
for any compact K ⊂ D:

lim
r→∞

sup
x,y∈K

|2πr−2p(r−2, x, y)e
(r|x−y|)2

2 − 1| = 0. (6.7)

We will also consider the following decomposition of the covariance function

gε(x, y) :=E[Xε(x)Xε(y)]

=

∫ ε−1

1
2πr−3p(r−2, x, y) dr +

∫ 1

0
2πr−3p(r−2, x, y) dr

=:g̃ε(x, y) + g′(x, y),

This corresponds to writing
Xε = X̃ε +X ′ (6.8)

where X ′ and X̃ε have respective covariance functions g̃ε(x, y) and g
′(x, y).

The conformal radius C(x,D) of a point x in the planar bounded domain D is defined by

C(x,D) :=
1

|ϕ′(x)| (6.9)

where ϕ is any conformal mapping of D to the unit disc such that ϕ(x) = 0. In fact, we will use
the following definition which is more useful for our purpose. Let ϕ be any conformal map from
D to the upper half plane H. Then we have the following expression for the conformal radius:

C(x,D) =
2Im(ϕ(x))

|ϕ′(x)| . (6.10)

Set
Gε(x, y) := e−gε(x,x).

The following claim is proved in the Appendix.

Lemma 6.1. For all x ∈ D, we set Cε(x,D) = ε/Gε(x, x). For all x ∈ D, we have:

lim
ε→0

Cε(x, x) = C(x,D) (6.11)

uniformly on the compact subsets of D.

We define for (γ, β) ∈ R
2
+ and ε the following operator:

Mγ,β
ε (ϕ) =

∫

D
ϕ(x)eγXε(x)+iβYε(x)−

γ2−β2
2

Gε(x,x)C(x,D)
γ2

2
−β2

2 dx.

where ϕ(x) is a bounded measurable function on D. Notice that the renormalization term
γ2−β2

2 Gε(x, x) in the exponential is chosen such that Mγ,β
ε (ϕ) is a martingale in ε.
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Given another planar domain D̃ and a conformal map ψ : D̃ → D, we will denote by (Xψ
ε )ε∈]0,1]

and (Y ψ
ε )ε∈]0,1] the random fields defined by

Xψ
ε (x) = Xε(ψ(x)) and Y ψ

ε (x) = Yε(ψ(x)).

These two family form two independent white noise approximating sequences of the GFFs X ◦ψ
and Y ◦ ψ defined on D̃. Then we define for ϕ defined on D̃:

Mγ,β,ψ
ε (ϕ) =

∫

D̃
ϕ(x)eγX

ψ
ε (x)+iβY ψε (x)− γ2−β2

2
Gε(ψ(x),ψ(x))C(x, D̃)

γ2

2
−β2

2 |ψ′(x)|2γ dx.

When ψ is the identity we simply writeMγ,β
ε . This allows us to define simultaneously the GFF on

every planar bounded domain conformally equivalent to D. We also mention the rule, for x ∈ D̃,
|C(ψ(x),D)| = |ψ′(x)||C(x, D̃)| where |ψ′(x)|2 is the Jacobian of the mapping ψ : D̃ → D (this
follows right away from the definition of the conformal radius (6.9)).

Phase I and frontier I/II

Consider a couple (γ, β) ∈ R+ ×R and define

ζ(p) = (2 +
γ2

2
− β2

2
)p − γ2

2
p2.

We have the following behavior inside phase I:

Theorem 6.2. Consider a couple (γ, β) ∈ R+ × R in phase I or in the frontier I/II (excluding
the extremal points). Consider p ∈]1, 2] such that ζ(p) > 2 in the inner phase I or p ∈ [1, 2γ [ on
the frontier I/II. Then:

1. For every bounded planar bounded domain D̃ and conformal map ψ : D̃ → D, for all
bounded function ϕ ⊂ D̃, the martingale:

(Mγ,β,ψ
ε (ϕ))ε

is uniformly bounded in Lp.

2. Almost surely, the convergence of Mγ,β,ψ
ε (·) holds in the sense of distributions of order

2. The operator norm in the space of distributions of order 2 of the limiting distribution,
denoted by Mγ,β,ψ(·), is Lp-integrable.

3. For all q ∈ [0, p] and all function ϕ ∈ C2
c (D̃):

E[|Mγ,β,ψ(ϕ(·/r))|p] ∼
r→0

Cxr
ζ(p)

for all x ∈ D̃ and some constant Cx > 0, which is continuous with respect to x on D̃.

Proof. The proofs of items 1,2,3 are exactly the same as in Section 3: when computing the Lp

norm, thanks to (6.6), we can use Proposition 2.2 to compare the capacity with the one of the
stationary case k(x) = e−x

2/2.

39



Remark 6.3. As a consequence of the above Theorem we have for any ϕ ∈ C2
c (D̃),

lim
ε→0

ε
γ2

2
−β2

2

∫

D
ϕ(x)eγXε(x)+iβYε(x) dx =Mγ,β

ε (ϕ),

in the Lp sense.

To see this, the reader can check that with our definitions

ε
γ2

2
−β2

2

∫

D
ϕ(x)eγXε(x)+iβYε(x) dx−Mγ,β

ε (ϕ)

=

∫

D
(Cε(x,D)− C(x,D))

γ2

2
−β2

2 ϕ(x)eγX
ψ
ε (x)+iβY ψε (x)− γ2−β2

2
Gε(x,x) dx. (6.12)

As Cε(x,D) converges uniformly (Lemma 6.1), Theorem 3.1 (Item 1) shows that the moment of
order p of the above quantity tends to zero.

Gaussian Free Field on planar bounded domains: another approach in phase I and
frontier I/II

Circle averages. In this subsection, we extend the framework of [25] to the complex case. Let
X and Y be two independent GFFs on a domain D. Without loss of generality, we suppose that D
contains the square [0, 1]2 (otherwise we could consider a smaller square inside D). We introduce
the circle averages (Xε)ε∈]0,1] and (Yε)ε∈]0,1] of radius ε, i.e. Xε(x) (resp. Yε(x)) stands for the
mean value of X (resp. Y ) on the circle centered at x with radius ε (cf. [25] for further details).
We then consider the operator:

ϕ 7→Mγ,β
ε (ϕ) =

∫

D
ϕ(x)eγXε(x)+iβYε(x)−(γ2/2−β2/2)E[Xε(x)2] dx.

We set Gε,ε′(x, y) = E[Xε(x)Xε′(y)]. We can now state the following theorem:

Theorem 6.4. In the inner phase I, we consider p ∈]1, 2] such that ζ(p) > 2 and on the frontier
I/II (excluding the extremal points), we consider p ∈]1, 2γ [. For all bounded measurable function

ϕ with compact support in D, the family (Mγ,β
ε (ϕ))ε converges in Lp towards a variable Mγ,β(ϕ).

Proof. Here Mγ,β
ε is not a martingale so we cannot content ourselves with proving boundedness

in Lp: we must show that the sequence is Cauchy. If ε, ε′ > 0, we have the following bounds:

E[|Mγ,β
ε ([0, 1]2)−Mγ,β

ε′ ([0, 1]2)|p]
6 E[E[|Mγ,β

ε ([0, 1]2)−Mγ,β
ε′ ([0, 1]2)|2|X]p/2]

= E[|A(ε, ε) +A(ε′, ε′)− 2A(ε, ε′)|p/2] (6.13)

where we have set:

A(ε, ε′) =
∫

([0,1]2)2
eγXε(x)−

γ2

2
E[Xε(x)2]eγXε′ (y)−

γ2

2
E[Xε′(y)

2]eβ
2Gε,ε′ (x,y)dxdy.

If δ > 0, we further define

A(ε, ε′, δ) =
∫

([0,1]2)2,|x−y| 6 δ
eγXε(x)−

γ2

2
E[Xε(x)2]eγXε′ (y)−

γ2

2
E[Xε′(y)

2]eβ
2Gε,ε′ (x,y)dxdy

C(ε, ε′, δ) =
∫

([0,1]2)2,|x−y|>δ
eγXε(x)−

γ2

2
E[Xε(x)2]eγXε′ (y)−

γ2

2
E[Xε′(y)

2]eβ
2Gε,ε′ (x,y)dxdy.
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The main idea of what follows is the following: we split the integrals appearing in (6.13) in two
regions |x − y| 6 δ and |x − y| > δ for some δ > 0. On the set |x − y| > δ, the singularity

eβ
2Gε,ε′ (x,y) is bounded by a constant (eventually depending on δ). Therefore, the convergence of

the term
E[|C(ε, ε, δ) + C(ε′, ε′, δ) − 2C(ε, ε′, δ)|p/2]

towards 0 boils down to establishing the convergence of the family (Mγ,0
ε ) in L

p. This is ”almost”
proved in [25]: actually, the authors in [25] only prove almost sure convergence. On the other
hand, it is plain to check (using Proposition 2.2 get a comparison with a stationary field) that
this family is uniformly bounded in Lq for some q > p. The claim of convergence in Lp follows.
We deduce:

lim sup
ε,ε′→0

E[|Mγ,β
ε ([0, 1]2)−Mγ,β

ε′ ([0, 1]2)|p]

6 lim sup
ε,ε′→0

E[|A(ε, ε, δ)|p/2 ] + E[|A(ε′, ε′, δ)|p/2] + 2E[|A(ε, ε′, δ)|p/2].

By the capacity lemmas 3.10 or 3.13 (depending if we are in the inner phase I or the frontier

I/II), the above quantity goes to 0 as δ goes to 0; therefore (Mγ,β
ε ([0, 1]2))ε is a Cauchy sequence

in Lp.

Orthonormal basis expansion of the GFF. As a preliminary, the reader is referred to
[53, 25] for further background about the decomposition of the GFF along orthonormal basis.
Let us denote by H(D) the Hilbert space closure of the space C∞

c (D) with respect to the inner
product

(f, g)∇ =
1

2π

∫

D
∇f(x) · ∇g(x) dx.

Now we want to expand the GFF along a given orthonormal basis of H(D) to produce another
way of defining the limiting random variable Mγ,β. We will also show that the limit obtained
with this procedure does not depend on the choice of the orthonormal basis.

So we consider an orthonormal basis (fk)k > 1 of H(D) made up of continuous functions. We
consider the projections of X and Y onto this orthonormal basis, namely we define the sequence
of i.i.d. Gaussian random variables:

εk =
1

2π

∫

D
∇X(x)∇fk(x)dx, and ε′k =

1

2π

∫

D
∇Y (x)∇fk(x)dx.

The projections of X and Y onto the span of {f1, . . . , fn} are given by:

Xn(x) =

n∑

k=1

εkfk(x) and Yn(x) =

n∑

k=1

ε′kfk(x).

In this context, we set:

Mγ,β
n (A) =

∫

A
eγXn(x)+iβYn(x)−(γ2/2−β2/2)E[Xn(x)2] dx. (6.14)

We have the following result:
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Theorem 6.5. In the inner phase I, we consider p ∈]1, 2] such that ζ(p) > 2 and on the frontier
I/II (excluding the extremal points), we consider p ∈]1, 2γ [. For all bounded measurable function

ϕ with compact support in D, the sequence (Mγ,β
n (ϕ))n converges almost surely and in Lp to

Mγ,β(ϕ), i.e. the same limit as the circle average approximations of Theorem 6.4.

Proof. First observe that the sequence (Mγ,β
n (ϕ))n is a martingale uniformly bounded in Lp

(because of Lemma 3.10 or Lemma 3.13 depending if we are in the inner phase I or the frontier
I/II). Thus it converges almost surely and in Lp.

Let ε > 0. For n > 1, we denote by Xn,ε(x) (resp. Yn,ε(x)) the circle average of Xn(x) (resp.
Yn(x)), i.e. the mean value of Xn (resp. Yn) along the circle centered at x with radius ε. For all
n 6 m, we have the following:

E[

∫

D
ϕ(x)eγXm,ε(x)+iβYm,ε(x)−(γ2/2−β2/2)E[Xm,ε(x)2] dx|(εk, ε′k)k 6 n]

=

∫

D
ϕ(x)eγXn,ε(x)+iβYn,ε(x)−(γ2/2−β2/2)E[Xn,ε(x)2] dx

Now, we take the limit as m → ∞ and get that:

E[Mγ,β
ε (ϕ)|(εk , ε′k)k 6 n] =

∫

D
ϕ(x)eγXn,ε(x)+iβYn,ε(x)−(γ2/2−β2/2)E[Xn,ε(x)2] dx.

Since the variable Mγ,β
ε converges in Lp, we can take the limit in the above identity as ε → 0

hence getting:
E[Mγ,β(ϕ)|(εk , ε′k)k 6 n] =Mγ,β

n (ϕ).

Now, we conclude that Mγ,β
n (ϕ) is a martingale bounded in Lp which converges to Mγ,β(ϕ).

Remark 6.6. The almost sure limit of Theorem 6.2 is the same in distribution as the one defined
in Theorem 6.4 or 6.5.

Phases II and III, frontier I/III and II/III

Now let us discuss how to adapt the proofs of Theorems 4.2 and (4.3) to the case of the GFF
with Dirichlet boundary condition.

Concerning the corresponding statements, we have to specify what the value of σ and the
intensity measure are. It appears through the computations that the natural thing to do is to
renormalize eγXε+iβYε by a power of ε (i.e. by considering Wick ordering). So we consider here

Mγ,β
ε (A) = ε

γ2

2
−β2

2

∫

A
eγXε(x)+iβYε(x) dx

for all measurable bounded set A ⊂ D.

Theorem 6.7. • When γ ∈ [0, 1[ and β2 + γ2 > 2, we have

(
εγ

2−1Mγ,β
ε (A)

)
A⊂R2

⇒
(
W
σ2M̃2γ,0(A)

)
A⊂Rd

. (6.15)

with

σ2 = σ2(β2 + γ2) := 2π

∫ ∞

0
exp

(
− (γ2 + β2)

∫ 1

0

1− e−(ur)2/2

u
du
)
rdr,
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and

M̃2γ,0(dx) := lim
ε→0

ε2γ
2
e2γXε(x)dx

= C(x,D)2γ
2
lim
ε→0

e2γXε(x)−2γ2E[X2
ε (x)]dx =: C(x,D)2γ

2
M2γ,0(dx) : (6.16)

and W is a standard complex Gaussian measure on R
d with intensity σ2M2γ,0. The above

convergence holds in the sense of convergence in law of the finite dimensional marginals.

• When γ ∈ [0, 1[ and β2 + γ2 = 2, we have

(
εγ

2−1| ln ε|−1/2Mγ,β
ε (A)

)
A⊂Rd

⇒
(
W
σ2M̃2γ,0(A)

)
A⊂Rd

. (6.17)

with

σ2 = σ2(2) := 2π exp

(∫ ∞

0

e−u
2/2 − 1[0,1](u)

u
du

)
.

and W is a standard complex Gaussian measure on R
d with intensity σ2M2γ,0. The above

convergence holds in the sense of convergence in law of the finite dimensional distributions.

Theorem 6.8. When γ = 1 and β2 + γ2 > d, we have
(
(− ln ε)1/4Mγ,β

ε (A)
)
A⊂Rd

⇒
(
W
σ2M̃ ′(A)

)
A⊂Rd

. (6.18)

with

σ2 =

√
2

π
σ2(β2 + 1).

Convergence holds in the sense of convergence in law of the finite dimensional distributions and
the law of W

σ2M̃ ′(·) is that of a complex Gaussian random measure with intensity σ2M ′ where

M̃ ′(dx) := lim
ε→0

√
π

2
ε2| ln ε|1/2e2Xε(x)dx

= C(x,D)2 lim
ε→0

[2E[X2
ε (x)]−Xε(x)]e

2Xε(x)−2E[X2
ε (x)]dx =: C(x,D)2M ′(dx). (6.19)

Remark 6.9. Note that the expression that we find for σ is that of Theorem 4.2 where k is taken
equal to e−u

2/2.

Computations of the constant σ2. When adapting the proof, there is only some work to be
done in the computation of the second moment (Proposition 4.5 and 4.6). In particular there is
some challenge in computing the value of σ2. For simplicity we compute the second moment for
A a square included in D (and which does not touch the boundary).

Repeating the computations of Section 4.2 leading to (4.13) we obtain after having made the
change of variables (x, y) ∈ A2 → (x, z) with z = y − x:

E

[
(εγ

2−1Mγ,β
ε (A))2 | FX

]
= εγ

2+β2−1

∫

A−A



∫

A∩(A−z)

(Cε(x,D)Cε(x+ z,D))
γ2−β2

2

Gε(x, x+ z)γ2+β2 eγXε,z(x)−
γ2

2
E[X2

ε,z(x)]dx


dz,

:= εγ
2+β2−1

∫

A−A

M̂γ
ε,z

(G0
ε(z))

γ2+β2 dz. (6.20)
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where

Xε,z(x) := Xε(x) +Xε(x+ z)

G0
ε(z) := exp

(
−
∫ ε−1

1

k0(uz)du

u

)
with k0(z) = e−|z2|/2,

M̂γ
ε,z =

∫

A∩(A−z)

(Cε(x,D)Cε(x+ z,D))
γ2−β2

2 G0
ε(z)

γ2+β2

Gε(x, x+ z)γ2+β2 eγXε,z(x)−
γ2

2
E[X2

ε,z(x)]dx

Mγ
ε,z =

∫

A
C(x,D)2γ

2
eγXε,z(x)−

γ2

2
E[X2

ε,z(x)]dx.

(6.21)

Also, we have similar expressions for the frontiers I/III or II/III.
We need to prove the following equivalent of Lemma 4.8

Lemma 6.10. For γ < 1 we have the following convergences in L1

lim
ε,z→0

M̂γ
ε,z = lim

ε,z→0
Mγ
ε,z = M̃2γ(A). (6.22)

Proof. The proof of the convergence ofMγ
ε,z is very similar to what we have done in the translation

invariant case and we wish not to repeat it. What there is to do is to prove that Mγ
ε,z − M̂γ

ε,z(A)
converges to zero. First we notice that

Cε(x,D)/C(x,D) and Cε(x+ z,D)/C(x,D)

converges to one uniformly in A when ε and z tend to zero so that the Cε in M̂ can be replaced
by C(x,D). The second thing is to check that

lim
z,ε→0

G0
ε(z)/Gε(x, x+ z) = C(x,D) (6.23)

uniformly in A. The − ln of the quotient above is equal to

∫ ε−1

1

e−(r|z|)2/2

r
− 2πr−3p(r−2, x, x+ z)dr

=

∫ ε−1

1

e−(r|z|)2/2

r
(1−2πr−2p(r−2, x, x))dr+2π

∫ ε−1

1
r−3

(
e−(|z|r)2/2p(r−2, x, x)− p(r−2, x, x+ z)

)
dr.

(6.24)

By the monotone convergence Theorem, the first term converges to

lim
ε→∞

∫ ε−1

1

1

r
(1− 2πr−2p(r−2, x, x))dr =

∫ ∞

1

1

r
(1− 2πr−2p(r−2, x, x))dr

which according to Lemma 6.1 is equal to − lnC(x,D).

We have to show that the second term goes to zero. Let P tx,y denote the law of the standard
Brownian bridge (Ys)s∈[0,t] with lifetime t starting from x and ending at y. Then using the
definition of p, we have

p(t, x, y) =
1

2πt
e−

(x−y)2
2t P tx,y((Ys)s∈[0,t] stays in D).
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Hence the second term in (6.24) is equal in absolute value to

|
∫ ε−1

1
r−1e−(|z|r)2/2

(
P r

−2

x,x (Y exits D)− P r
−2

x,x+z(Y exits D)
)
dr|

6

∫ ∞

1
r−1|P r−2

x,x (Y exits D)− P r
−2

x,x+z(Y exits D)|dt. (6.25)

A classic fact for Brownian Motion is that if x and x + z are at a positive distance d of the
boundary of D, then there exists constants c and C such that

P r
−2

x,x+z(Y exits D) 6 C(d)e−c(d)r
−2
.

As for fixed r
lim
z→0

|P r−2

x,x (Y exits D)− P r
−2

x,x+z(Y exits D)| = 0

we can apply the dominate convergence Theorem to show that the r.h.s. of (6.25) tends to zero.

The third step is to change the domain of integration from A ∩ (A− z) to A but this is easy
to check that the contribution to the integral of A \ (A− z) is negligible.

Other GFFs

They are other possible choices of the underlying GFF. One may for instance consider Neumann
boundary conditions instead of Dirichlet’s, or consider a GFF with vanishing mean on the sphere
or the torus. We will only give a few details here in the case of the torus. This straightforwardly
adapts to the case of the sphere. But we do not treat the case of the GFF with Neumann boundary
conditions: we believe but have not checked in details that everything works the same.

Consider a GFF on the torus with vanishing mean (X(x))x∈T where T is the two-dimensional
torus. All the theorems stated for the GFF with Dirichlet boundary applies. The difference here
concerns the computation of the constant σ2. Let us expand the corresponding Green function on
the torus G along the eigenvalues of the Laplacian on T. More precisely, it is the Green function
associated to the problem: for f ∈ L2(T) and

∫
T
f = 0, find a solution u to the problem:

△u = −2πf, u ∈ L2(T) and

∫

T

u = 0.

The eigenvalues of the Laplacian are given for x = (x1, x2) ∈ T by:

ep,q(x) =
√
2 cos(2πpx1 + 2πqx2) fp,q(x) =

√
2 sin(2πpx1 + 2πqx2)

with associated eigenvalue −λp,q = 2π(p2 + q2) for (p, q) ∈ N
∗ ×Z∪ {0} ×N

∗ def= En. For n ∈ N
∗.

We define the truncated Green function

Gn(x) =
1

π

∑

(p,q)∈En

1

p2 + q2
cos
(
2πpx1 + 2πqx2

)
.

In this context, the equivalent of Lemma 4.7 reads:

Lemma 6.11. We have the following convergence for all x ∈ R
2:

Gn(
x

n
) = lnn− F (x) + gn(x)
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where F : R2 → R is given by:

F (x) = −κ+
1

2π

∫

[−1,1]2

1− cos
(
2π(x1u+ x2v)

)

u2 + v2
dudv

and gn satisfies sup|x/n| 6 1 |gn(x)| 6 C and gn(x) → 0 as n → ∞. The constant κ is determined
by

1

π

∑

(p,q)∈En

1

p2 + q2
= lnn+ κ+ o(1) as n→ ∞

and, for all γ2 + β2 > 2, we have
∫
R2 e

−(γ2+β2)F (x)dx <∞.

Proof. Because of the definition of κ, it suffices to estimate the quantity

1

2π

∑

|p|,|q| 6 n
(p,q) 6=0

1

p2 + q2

(
cos(2πp

x1
n

+ 2πq
x2
n
)− 1

)

It can be rewritten as

1

n2

∑

|p|,|q| 6 n
(p,q) 6=0

1

2π

1

( pn)
2 + ( qn)

2

(
cos(2πp

x1
n

+ 2πq
x2
n
)− 1

)
.

This is a sum of Riemann type. It converges as n goes to ∞ towards

1

2π

∫

[−1,1]2

cos(2πx1u+ 2πx2v)− 1

u2 + v2
dudv.

The function gn is the remainder in this convergence and its properties are easily established via
standard techniques of Riemann approximations. This proves the claim about the structure of F .
Let us prove that F satisfies the announced integrability condition. Obviously, F is continuous
and therefore locally integrable. We just have to study its behaviour close to ∞. By making a
change of variables, we get:

F (x) = −κ+
1

2π

∫

[−|x|,|x|]2

1− cos
(
2π(x1|x|u+ x2

|x|v)
)

u2 + v2
dudv.

This quantity is then easily seen to be equivalent to 1
2π

∫
[−|x|,|x|]2\[−1,1]2

1
u2+v2

dudv, which is in

turn equivalent to ln |x| as x→ ∞.
One can thus applies Theorems 6.7 and 6.8 with the constant

σ2(γ2 + β2) =

{∫
R2 exp

(
− (γ2 + β2)F (x)

)
dx if γ2 + β2 > 2,

2πe2κ−2κ̃ if γ2 + β2 = 2.

where

κ̃ =

∫

[−1,1]2\B(0,1)

1

|u|2 du+ lim
t→∞

∫ t

0

1r∈]0,1[ − (2π)−1
∫ 2π
0 cos(2πr cos θ)dθ

r
dr

46



7 Applications in 2D-string theory

7.1 Introduction

Euclidian quantum gravity is an attempt to quantize general relativity based on Feynman’s func-
tional integral and on the Einstein-Hilbert action principle. One integrates over all Riemannian
metrics on a d-dimensional manifold Σ. The Lorentzian signature is then hopefully recovered via
Wick rotation.

General relativity is a reparametrization invariant theory which can be formulated with no
reference to coordinates at all and this diffeomorphism invariance is a central issue in quantum
theory. The main motivation for considering 2D (for two-dimensional) quantum gravity comes
from the fact that the Einstein-Hilbert action becomes trivial in 2D as it reduces to a topological
term and the cosmological constant coupled to the volume of space-time. All the non trivial
dynamics of the two-dimensional theory thus come from gauge fixing the diffeomorphisms while
keeping the geometry exactly fixed. This is the famous representation of the functional integral
over geometries as a Liouville field theory by Polyakov [47] (see also [47, 40, 12]).

More precisely, one couples a Conformal Field Theory (CFT) (or more generally a matter
field or quantum field theory) to gravity via any reparametrization invariant action for conformal
matter fields with central charge c . A famous example is the coupling of c free scalar matter fields
to gravity, which can also be interpreted as an embedding of Σ in a c-dimensional Euclidian space,
thus leading to an interpretation of such a specific theory of 2D-Liouville Quantum Gravity as a
bosonic string theory in c dimensions [47].

The following discussion will focus on the coupling of one free scalar matter field to gravity:
the CFT is then said to have a central charge c = 1 and this corresponds to the bosonic string
in 1 dimension. For a central charge c = 1, it is shown in [47, 40, 12]) that the reparametrization
invariant action of the CFT (here called the Polyakov action) factorizes as a tensor product: the
fluctuations of the metric are independent of the CFT. More precisely, the random metric roughly
takes on the form [47, 40, 12] (we consider an Euclidean background metric for simplicity):

g(z) = ebX(z)dz2, (7.1)

where the fluctuations of the field X are governed by the Liouville action (with b = 2 for a central
charge c = 1) and the CFT becomes an independent free field, say Y . When the cosmological
constant is set to 0, one talks about critical 2D-Liouville Quantum Gravity and the Liouville
action turns the field X in (7.1) into a Free Field, with appropriate boundary conditions. For
an excellent review on 2D string theory, we refer to Klebanov’s lecture notes [38]. As expressed
by Klebanov in [38]: ”Two-dimensional string theory is the kind of toy model which possesses
a remarkably simple structure but at the same time incorporates some of the physics of string
theories embedded in higher dimensions”. The reader is also referred to [13, 12, 25, 16, 17, 28,
29, 30, 31, 38, 40, 45, 47] for more insights on 2D-Liouville quantum gravity.

Therefore, in the following section, we review the basic notions of CFT with central charge c =
1 and then recall the basic notions of CFT with central charge c = 1 coupled to gravity, i.e. two-
dimensional string theory. In particular, we show that our work enables to define mathematically
the so-called Tachyon fields.
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7.2 Conformal Field theory with central charge c = 1

We consider a domain D and a GFF Y on D with Dirichlet boundary conditions. In the physics
literature, one considers the conformally invariant action:

S(Y ) =
1

4π

∫

D
|∇Y (x)|d2x (7.2)

and all averages of functionals F (Y ) are denoted formally as:

E[F (Y )] =

∫
F (Y )e−S(Y )dY.

Note that the normalization in the definition of S ensures that:

E[Y (y)Y (x)] ∼
|y−x|→0

ln
1

|y − x| .

In this context, Conformal Field Theory (CFT) with central charge c = 1 involves defining and
studying operators (or fields) formally constructed as functions of the GFF: see the mathemati-
cally oriented article [36] for more on this. Since the GFF is a distribution (generalized function),
this is often not straightforward mathematically. Of particular importance are the so-called vertex
operators denoted Vα = eαY (α ∈ C) by physicists that we will rather denote formally in the
following way:

Vα(Y (x), x) = C(x,D)
α2

2 eαY (x)−α2

2
E[Y (x)2] (7.3)

where C(z,D) is the conformal radius. This formal definition is more accurate to denote what
physicists of CFT or Quantum gravity call normal or Wick ordering of eαY (in other fields, in the
Wick ordering of eαY , the conformal radius does not appear in expression 7.3). Under this form,
we recognize Gaussian multiplicative chaos if α is a nonnegative real less than 2. If α is complex
with |α| <

√
2, one can define Vα as a random distribution (see [36]). The construction is obvious

because |α| <
√
2 ensure the fields are L2-integrable.

In this paper and in the following discussion, we consider the case α = iβ where β is real. The
conformal dimension of Viβ(Y, z) measures how the field changes when one switches to another

parametrization. More precisely, let ψ : D̃ → D be a conformal map and set Ỹ (x̃) = (Y ◦ ψ)(x̃).
Since the action (7.2) maps Y → Ỹ under ψ, the conformal dimension ∆iβ of Viβ is defined by

Viβ(Y (ψ(x̃)), ψ(x̃)) = |ψ′(x̃)|−2∆iβViβ(Ỹ (x̃), x̃). (7.4)

In fact, this corresponds to the definition of conformal dimension for spinless operators. By the

rule |C(ψ(x̃),D)| = |ψ′(x̃)||C(x̃, D̃)|, we get that ∆iβ = β2

4 . In particular, we get the following

rigorous relation by integrating the formal relation (7.4) for some compact set K̃ (K = ψ(K̃)):

∫

K̃
Viβ(Ỹ (x̃), x̃)dx̃ =

∫

K̃
Viβ(Y (ψ(x̃)), ψ(x̃))|ψ′(x̃)|2∆iβdx̃

=

∫

K
Viβ(Y (x), x)|ψ′(ψ−1(x))|2∆iβ−2dx

where K is some compact set.
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7.3 CFT with central charge c = 1 coupled to gravity

In the special case c = 1 (hence the case of a GFF Y with Dirichlet boundary conditions on some
domain D), we have b = 2 and the Polyakov action can be written under the following tensor
form:

S(X,Y ) =
1

4π

∫

D
|∇Y (x)|d2x+

1

4π

∫

D
|∇X(x)|2 +QR(x)X(x)d2x (7.5)

where the first term is the classical GFF action (CFT with c = 1) and the second is the classical
Liouville action (where we have set the cosmological constant to 0, R is the curvature and Q =
2
b +

b
2 = 2).
Following the physics literature (see [17, 30, 45]), we consider the following equivalence class

of random surfaces: if ψ : D̃ → D is a conformal map then we get the following rule for the fields
(X,Y ):

(X,Y ) → (X ◦ ψ + 2 ln |ψ′|, Y ◦ ψ)
This equivalence class is a generalization of [25] in the sense that now we incorporate the matter
field Y . The reparametrization rule for Y is a just a consequence of the conformal invariance of
the Free Field, i.e. the action

∫
D |∇Y (x)|d2x is conformally invariant. Since Liouville Quantum

Gravity is a conformal field theory, the relevant operators are the ones which are invariant under
the above rule; this ensures that the operators are stable under reparametrization, i.e. are inde-
pendent of the underlying background metric which is used to define the theory. For consistency
reasons (no conformal anomaly), one can only consider conformally invariant dressed operators
within Liouville Quantum Gravity. The simplest of such operators are the so-called tachyon
fields (see the reviews [38, 45]). More precisely, the tachyon fields are the CFT vertex operators
eiβY with gravitational dressing of the form eγX that are conformally invariant under the action
(7.5). Hence they are formally of the form eγX(x)+iβY (x). Here, we stress the fact that eγX(x)+iβY (x)

is a function of the two GFFs X,Y in order to determine the way it changes under reparametriza-
tion. In what follows, we will thus consider the Wick ordering of the field eγX(x)+iβY (x) and see
if it properly defines a conformally invariant operator under the action (7.5).

The special point γ = 2, β = 0

At the special point (γ = 2, β = 0), we recover the special tachyon field

Mγ,β
X,Y (A) =

∫

A
C(z,D)2M ′(dz)

where M ′ is the derivative martingale defined in [22, 23]:

M ′(dz) = (2E[X(z)2]−X)e2X(z)−2E[X(z)2 ] dz.

Tachyons within phase I and frontier I/II

It is natural to first look for other tachyons fields in phase I together with the frontier of phases
I/II (excluding the extremal points) because the renormalization is standard in this area. The
Wick ordering of the field eγX(x)+iβY (x) then corresponds to (see subsection 6.2):

Mγ,β
X,Y (dx) = eγX(x)+iβY (x)− γ2

2
E[X(x)2]+β2

2
E[Y (x)2]C(x,D)

γ2

2
−β2

2 dx.

We are thus looking for the couples (γ, β) satisfying

Mγ,β
X,Y (ϕ ◦ ψ−1)) =Mγ,β

X◦ψ+2 ln |ψ′|,Y ◦ψ(ϕ)

49



for every function ϕ ∈ C2
c (D̃). Now, we get that:

Mβ,γ
X◦ψ+2 ln |ψ′|,Y ◦ψ(ϕ)

=

∫

D̃
ϕ(x̃)eγ(X(ψ(x̃))+2 ln |ψ′(x̃)|)+iβY (ψ(x̃))− γ2

2
E[X(ψ(x̃))2]+β2

2
E[Y (ψ(x̃))2]|C(x̃, D̃)|γ2/2−β2/2d2x̃

=

∫

D̃
ϕ(x̃)eγX(ψ(x̃))+iβY (ψ(x̃))− γ2

2
E[X(ψ(x̃))2]+β2

2
E[Y (ψ(x̃))2]|C(ψ(x̃),D)| γ

2

2
−β2

2 |ψ′(x̃)|2γ− γ2

2
+β2

2 d2x̃

=

∫

D
ϕ(ψ−1(x))eγX(x)+iβY (x)− γ2

2
E[X(x)2]+β2

2
E[Y (x)2]|C(x,D)| γ

2

2
−β2

2 |ψ′(ψ−1(x))|2γ− γ2

2
+β2

2
−2d2x.

Hence, for the field to be conformally invariant, one must solve the equation 2γ = γ2/2−β2/2+2,
yielding the points of the frontier of phases I/II: γ ± β = 2 for γ ∈]1, 2[). This partially confirms
predictions of physicists (see [38] and references therein) in the sense that it was claimed that we
get tachyons on the segment γ±β = 2 for γ ∈ [0, 2[). Yet, we argue that one cannot find tachyons
for the values γ ± β = 2 and γ ∈ [0, 1] by this Wick ordering procedure: we enter phase III and
the triple point, which involves non standard renormalization that highly perturbs the behaviour
of the exponent of the conformal radius, yielding operators that are not conformally invariant.
In order to get tachyon fields, it might be necessary to study the second order which corresponds
to analytic continuation in the physics literature (see [26]). For instance, in the case γ = 0, the
paper [26] predicts as ε→ 0

ε−
β2

2 eiβYε(x)ϕ(x) dx ≃ ε1−
β2

2 W (ϕ) + T (ϕ) (7.6)

where W corresponds to the white noise and T is a distribution independent of W , which should
correspond to the tachyon field.

KPZ formula for the tachyon fields

Consider the vertex operators Viβ = eiαY , with β ∈ [0, 1), of a Conformal Field Theory (CFT)
with central charge c = 1, i.e. Y is a GFF. We have seen that the conformal dimension ∆0

iβ of

Viβ is β2

4 . The quantum dimension ∆q
iβ of the operator Viβ is defined as the value such that the

operator

eb(1−∆qiβ)XViβ

is conformally invariant within the theory, i.e. becomes a tachyon field (recall that b = 2). We
have seen that we must choose

b(1−∆q
iβ) + β = 2

in order for this field to be conformally invariant, yielding

∆q
iβ =

β

2
.

We thus recover the celebrated KPZ formula (see [40])

∆0
iβ = ∆q

iβ +
b2

4
∆q
iβ(∆

q
iβ − 1)

in its original derivation for (critical) Liouville quantum gravity with a c = 1 (b = 2) central
charge.
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Further comments on the special point γ = 2, β = 0

We would like to make some further comments about the physics literature at c = 1. As pointed
out in [23], this literature suggests (at least) three possible interpretations of the tachyon field
e2X , corresponding to the point (γ = 2, β = 0) in the diagram of Figure 2. The cornerstone
of the discussion is that this point is a wild discontinuity point. The first interpretation is the
derivative martingale M ′ (formally Xe2X) constructed in [22], which turns out to coincide with
e2X via the Seneta-Heyde scaling (see [23]). However, this atypical tachyon field e2X in Liouville
quantum Gravity has been associated to another, non-standard, form of critical c = 1, b = 2
random surface models. Indeed, the introduction of higher trace terms in the action of the c = 1
matrix model of two-dimensional quantum gravity is believed to generate a new critical behavior
of the random surface [32, 37, 39, 55], with an enhanced critical proliferation of spherical bubbles
connected one to another by microscopic “wormholes”. The mathematical meaning of this physics
poetry is to add atoms on top of the measure M ′, meaning considering a random distribution
N1
M ′ where, conditionally on the derivative martingale M ′, N1

M ′ is an independently scattered
random measure distributed on R

2 and characterized by

E[eiqN
1
M′ (A)] = e−c|q|M

′(A),

for some constant c. We further stress that the law N1
M ′ is exactly the same as the law (of the

real part) of W
N

1/2

M′
(with the notation of Figure 2) that one gets along the half-line γ = 2, β > 0

of Figure 2. We believe that the introduction of these higher trace terms, though finely tuned
so as to reach the point (γ = 2, β = 0) at the scaling limit, make you reach this point via a
path living strictly inside the phase II. Therefore, the scaling limit that you get is indeed a 2D-
Cauchy process on top of the derivative martingale (i.e. W

N
1/2

M′
or equivalently N1

M ′) but does not

correspond to the tachyon field because of the discontinuity at the point (γ = 2, β = 0).
Anyway, this remains a striking fact from the angle of (still conjectural) analogy between

random surfaces models and 2D-Liouville Quantum Gravity (see [14] for recent advances): all the
random surface models developed to approximate c = 1 Liouville Quantum Gravity correspond
to all the possible limits that you get when approaching the discontinuity point (γ = 2, β = 0) in
the diagram of Figure 2.

7.4 Chodos-Thorn/Feigin-Fuks Theory: Gaussian Free Field with a background
charge

We discuss here applications of our results to Gaussian conformal field theory in the presence of a
background charge, also known as Chodos-Thorn/Feigin-Fuks Theory (CTFF) [11, 19, 20, 30, 36].
By inserting an imaginary background charge to the free field action, this theory allows one to
shift the c = 1 central charge of the standard free field action to a c < 1 central charge, with
c = 1 − 6χ2 for some χ > 0. In a way, this could be interpreted as a random geometry with
imaginary curvature (see [30, 54]).

More precisely, we still consider the vertex operators Vα = eαY (α ∈ C) defined by

Vα(Y (x), x) = C(x,D)
α2

2 eαY (x)−α2

2
E[Y (x)2] (7.7)

where Y is a GFF on a planar domain D, say with Dirichlet boundary conditions. Once again,
we can make sense of these operators via martingale techniques in the L2 phase, i.e. for |α|2 < 2.
We continue this discussion while assuming now that α is purely imaginary, i.e. α = iβ. Our work
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establishes that the only relevant values of β are such that |β|2 < 2 since we have seen that other
values of β enter the phase III (or its II/III boundary) and yield a limiting white noise.

One can still measure how the field changes under conformal maps provided that we fix
a reparameterization rule. We assume from now on that D is the complex half-plane H, i.e.
H = {z ∈ C;ℑ(z) > 0}. Given another simply connected planar domain D̃ with a marked
boundary point q ∈ ∂D̃ and a conformal map ψ : D̃ → H sending q to ∞, we will denote by Y ψ

the centered Gaussian Free Field on D̃ defined by

Y ψ(x) = Y (ψ(x)).

We consider the following equivalence class of random surfaces (also called imaginary surface in
[44, 54]). If ψ : (D̃, q) → (H,∞) is a conformal map then we consider the following rule for the
field Y :

Y → Ỹ (x̃) = Y ◦ ψ(x̃)− χ argψ′(x̃).

For test functions ϕ on D, we have

∫

D̃
ϕ(ψ(x̃))Viβ(Ỹ (x̃), x̃) dx̃

=

∫

D̃
ϕ(ψ(x̃))eiβ(Y (ψ(x̃))−χ argψ′(x̃))+β2

2
E[Y (ψ(x̃))2]|C(x̃, D̃)|−β2/2d2x̃

=

∫

D
ϕ(x)eiβY (x)+β2

2
E[Y (x)2]|C(x,D)|−

β2

2 |ψ′(ψ−1(x))|
β2

2
−2e−iβχ arg(ψ′(ψ−1(x)))d2x

=

∫

D
ϕ(x)V (Y (x), x)ψ′(ψ−1(x))

β2

4
−βχ

2
−1ψ̄′(ψ−1(x))

β2

4
+βχ

2
−1d2x,

where ψ̄′ denotes the complex conjugate of ψ′. This operator is not spinless in the sense that the
exponent of ψ′ differs from that of ψ̄′ in the above right-hand side. The conformal dimensions of

this operator are then given by (△iβ, △̄iβ) = (β
2

4 − βχ
2 ,

β2

4 + βχ
2 ). The quantity △iβ −△̄iβ = −χβ

is called the conformal spin.
Let us make some further comments. If the conformal spin of the vertex operator Viβ, that

is formally Viβ = eiY/χ (to be understood as the limit limǫ→0 ǫ
−β2/2eiYǫ(x) dx as defined in this

paper), is −1 then the direction of the field transforms as the direction of a vector field under
conformal maps in such a way that the flow lines v̇ = Viχ−1(v) of the vertex operator Viχ−1 are
conformally invariant curves, which are studied in [44, 54], leading to a SLE based treatment of

the CTFF theory. Let us mention the correspondence b = 2√
κ
−

√
κ
2 with the standard κ parameter

of SLE theory (see [36, 54]). One may also consult [21] for applications of vertex operators to the
study of conformally invariant curves.

Our paper naturally raises the following question. As a phase transition occurs when renor-
malizing the field Viχ−1 (we get a limiting white noise for |χ|−2 > 2), how can this be interpreted
in the SLE framework? For instance, does this mean that we cannot approximate the flow lines in
[44, 54] for |χ|−2 > 2 by discretizing the GFF? As in the case of tachyons, it might be necessary to
consider the approximation (7.6) and to consider the flow line of the limiting object T , discarding
the effect of the white noise.

Keeping up with this train of thoughts, a possible generalization could be the following. One
may for instance consider the flow lines of the operator eγX+iβY where X,Y are two independent
GFF on D. Such operators occur for instance when coupling the CTFF theory with central charge
c = 1− 6χ2 to 2D-gravity, in which case the string susceptibility matches b =

√
4 + χ2 − χ. The
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reparametrization rule for the field (X,Y ) is then given by

(X,Y ) 7→→ Ỹ (x̃) =
(
X ◦ ψ(x̃) +

√
4 + χ2 ln |ψ′(x̃)|, Y ◦ ψ(x̃)− χ argψ′(x̃)

)

The conformal spin of the operator eγX+iβY remains equal to −βχ so we still impose β = 1/χ in
order to get conformally invariant flow lines. But there is no need to make tedious computations:
it is straightforward to check that the flow lines ṽ of eγX+iY/χ are just the flow lines v of eiY/χ time
changed by F−1(t) where Ḟ (t) = e−γX(vt), i.e. u = v◦F−1. If one knows a bit of information about
the capacity properties of the occupation measure of the path v, then one can apply Kahane’s
theory of Gaussian multiplicative chaos [35] to define the change of time F . For instance, this
strategy has been applied in [29] to define the natural quantum parameterization of Brownian
motion. Similar questions may be addressed in phase II : do we need to consider higher order
terms in order to get rid of the stable measure with random intensity?

A Control of moments of order 2k

In this appendix, we gather technical estimates on the convergence of the higher order moments
in phase III and its frontiers with the other phases. The main purpose of this appendix is to prove
proposition A.1 below. The following results have straightforward analogs in all dimensions: for
the sake of clarity, we state and prove them in dimension 1.

Proposition A.1. Let k and k′ be natural integers. Then for any interval J , in the phase III,
I/III and II/III we have the following convergence in probability:

lim
ε→0

E

[
(Mγ,β

ε (J))k(M̄γ,β
ε (J))k

′ | FX
]

E

[
Mγ,β
ε (J)M̄γ,β

ε (J) | FX
]k+k′/2 = k!1k=k′ (A.1)

For all l > 2 and all 2l-tuple of natural integers (k1, . . . , k2l), for any collection of disjoint
intervals J1, · · · , Jl, we have the following convergence in probability:

lim
ε→0

E

[∏
1 6 i 6 l(M

γ,β
ε (Ji))

k2i−1(M̄γ,β
ε (Ji))

k2i | FX
]

∏
1 6 i 6 lE

[
Mγ,β
ε (Ji)M̄

γ,β
ε (Ji) | FX

](k2i−1+k2i)/2
=

∏

1 6 i 6 l

k2i−1!1k2i−1=k2i . (A.2)

A.1 Optimal matching between two finite sets in R
d

Before starting the proof, we introduce a matching procedure. This algorithm was introduced by
Gale and Shapley [27] to provide a solution to the stable marriage problem.

Given k 6 k′, let (x1, . . . , xk) and (y1, . . . , yk′) be two sets of points in R
d such that all the

pairwise distances |xi − yj| are distinct. The optimal matching of x with y is an injective
application:

σ(x,y) : {1, . . . , k} → {1, . . . , k′}
obtained by the following procedure:

(i) If xi and yj are mutually closest, i.e. if:

∀i′, j′ |xi − yj| < |xi′ − yj| and |xi − yj| < |xi − yj′|

then we set σ(i) = j.

53



(ii) We delete the points that have been matched in step (i).

(iii) We iterate the procedure until all the xi’s have been matched.

A.2 Proof of proposition A.1 for matching indices k = k′

We prove (A.1) for J = [0, 1]. The general case can be proved along the same lines. We introduce
the following notation:

Mγ,β
ε (dx) :=

k∏

j=1

Mγ,β
ε (dxj)

The moment E

[∣∣∣Mγ,β
ε ([0, 1])

∣∣∣
2k

| FX

]
is given by

εkβ
2

∫

[0,1]2k

Mγ,0
ε (dxdy)

(∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 kGε(yi − yj)

)β2

∏k
i,j=1Gε(xi − yj)β

2
. (A.3)

Hence (A.1) for k = k′ corresponds to proving

lim
ε→0

∫
[0,1]2k

Mγ,0
ε (dxdy)(

∏
1 6 i<j 6 k Gε(xi−xj)

∏
1 6 i<j 6 k Gε(yi−yj))

β2

∏
i,j=1k

Gε(xi−yj)β2
(∫

[0,1]2 M
γ,0
ε (dxdy)Gε(x− y)−β2

)k = k!. (A.4)

Let σ(x,y) be the permutation obtained by the optimal matching procedure described in the
previous section (which is Lebesgue almost-everywhere well defined) and set

B := {(x,y) | σ(x,y) = 1},
where 1 denotes the identity. By symmetry of the indices, we can rewrite (A.3) (divided by εkβ

2
)

as

k!

∫

B

Mγ,0
ε (dxdy)

(∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 kGε(yi − yj)

)β2

∏k
i,j=1Gε(xi − yj)β

2
. (A.5)

A reformulation of (A.4) is that one can find a δ that tends to zero with ε which is such that
for all k with high probability

(1− δ)

(∫

[0,1]2
Gε(x− y)−β

2
Mγ,0
ε (dxdy)

)k

6

∫

B

Mγ,0
ε (dxdy)

(∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 kGε(yi − yj)

)β2

∏k
i,j=1Gε(xi − yj)β

2

6 (1 + δ)

(∫

[0,1]2
Gε(x− y)−β

2
Mγ,0
ε (dxdy)

)k
. (A.6)

54



Let us consider functions a(ε) and b(ε) such that ε≪ a(ε) ≪ b(ε) ≪ 1. We set

A := {(x,y) ∈ [0, 1]2k |∀i, |xi − yi| 6 a(ε), ∀i 6= j, |xi − xj| > b(ε), |yi − yj| > b(ε)}. (A.7)

Note that A ⊂ B (because when (x,y) ∈ A all the pairs (xi, yi) are mutually closest.

Lemma A.2. When (x,y) ∈ A we have

(1− δ)

k∏

i=1

Gε(xi − yi)
−β2

6

∏
1 6 i<j 6 kGε(xi − xj)

β2∏
1 6 i<j 6 kGε(yi − yj)

β2

∏k
i,j=1Gε(xi − yj)β

2

6 (1 + δ)

k∏

i=1

Gε(xi − yi)
−β2

(A.8)

where δ = δ(ε) tends to zero when ε does.
For (x,y) ∈ B we have a general upper bound

∏
1 6 i<j 6 kGε(xi − xj)

β2∏
1 6 i<j 6 kGε(yi − yj)

β2

∏k
i,j=1Gε(xi − yj)β

2
6 C(k, β)

k∏

i=1

Gε(xi − yi)
−β2

. (A.9)

Proof. We prove (A.9) by induction on k. We can assume that x1 = y1 are mutually closest (there
is at least one pair of mutually closest vertices and we exchange the indices if needed). Then we
have for all j ∈ {2, . . . , k}

|y1 − yj| 6 |x1 − y1|+ |x1 − yj | 6 2|x1 − yj|
|x1 − xj| 6 |x1 − y1|+ |y1 − xj | 6 2|y1 − xj|.

(A.10)

We have from Lemma 4.7

sup
s∈[0,1],t 6 2s,ε 6 1

Gε(t)

Gε(s)
= C1 <∞,

and hence, using the inequalities (A.10) we obtain that

∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 kGε(yi − yj)

∏k
i,j=1Gε(xi − yj)

6 C
2(k−1)
1

1

Gε(x1 − y1)

∏
2 6 i<j 6 kGε(yi − yj)
∏k
i,j=2Gε(xi − yj)

. (A.11)

Then using the induction hypothesis, (note that the identity is still the optimal matching once

(x1, y1) have been deleted) we obtain (A.9) with C(k, β) = C
β2k(k−1)
1 .

The inequality (A.8) is obtained by noticing that on the set A for all i < j

∣∣|yi − yj| − |yi − xj |
∣∣ 6 |xj − yj | 6 a(ε)∣∣|xi − xj | − |xi − yj|
∣∣ 6 |xj − yj | 6 a(ε)

(A.12)
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We have from Lemma 4.7

lim
ε→0

sup
s > b(ε),t∈(s−a(ε),s+a(ε))

∣∣∣∣
Gε(s)

Gε(t)
− 1

∣∣∣∣ = 0.

Let δ1(ε) be the quantity in the limit. Using (A.12) we obtain (A.8) with (1 ± δ1(ε))
β2k(k−1)

instead of (1± δ).

Now, we state the following lemma whose proof is postponed to the next subsection.

Lemma A.3. For all k, we have the following convergence in probability

lim
ε→0

∫
[0,1]2k\AM

γ,0
ε (dxdy)

∏k
i=1Gε(xi − yi)

−β2

(∫
[0,1]2 M

γ,0
ε (dxdy)Gε(x− y)−β2

)k = 0. (A.13)

With this lemma and Lemma A.2, we can conclude the proof of (A.1). Let us first prove the
lower bound in (A.6). First we replace the domain integration B by A which is smaller. Then we
use (A.8) and obtain that

∫

B

Mγ,0
ε (dxdy)

(∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 kGε(yi − yj)

)β2

∏k
i,j=1Gε(xi − yj)β

2

> (1− δ)

∫

A
Mγ,0
ε (dxdy)

k∏

i=1

Gε(xi − yi)
−β2

> (1− δ′)

(∫

[0,1]2
Mγ,0
ε (dxdy)Gε(x− y)−β

2

)k
.

where the last line holds with high probability according to Lemma A.3.

For the upper bound in (A.6), we remark that from (A.8) we have:

∫

A

Mγ,0
ε (dxdy)

(∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 kGε(yi − yj)

)β2

∏k
i,j=1Gε(xi − yj)β

2

6 (1 + δ)

∫

A
Mγ,0
ε (dxdy)

k∏

i=1

Gε(xi − yi)
−β2

. (A.14)

Thus it is sufficient to control the contribution of B \ A to conclude. From (A.9) we have:

∫

B\A

Mγ,0
ε (dxdy)

(∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 kGε(yi − yj)

)β2

∏k
i,j=1Gε(xi − yj)β

2

6 C(k, β2)

∫

[0,1]2k\A
Mγ,0
ε (dxdy)

∏

j

Gε(xj − yj)
−β2

. (A.15)

According to (A.13), the r.h.s. is smaller than δ
(∫

[0,1]2 M
γ,0
ε (dxdy)Gε(x− y)−β

2
)k

provided ε is

chosen sufficiently small.
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A.3 Proof of Lemma A.3

We decompose the set [0, 1]2k \A as a union of non-disjoint events as follows

[0, 1]2k \ A :=

k⋃

i=1

{(x,y) ∈ [0, 1]2k | |xi − yi| > a(ε)}

∪
⋃

1 6 i<j 6 k

{(x,y) ∈ [0, 1]2k | |xi − xj | < b(ε)}

∪
⋃

1 6 i<j 6 k

{(x,y) ∈ [0, 1]2k | |yi − yj| < b(ε)}

=:
k⋃

i=1

Āi ∪
⋃

1 6 i<j 6 k

Āi,j
⋃

1 6 i<j 6 k

Ā′
i,j

Then by permutation of the indices and symmetry in x, y we have:

∫

[0,1]2k\A
Mγ,0
ε (dxdy)

k∏

i=1

Gε(xi − yi)
−β2

6 k

∫

Ā1

Mγ,0
ε (dxdy)

k∏

i=1

Gε(xi − yi)
−β2

+ k(k − 1)

∫

Ā1,2

Mγ,0
ε (dxdy)

k∏

i=1

Gε(xi − yi)
−β2

.

Hence it is sufficient to show (A.13) with [0, 1]2k \A replaced by Ā1 and Ā1,2 in the numerator’s
integrand. After simplification it amounts to showing two things (see the next lemma). One sets

D2 := {(x, y) ∈ [0, 1]2 | |x− y| > a(ε)}
D4 := {(x,y) ∈ [0, 1]4 | |x1 − x2| < b(ε)}.

(A.16)

Lemma A.4. The two following convergences hold in probability:

lim
ε→0

∫
D2
Gε(x− y)−β

2
Mγ,0
ε (dxdy)

∫
[0,1]2 Gε(x− y)−β2Mγ,0

ε (dxdy)
= 0,

lim
ε→0

∫
D4

∏2
i=1Gε(xi − yi)

−β2
Mγ,0
ε (dxdy)

(∫
[0,1]2 Gε(x− y)−β2Mγ,0

ε (dxdy)
)2 = 0.

(A.17)

Proof. Using the results of section 4.2 concerning convergence of the second moment, one can
make the following replacement in the denominator of (A.17)

∫

[0,1]2
Gε(x− y)−β

2
Mγ,0
ε (dxdy) ≈





ε1−2γ2−β2
if γ < 1/

√
2 and γ2 + β2 > 1,

ε−γ
2 | ln(ε)| if γ < 1/

√
2 and γ2 + β2 = 1,

ε1−2γ2−β2 | ln(ε)|−1/2 if γ = 1/
√
2 and γ2 + β2 > 1,

(A.18)
in the sense that the above ratios converge in probability towards a positive random variable.
Then the first line of (A.17) comes from an easy L1 computation

E

[∫

D2

Gε(x− y)−β
2
Mγ,0
ε (dxdy)

]
≈
{
ε−γ

2
a(ε)1−γ

2−β2
if γ 6 1/

√
2 and γ2 + β2 > 1,

ε−γ
2 | ln(a(ε))| if γ < 1/

√
2 and γ2 + β2 = 1.

(A.19)
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which is good enough as a(ε) > 0 (we only need to use the Markov inequality). When γ = 1/
√
2

we require (a(ε)/ε)γ
2+β2−1 ≫ | ln ε|1/2 to make things work.

A similar computation works for γ < 1√
2
for the second line of (A.17) but miserably fails in

the other cases. Set B(ε) = b(ε)−1 (and we assume that b is defined so that B is an integer). For
j = 1, · · · , B − 1, we define Ij := [b(j − 1), b(j + 1)].

We have

∫

D4

2∏

i=1

Gε(xi − yi)
−β2

Mγ,0
ε (dxdy) 6

B−1∑

j=1

(∫

Ij×[0,1]
Gε(x− y)−β

2
Mγ,0
ε (dxdy)

)2

. (A.20)

Now we treat the case γ < 1/
√
2 and γ2 + β2 > 1, the others can be dealt with similarly. We set

M̃2γ,0
ε (I) = ε2γ

2+β2−1

∫

I×[0,1]
Gε(x− y)−β

2
Mγ,0
ε (dxdy)

and therefore get:

(ε2γ
2+β2−1)2

∫

D4

2∏

i=1

Gε(xi − yi)
−β2

Mγ,0
ε (dxdy) 6 sup

1 6 j 6 B
(M̃2γ,0

ε [Ij ]) M̃
2γ,0
ε ([0, 1]) (A.21)

By the results of section 4.2, the random measures M̃2γ,0
ε converge in probability in the space

of Radon measures to the measure M2γ,0. By extracting a subsequence, we can assume that
almost sure convergence holds. Let b > 0 be fixed. We have:

lim
ε→0

sup
1 6 j 6 B

(M̃2γ,0
ε [Ij ]) M̃

2γ,0
ε ([0, 1]) 6 sup

1 6 j 6 b
(M2γ,0(Ij))M

2γ,0([0, 1])

Now one can conclude by letting b go to 0 in the above inequality and using the fact that M2γ,0

has no atoms.
Hence we have proved that:

lim
ε→0

∫
D4

∏2
i=1Gε(xi − yi)

−β2
Mγ,0
ε (dxdy)

(∫
[0,1]2 Gε(x− y)−β2Mγ,0

ε (dxdy)
)2 = 0. (A.22)

A.4 The case k < k′

This case is easier and only uses the tools developed for the k = k′ case.
An easy computation shows that (A.1) for k < k′ corresponds to proving

lim
ε→0

∫
[0,1]k+k′

Mγ,0
ε (dxdy)(

∏
1 6 i<j 6 k Gε(xi−xj)

∏
1 6 i<j 6 k′ Gε(yi−yj))

β2

∏k
i=1

∏k′
j=1Gε(xi−yj)β

2

(∫
[0,1]2 M

γ,0
ε (dxdy)Gε(x− y)−β2

)(k+k′)/2 = 0. (A.23)

Let σ denote the function obtained from the matching procedure of x ∈ R
k, y ∈ R

k′ . Set

B := {(x,y) ∈ [0, 1]k+k
′ | σ(x,y)(i) = i, ∀i ∈ {1, . . . , k}}.
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We have by invariance under permutation of the indices that the numerator above is equal to

k′!
(k′ − k)!

∫

B

Mγ,0
ε (dxdy)

(∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 k′ Gε(yi − yj)

)β2

∏k
i=1

∏k′
j=1Gε(xi − yj)β

2
. (A.24)

Now we can adapt the proof of (A.9) in Lemma A.2 and show that for all (x,y) ∈ B

(∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 k′ Gε(yi − yj)

)β2

∏k
i=1

∏k′
j=1Gε(xi − yj)β

2
6 C

β2k(k′−1)
1

∏
k 6 i<j 6 k′ Gε(yi − yj)

β2

∏k
i=1Gε(xi − yi)β

2
.

(A.25)
Then using Lemma 4.7, we see that the numerator of the r.h.s. above is bounded by a constant.
Hence there is a constant C such that

∫

B

Mγ,0
ε (dxdy)

(∏
1 6 i<j 6 kGε(xi − xj)

∏
1 6 i<j 6 k′ Gε(yi − yj)

)β2

∏k
i=1

∏k′
j=1Gε(xi − yj)β

2

6 C

∫

[0,1]k+k′

Mγ,0
ε (dxdy)

∏k
i=1Gε(xi − yi)β

2

=

(∫

[0,1]2
Mγ,0
ε (dxdy)Gε(x− y)−β

2

)k (
Mγ,0
ε ([0, 1])

)k′−k
.

Hence to prove (A.23), it is sufficient to prove that

lim
ε→0

Mγ,0
ε ([0, 1])√∫

[0,1]2 M
γ,0
ε (dxdy)Gε(x− y)−β2

= 0. (A.26)

This is a simple consequence of the results of Section 4.2.

A.5 Proof of (A.2)

We treat only the case of two intervals, more intervals meaning only more notational problems.
We further assume that J1 and J2 are at positives distance from one another for simplicity.

If this is not the case, as when J1 = [−1, 0] and J2 = [0, 1], we can split J2 into two intervals
J ′
2 = [0, δ] and J ′′

2 = [δ, 1] and expand the factor M(J2) =M(J ′
2) +M(J ′′

2 ) in the product. Then
using the Hlder inequality together with (A.1) we prove that all the term where J ′

2 appear have
a negligible contribution when δ goes to zero.

The moment in the numerator is equal to

εkβ
2

∫

xi∈Iki
Mγ,0
ε (dx)

(∏4
l=1

∏
1 6 i<j 6 kl

Gε(x
l
i − xlj)

)β2

(∏
(l,m)∈{(1,2),(3,4)}

∏kl
i=1

∏km
j=1Gε(x

l
i − xmj )

)β2

×

(∏k1
i=1

∏k3
j=1Gε(x

1
i − x3j)

)β2 (∏k2
i=1

∏k4
j=1Gε(x

2
i − x4j)

)β2

(∏
(l,m)∈{(1,4),(2,3)}

∏kl
i=1

∏km
j=1Gε(x

l
i − xmj )

)β2 (A.27)
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Now if I and J are at a positive distance, the term appearing on the second line is uniformly
bounded, and hence we obtain the result for free when either k1 6= k2 or k3 6= k4. In the case
k1 = k2 or k3 = k4 we have to show that the cross term

(∏k1
i=1

∏k3
j=1Gε(x

1
i − x3j)

)β2 (∏k2
i=1

∏k4
j=1Gε(x

2
i − x4j )

)β2

(∏
(l,m)∈{(1,4),(2,3)}

∏kl
i=1

∏km
j=1Gε(x

l
l − xmj )

)β2

is roughly equal to one on the subset of J2k1
1 × J2k3

2 that really matters. First we remark that
multiplying by k1!k3! we can restrict to the set

B1 ×B2 := {(x1,x2,x3,x4) ∈ J2k1
1 × J2k3

2 | σ(x1,x2) = 1, σ(x3,x4) = 1}.

Then we show that on the set A1×A2 where A1 and A2 are defined similarly to A in (A.7) we
show that the cross term is in the interval (1− δ, 1 + δ). Then one can conclude by using Lemma
A.3.

B Differentiability of Gaussian processes

In this section, we state a few results about Gaussian processes, mainly about differentiability
and convergence in law in the sense of distributions. These results are certainly not new but we
have not found any proper reference.

In what follows, D stands for a compact subset D of Rd and for X be a R
m-valued stochas-

tically continuous stochastic process defined on D.
First we recall the classical

Proposition B.1. If, for some β, α,C > 0:

∀x, z ∈ D, E[|Xx −Xz|q] 6 C|x− z|d+β .

For all γ ∈]0, βq [, we set L = supx 6=z
|Xx−Xz |
|x−z|γ . Then, for all p < q, E[Lβ] 6 1 + Cp2β−qγ

(q−p)(2β−qγ−1)
.

Now we claim the following:

Proposition B.2. Assume that X is a centered Gaussian process with covariance kernel K.
Then:
1) if for some α > 0 and ∀x, y ∈ D, K(x, x) +K(z, z) − 2K(x, z) 6 C|x− z|α then X admits a
γ-Hölder modification for all γ ∈]0, α/2[.
2) if, for some k ∈ N

∗ and α > 0, K is of class C2k and ∀x, y ∈ D:

∂kx∂
k
zK(x, x) + ∂kx∂

k
zK(z, z) − 2∂kx∂

k
zK(x, z) 6 C|x− z|α, (B.1)

then X is of class Ck. Furthermore the k-th derivative is γ-Hölder for all γ ∈]0, α/2[ and the
Hölder constant is in Lp for all p > 0.

Proof. The first claim is just an application of Proposition B.1. We outline the second claim.
We consider a mollifying sequence (ρn)n and we define the Gaussian process by convolution
Xn = X ⋆ ρn. For each n, this process is infinitely differentiable and the covariance structure is
readily seen to be given, after integration by parts, by:

E[∂kxXn(x)∂
k
xXn(z)] =

∫ ∫
ρn(y)ρn(y

′)∂kx∂
k
zK(x− y, z − y′) dydy′

def
= Kk,n(x, z).
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Because of (B.1), it is plain to see that there exists a constant C such that, for all n and x, y ∈ D

E[|∂kxiXn(x)− ∂kxiXn(z)|2] 6 C|x− y|.

The same argument holds for all the derivatives of order k′ for k′ = 0, . . . , k. The Kolmogorov
criterion (Prop. B.1) ensures that the sequence (Xn)n is tight in Ck equipped with the topology of
uniform convergence of all derivatives of order k′ for k′ = 0, . . . , k. Since (Xn)n converges almost
surely in C(D) towards X, we deduce that X is of class Ck.

We deduce:

Corollary B.3. Consider a sequence (Xn)n of centered Gaussian processes with respective co-
variance kernel Kn of class C2k such that all the derivatives up to order 2k uniformly converges
on D towards a covariance kernel K. Then the sequence (Xn, ∂xXn, . . . ∂

k
xXn) converges in law

in C(D) towards (X, ∂xX, . . . ∂
k
xX), where X is a centered Gaussian process on D.

C Auxiliary results of section 6

Proof of Lemma 6.1. We suppose that B(x, δ) ⊂ D. We set GD to be the Green function in D.
We have for all function F > 0:
∫

D
F (y)

(∫ ∞

ε2
pD(t, x, y)dt

)
dy = E

x[

∫ ∞

ε2
F (Bt)1{τD>t}dt] = E

x[EBε2 [

∫ ∞

0
F (Bt)1τD>tdt]1{τD>ε2}]

= E
x[

∫

D
GD(Bε2 , y)F (y)dy1{τD>ε2}] =

∫

D
F (y)Ex[GD(Bε2 , y)1{τD>ε2}]dy.

Hence we have
∫∞
ε2 pD(t, x, y)dt = E

x[GD(Bε2 , y)1{τD>ε2}]. Now, we extend GD(x, y) to all R2×R
2

by setting it equal to 0 as soon as x or y are not in the domain D. Recall that there exists some
constant C > 0 such that for all x, y in R

2, GD(x, y) 6 ln 1
|y−x| + C. Now, we have:

∣∣Ex[GD(Bε2 , x)]− E
x[GD(Bε2 , x)1{τD>ε2}]

∣∣ = E
x[GD(Bε2 , x)1{τD 6 ε2}]

6 E
x[(ln

1

|Bε2 − x| + C)1{supu 6 ε2 |Bu−x| > δ}]

6 E
x[(ln

1

|Bε2 − x| + C)2]1/2P( sup
u 6 ε2

|Bu − x| > δ)1/2

6 C(ln
1

ε
)2e−Cδ

2/ε2 .

Hence, we can replace Ex[GD(Bε2 , x)1τD>ε2 ] by E
x[GD(Bε2 , x)]. Similarly, we can replace Ex[GD(Bε2 , x)]

by E
x[GD(Bε2 , x)1{|Bε2−x| 6 δ}]. Therefore we get

E
x[GD(Bε2 , x)1{τD>ε2}] = E

x[GD(Bε2 , x)1{|Bε2−x| 6 δ}] + o(1)

=

∫

|u| 6 δ
ε

e−|u|2/2

2π
GD(x+ εu, x)du + o(1).

Now, by conformal invariance, we get that:

∫

|u| 6 δ
ε

e−|u|2/2

2π
GD(x+ εu, x)du =

∫

|u| 6 δ
ε

e−|u|2/2

2π
GH(ϕ(x+ εu), ϕ(x))du

≈
∫

|u| 6 δ
ε

e−|u|2/2

2π
GH(ϕ(x) + εϕ′(x)u), ϕ(x))du
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where the last line can be made rigorous by using the explicit expression of GH:

GH(x, y) = ln
1

|x− y| − ln
1

|x− ȳ| .

Therefore we get:

∫ ∞

ε2
pD(t, x, y)dt =

∫

|u| 6 δ
ε

e−|u|2/2

2π
GH(ϕ(x) + εϕ′(x)u), ϕ(x))du + o(1)

=

∫

|u| 6 δ
ε

e−|u|2/2

2π
ln

1

|εϕ′(x)u| du

−
∫

|u| 6 δ
ε

e−|u|2/2

2π
ln

1

|ϕ(x) − ϕ̄(x) + εϕ′(x)u| du+ o(1)

= ln
1

ε
+ ln

1

|ϕ′(x)| + ln 2Im(ϕ(x)) + o(1).

The result follows via (6.10).
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Ck(Rd), 9
Ckc (R

d), 9
FY , 7
≃, 9

Bκ, 30
bosonic string, 47

central charge, 47, 48, 50
conformal dimension, 48, 50
conformal field theory (CFT), 47–50
conformal radius, 38

derivative martingale, 51
derivative multiplicative chaos, 49

FX , 7
FX
ε , 7

FY
ε , 7

Gaussian free field (GFF), 5, 9, 12, 36, 37, 39–
42, 45, 48, 49

Gε, 7

inner phase I, 11

Kε, 7
KPZ formula, 50

Lp, 9
Liouville action, 5, 47
Liouville Quantum Gravity, 3, 5, 47, 49, 51

Massive free field (MFF), 8, 36
Mγ
ε , 3

Mγ,β
ε , 3

M ′, 3

Polyakov action, 47, 49

quantum dimension, 50

star scale invariant, 7, 16, 18

tachyon field, 5, 49, 51
τκx , 30

vertex operator, 48–50

Wick ordering, 6, 9, 42, 48, 49
Wµ, 6
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