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On the heat kernel and the Dirichlet form of

Liouville Brownian Motion

Christophe Garban ∗ Rémi Rhodes † Vincent Vargas ‡

Abstract

In [14], a Feller process called Liouville Brownian motion on R2 has been
introduced. It can be seen as a Brownian motion evolving in a random geome-
try given formally by the exponential of a (massive) Gaussian Free Field e

γ X

and is the right diffusion process to consider regarding 2d-Liouville quantum
gravity. In this note, we discuss the construction of the associated Dirichlet
form, following essentially [13] and the techniques introduced in [14]. Then we
carry out the analysis of the Liouville resolvent. In particular, we prove that
it is strong Feller, thus obtaining the existence of the Liouville heat kernel via
a non-trivial theorem of Fukushima and al.

One of the motivations which led to introduce the Liouville Brownian
motion in [14] was to investigate the puzzling Liouville metric through the eyes
of this new stochastic process. In particular, the theory developed for example
in [28, 29, 30], whose aim is to capture the “geometry” of the underlying
space out of the Dirichlet form of a process living on that space, suggests
a notion of distance associated to a Dirichlet form. More precisely, under
some mild hypothesis on the regularity of the Dirichlet form, they provide a
distance in the wide sense, called intrinsic metric, which is interpreted as an
extension of Riemannian geometry applicable to non differential structures.
We prove that the needed mild hypotheses are satisfied but that the associated
intrinsic metric unfortunately vanishes, thus showing that renormalization
theory remains out of reach of the metric aspect of Dirichlet forms.
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1 Introduction

This paper is concerned with the study of a Feller process, called the Liouville
Brownian motion, that has been introduced in [14] to have further insight into the
geometry of 2d-Liouville quantum gravity. More precisely, one major mathematical
problem in (critical) 2d-Liouville quantum gravity is to construct a random metric
on a two dimensional Riemannian manifold D, say a domain of R2 (or the sphere)
equipped with the Euclidean metric dz2, which takes on the form

eγX(z)dz2 (1.1)

where X is a (massive) Gaussian Free Field (GFF) on the manifold D and γ ∈ [0, 2[
is a coupling constant (see [21, 6, 8, 9, 15, 22] for further details and insights in
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Liouville quantum gravity). If it exists, this metric should generate several geometric
objects: instead of listing them all, let us just say that each object that can be
associated to a smooth Riemannian geometry raises an equivalent question in 2d-
Liouville quantum gravity. Mathematical difficulties originate from the short scale
logarithmically divergent behaviour of the correlation function of the GFF X . So, for
each object that one wishes to define, one has to apply a renormalization procedure.

For instance, one can define the volume form associated to this metric. The
theory of renormalization for measures formally corresponding to the exponential of
Gaussian fields with logarithmic correlations first appeared in the beautiful paper
[18] under the name of Gaussian multiplicative chaos and applies to the Free Fields.
Thereafter, convolution techniques were developed in [10, 26, 27] (see also [25] for
further references). This allows to make sense of measures formally defined by:

M(A) =

∫

A

eγX(z)− γ2

2
E[X(z)2] dz, (1.2)

where dz stands for the volume form (Lebesgue measure) on D. To be exhaustive,
in the case of Gaussian Free fields, one should integrate against h(z) dz where h is a
deterministic function involving the conformal radius at z but, first, this term does
not play an important role for our concerns and, second, may be handled as well
with Kahane’s theory. This approach made possible in [10, 24] (see also [1, 2, 11, 12])
a rigorous measure based interpretation of the Knizhnik-Polyakov-Zamolodchikov
formula (KPZ for short) originally derived in [21].

In [14], the authors defined the Liouville Brownian motion. It can be thought of
as the diffusion process associated to the metric (1.1) and is formally the solution
of the stochastic differential equation:

{
Bx
t=0 = x

dBx
t
= e−

γ

2
X(Bx

t
)+ γ2

4
E[X(Bx

t
)2] dB̄t.

(1.3)

where B̄ is a standard Brownian motion living on D. Furthermore, they proved
that this Markov process is Feller and generates a strongly continuous semigroup
(PX

t )t > 0, which is symmetric in L2(D,M). In particular, the Liouville Brownian
motion preserves the Liouville measure M . They also noticed that one can attach
to the Liouville semigroup (PX

t
)t > 0 a Dirichlet form by the formula:

Σ(f, f) = lim
t→0

1

t

∫ (
f(x)− PX

t
f(x)

)
f(x)M(dx) (1.4)

with domain F , which is defined as the set of functions f ∈ L2(R2,M) for which
the above limit exists and is finite. This expression is rather non explicit.

The purpose of this paper is to pursue the stochastic analysis of 2d-Liouville
quantum gravity initiated in [14]. We denote by H1(D, dx) the standard Sobolev
space:

H1(D, dx) =
{
f ∈ L2(D, dx);∇f ∈ L2(D, dx)

}
,
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and by H1
loc(D, dx) the functions which are locally in H1(D, dx). First, we will make

explicit the Liouville Dirichlet form (1.4), relying on techniques developed in [13, 18],
more precisely traces of Dirichlet forms and potential theory:

Theorem 1.1. For γ ∈ [0, 2[, the Liouville Dirichlet form (Σ,F) takes on the
following explicit form: its domain is

F =
{
f ∈ L2(D,M) ∩H1

loc(D, dx);∇f ∈ L2(D, dx)
}
,

and for all functions f, g ∈ F :

Σ(f, g) =

∫

D

∇f(x) · ∇g(x) dx.

Furthermore, it is strongly local and regular.

Let us stress here that understanding rigorously the above theorem is not obvious
since the Liouville measure M and the Lebesgue measure dx are singular. The
domain F is composed of the functions u ∈ L2(D,M) such that there exists a
function f ∈ H1

loc(D, dx) satisfying ∇f ∈ L2(D, dx) and u(x) = f(x) for M(dx)-
almost every x. It is a consequence of the general theory developped in [13] (see
chapter 6) and of the tools developped in [14] that the definition of (Σ,F) actually
makes sense: indeed, if f, g in H1

loc(D, dx) are such that f(x) = g(x) for M(dx)-
almost every x then ∇f(x) = ∇g(x) for dx-almost every x.

Then we perform an analysis of the Liouville resolvent family (RX
λ )λ > 0:

∀f ∈ Cb(D), RX
λ f(x) =

∫ +∞

0

e−λtPX
t f(x) dt.

We will prove that this family possesses strong regularizing properties. In particular,
our two main theorems concerning the resolvent family are:

Theorem 1.2. Almost surely in X, for γ ∈ [0, 2[, the resolvent operator RX
λ is

strong Feller in the sense that it maps the bounded measurable functions into the set
of continuous bounded functions.

Theorem 1.3. Assume γ ∈ [0, 2[. There is an exponent α ∈ (0, 1) (depending only
on γ), such that, almost surely in X, for all λ > 0 the Liouville resolvent is locally α-
Hölder. More precisely, for each R and λ0 > 0, we can find a random constant CR,λ0

,
which is P

X-almost surely finite, such that for all λ ∈]0, λ0] and for all continuous
function f : D → R vanishing at infinity, ∀x, y ∈ B(0, R):

|RX
λ f(x)−RX

λ f(y)| 6 λ−1CR‖f‖∞|x− y|α.

As a consequence, we obtain the existence of the massive Liouville Green func-
tions, which are nothing but the densities of the resolvent operator with respect to
the Liouville measure (see Theorem 3.10).
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For symmetric semigroups, Fukushima and al. [13] proved the highly non-trivial
theorem (see their Theorems 4.1.2 and 4.2.4) which states that absolute continuity
of the resolvent family is equivalent to absolute continuity of the semigroup. As such,
this allows us to obtain the following theorem on the existence of a heat-kernel:

Theorem 1.4. Liouville heat kernel. The Liouville semigroup (PX
t
)t>0 is ab-

solutely continuous with respect to the Liouville measure. There exists a family
(pX

t
(·, ·))t > 0, called the Liouville heat kernel, of jointly measurable functions such

that:

∀f ∈ Bb(D), PX
t
f(x) =

∫

D

f(y)pX
t
(x, y)M(dy)

and such that:
1) (positivity) for all t > 0 and for all x ∈ D, for M(dy)-almost every y ∈ D,

pX
t
(x, y) > 0,

2) (symmetry) for all t > 0 and for every x, y ∈ D:

pX
t
(x, y) = pX

t
(y, x),

3) (semigroup property) for all s, t > 0, for all x, y ∈ D,

pX
t+s

(x, y) =

∫

D

pX
t
(x, z)pX

s
(z, y)M(dz).

These properties have interesting consequences regarding the stochastic structure
of 2d-Liouville quantum gravity. For instance, the Liouville Brownian motion spends
Lebesgue almost all the times in the set of points supporting the Liouville measure,
nowadays called the thick points of the field X and first introduced by Kahane
in the case of log-correlated Gaussian fields [18] like Free Fields (see also [17]).
Furthermore, for a given time t, the Liouville Brownian motion is almost surely
located on the thick points of X . We will also define the Liouville Green function
to investigate the ergodic properties of the Liouville Brownian motion, which turns
out to be irreducible and recurrent.

Finally, let us end this introduction by a discussion on the Liouville Dirichlet
form as well as its possible relevance to the construction of the Liouville distance.
Over the last 20 years, a rich theory has been developed whose aim is to capture the
“geometry” of the underlying space out of the Dirichlet form of a process living on
that space. See for example [28, 29, 30]. This geometric aspect of Dirichlet forms can
be interpreted in a sense as an extension of Riemannian geometry applicable to non
differential structures. Among the recent progresses of Dirichlet forms has emerged
the notion of intrinsic metric associated to a strongly local regular Dirichlet form
[4, 5, 7, 28, 29, 30, 31]. It is natural to wonder if this theory is well suited to this
problem of constructing the Liouville distance. More precisely, the intrinsic metric
is defined by

dX(x, y) = sup{f(x)− f(y); f ∈ Floc ∩ C(D),Γ(f, f) 6 M}. (1.5)
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This distance is actually a distance in the wide sense, meaning that it can possibly
take values dX(x, y) = 0 or dX(x, y) = +∞ for some x 6= y. Let us point out that,
when the field X is smooth enough (and therefore not a free field), the distance (1.5)
coincides with the Riemannian distance generated by the metric tensor eγX(z) dz2.
Generally speaking, the point is to prove that the topology associated to this distance
is Euclidean, in which case dX is a proper distance and (D, dX) is a length space (see
[28, Theorem 5.2]). Unfortunately, in the context of 2d-Liouville quantum gravity, we
prove that this intrinsic metric turns out to be 0. Anyway, this fact is also interesting
as it sheds some new light on the mechanisms involved in the renormalization of the
Liouville distance (if exists).

The reader may find a list of notations used throughout the paper in Section A.
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fruitful discussions.

1.1 Notations

We stick to the notations of [14] (see the section ”Background”), where the basic
tools needed to define 2d-Liouville quantum gravity are described. In particular,
a description of the construction of Free Fields and their cutoff regularization are
given: throughout the paper, the field X may thus be a Massive Free Field on the
whole plane D = R2 or a Gaussian Free Field on the 2-dimensional torus D = T2 or
sphere D = S2. (Xn)n stands for the cutoff approximation of X defined in [14] and
M for the Gaussian multiplicative chaos associated to X :

M(A) =

∫

A

eγX(x)− γ2

2
E[X(x)2] dx,

where γ ∈ [0, 2) and A is a measurable subset of D.

2 Liouville Dirichlet form

The purpose of this section is to give an explicit description of the Liouville Dirichlet
form, namely the Dirichlet form of the Liouville Brownian motion, by combining [13]
and the results in [14]. The first part of this section is devoted to recalling a few
material about Dirichlet form in order to facilitate the reading of this paper. Then we
identify the Dirichlet form and, finally, we discuss some questions naturally raised by
the construction of the Dirichlet form. Among them: ”Can we construct the Liouville
Brownian motion from the only use of [13]?”
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2.1 Background on positive continuous additive functionals

and Revuz measures

In this subsection, to facilitate the reading of our results, we first summarize the con-
tent of section 5 in [13] applied to the standard Brownian (Ω, (Bt)t > 0, (Ft)t > 0, (P

x)x∈D)
in D which is of course reversible for the canonical volume form dx of D. We sup-
pose that the space Ω is equipped with the standard shifts (θt)t > 0 on the trajectory.
One may then consider the classical notion of capacity associated to the Brownian
motion. In this context, we have the following definitions:

Definition 2.1 (Capacity and polar set). The capacity of an open set O ⊂ D is
defined by

Cap(O) = inf{

∫

D

|f(x)|2 dx+

∫

D

|∇f(x)|2 dx; f ∈ H1(D, dx), f > 1 over O}.

The capacity of a Borel measurable set K is then defined as:

Cap(K) = inf
Oopen,K⊂O

Cap(K).

The set K is said polar when Cap(K) = 0.

Definition 2.2 (Revuz measure). A Revuz measure µ is a Radon measure on D
which does not charge the polar sets.

Definition 2.3 (PCAF). A positive continuous additive functional (PCAF) (At)t > 0

is a Ft-adapted continuous functional with values in [0,∞] that satisfies for all ω ∈
Λ:

At+s(ω) = As(ω) + At(θs(ω)), s, t > 0

where Λ is defined in the following way: there exists a polar set N (for the standard
Brownian motion) such that for all x ∈ D \ N , Px(Λ) = 1 and θt(Λ) ⊂ Λ for all
t > 0.

In particular, a PCAF is defined for all starting points x ∈ R2 except possibly
on a polar set for the standard Brownian motion. One can also work with a PCAF
starting from all points, that is when the set N in the above definition can be chosen
to be empty. In that case, the PCAF is said in the strict sense.

Finally, we conclude with the following definition on the support of a PCAF:

Definition 2.4 (support of a PCAF). Let (At)t > 0 be a PCAF with associated polar
set N . The support of (At)t > 0 is defined by:

Ỹ =
{
x ∈ D \N : P

x(R = 0) = 1
}
,

where R = inf{t > 0 : At > 0}.
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From section 5 in [13], there is a one to one correspondence between Revuz
measures and PCAFs. In the next subsection, we will identify the Liouville measure
M as the Revuz measure associated to the increasing functional F constructed in
[14]. Let us first check that the measure M is a Revuz measure, i.e. it does not
charge polar sets:

Lemma 2.5. Almost surely in X, the Liouville measure M does not charge the polar
sets of the (standard) Brownian motion.

Proof. Let A be a bounded polar set and let R > 0 be such that A ⊂ B(0, R). From
[23] (see also [19]), it suffices to prove that the mapping x 7→

∫
GR(x, y)M(dy) is

bounded, where GR stands for the Green function of the Brownian motion killed
upon touching ∂B(0, R). Recall that the Green function over B(0, R) takes on the
form

GR(x, y) = ln
1

d(x, y)
+ g(x, y)

for some bounded function g over B(0, R), where d stands for the usual Riemannian
distance on D. The result thus follows from Corollary 2.21 in [14] where it is proved
that the Liouville measure uniformly integrates the ln over compact sets.

2.2 The Revuz measure associated to Liouville Brownian

motion

In this subsection, we identify the measure M as the Revuz measure associated to
the functional F introduced in [14]. This functional F is defined almost surely in X
for all x ∈ D by

F (x, t) =

∫ t

0

eγX(x+Br)−
γ2

2
E[X2(x+Br)] dr,

where B is a standard Brownian motion on D. By setting

σx = inf{s > 0;F (x, s) > 0},

it is proven in [14] that:

a.s. in X, ∀x ∈ D, P
B(σx = 0) = 1. (2.1)

We claim:

Lemma 2.6. Almost surely in X, F is a PCAF in the strict sense whose support
is the whole domain D. Also, the Revuz measure of F is the Liouville measure M .

Proof. The fact that F is a PCAF in the strict sense whose support is the whole
domain D is a direct consequence of [14] as summarized in (2.1).
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The Revuz measure µ associated to F is the unique measure on D that does not
charge polar sets and such that:

∫

D

f(x)µ(dx) = lim
t→0

1

t

∫

D

E
Bx
[ ∫ t

0

f(Bx
s )F (x, ds)

]
dx,

for all continuous compactly supported function f . Here Bx stands for the law of
a Brownian motion starting from x. Let us denote by pt(x, y) the standard heat
kernel on D. To identify the measure µ it suffices to compute its values on the set
of continuous functions with compact support. For such a function, we have:

E
Bx

[ ∫ t

0

f(Bx
s )F (x, ds)

]
= E

Bx
[ ∫ t

0

f(Bx
s ) e

γX(Bx
s )−

γ2

2
E[X(Bx

s )
2] ds

]

=

∫ t

0

∫

D

f(y)ps(x, y)e
γX(y)− γ2

2
E[X(y)2] dy dr

=

∫ t

0

∫

D

f(y)ps(x, y)M(dy) ds.

Then
∫

D

E
Bx
[ ∫ t

0

f(Bx
s )F (x, ds)

]
dx =

∫

D

f(y)
(∫ t

0

∫

D

ps(x, y) dx ds
)
M(dy)

= t

∫

D

f(y)M(dy).

The proof is complete.

2.3 Construction of the Liouville Dirichlet form (Σ,F)

In this subsection, we want to apply Theorem 6.2.1 in [13]. Recall that the Liouville
Brownian motion is defined in [14] as a continuous Markov process defined for all
starting points x by the relation:

Bx
t
= x+B〈Bx〉t

where 〈Bx〉 is defined by

〈Bx〉t = inf{s > 0; F (x, s) > t}.

We know that M is the Revuz measure associated to F . Hence, we can now straight-
forwardly apply the abstract framework of Theorem 6.2.1 in [13] to get the following
expression for the Dirichlet form associated to Liouville Brownian motion:

Theorem 2.7. The Liouville Dirichlet form (Σ,F) takes on the following explicit
form on L2(D,M):

Σ(f, g) =

∫

D

∇f(x) · ∇g(x) dx (2.2)
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with domain

F =
{
f ∈ L2(D,M) ∩H1

loc(D, dx);∇f ∈ L2(D, dx)
}
,

Furthermore, it is strongly local and regular.

In fact, for any PCAF (At)t > 0 associated to Brownian motion, one can define the
Dirichlet form associated to the Hunt process BA−1

t
. In this general case, theorem

6.2.1 in [13] gives an expression to the Dirichlet form which is non explicit and

involves an abstract projection construction involving the support Ỹ of the PCAF.
Nonetheless, there is one case where the Dirichlet form takes on the simple form
(2.2): when the support Ỹ is the whole space D (recall that this constitutes a large
part of the work [14]).

Remark 2.8. This result may appear surprising for non specialists of Dirichlet
forms. Let us forget for a while Liouville quantum gravity and assume that the mea-
sure M is a smooth measure, meaning that it has a density w.r.t. the Lebesgue
measure bounded from above and away from 0. Then we obviously have L2(D, dx) =
L2(D,M). In that case, the domain and expression of the time changed Dirichlet
form coincide with those of the Dirichlet form of the standard Brownian motion on
D. So, a natural question is: ”How do we differentiate the Markov process associ-
ated to this time changed Dirichlet form from the standard Brownian motion?”. The
answer is hidden in the fact that a Dirichlet form uniquely determines a Markovian
semi-group provided that you fix a reference measure with respect to which you im-
pose the semi-group to be symmetric. In the case of the standard Brownian motion,
the reference measure is the Lebesgue measure dx whereas the reference measure is
M in the case of the time changed Brownian motion.

2.4 Discussion about the construction of the Dirichlet form
and the associated Hunt process

A natural question regarding the theory of Dirichlet forms is: ”Can one construct
directly the Liouville Brownian motion via the theory of Dirichlet forms without us-
ing the results in [14]?”. Since the Liouville measure is a Revuz measure, it uniquely
defines a PCAF (At)t. This PCAF may be used to change the time of a reference
Dirichlet form, here that of the standard Brownian motion on D. The time changed
Dirichlet form constructed in [13, Theorem 6.2.1] corresponds to that of a Hunt
process Ht = BA−1

t

where B is a standard Brownian motion and A−1
t

is the inverse

of the PCAF (At)t. Nevertheless, we stress that identifying this Hunt process explic-
itly is not obvious without using the tools developed in [14]. Moreover, this abstract
construction of Ht rigorously defines a Hunt process living in the space D \N where
N is a polar set. To our knowledge, there is no general theory on Dirichlet forms
which enables to get rid of this polar set, hence constructing a PCAF in the strict
sense and a Hunt process starting from all points of D. In conclusion, without using

10



the tools developped in [14], one can construct the Liouville Brownian motion in
a non explicit way living in D \ N and for starting points in D \ N where N is a
polar set (depending on the randomness of X); in this context, one can not start
the process from one given fixed point x ∈ D or define a Feller process in the strict
sense. Even if this was the case, in order to identify the corresponding Dirichlet form
by the simple formula (2.2), one must show that the PCAF has full support (which
is also part of the work done in [14]).

Let us mention that a measurable Riemannian structure associated to strongly
local regular Dirichlet forms is built in [16]. In [20], harmonic functions and Harnack
inequalities for trace processes (i.e. associated to time changed Dirichlet forms) are
studied. In particular, it is proved that harmonic functions for the Liouville Brow-
nian motion are harmonic for the Euclidean Brownian motion and that harmonic
functions for the Liouville Brownian motion satisfy scale invariant Harnack inequal-
ities. Actually, there are many powerful tools that can be associated with a Dirichlet
forms and listing them exhaustively is far beyond the scope of this paper.

3 Liouville Heat Kernel and Liouville Green Func-

tions

The Liouville Brownian motion generates a Feller semi-group (PX
t
)t, which can be

extended to a strongly continuous semigroup on Lp(D,M) for 1 6 p < +∞ and is
reversible with respect to the Liouville measure M (see [14]). Recall that

Proposition 3.1 ([14]). For γ < 2, almost surely in X, the n-regularized semi-
group (P n

t
)t converges towards the Liouville semi-group (PX

t
)t in the sense that for

all function f ∈ Cb(D):

∀x ∈ D, lim
n→∞

P n
t
f(x) = PX

t
(x).

The main purpose of this section is to prove the existence (almost surely in
X) of a heat-kernel pt(x, y) for this Feller semi-group (PX

t
)t > 0. Our strategy for

establishing the existence of the heat-kernel will be first to prove that the resolvent
associated to our Liouville Brownian motion is (a.s. inX) absolutely continuous w.r.t
the Liouville measure M . See Theorem 3.10. In general, the absolute continuity of
the resolvent is far from implying the absolute continuity of the semi-group (think
for example of the process defined on the circle by Xx

t = ei(x+t)). Nevertheless,
as stated in the introduction, the symmetry of the Liouville semi-group w.r.t. the
Liouville measure M allows us to apply a deep theorem of Fukushima and al. [13]
to conclude: see Theorem 3.16. Finally we deduce some corollaries along this section
such as the fact that the Liouville Brownian motion a.s. spends most of his time in
the thick points of the field X , the construction of the Liouville Green function or
the study of the ergodic properties of the Liouville Brownian motion.
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3.1 Analysis of the Liouville resolvent

One may also consider the resolvent family (RX
λ )λ>0 associated to the semigroup

(PX
t
)t. In a standard way, the resolvent operator reads:

∀f ∈ Cb(D), RX
λ f(x) =

∫ ∞

0

e−λtPX
t
f(x) dt. (3.1)

Furthermore, the resolvent family (RX
λ )λ>0 is self-adjoint in L2(D,M) and extends

to a strongly continuous resolvent family on the Lp(D,M) spaces for 1 6 p <
+∞. This results from the properties of the semi-group. From Proposition 3.1, it is
straightforward to deduce:

Proposition 3.2. For γ < 2, almost surely in X, the n-regularized resolvent fam-
ily (Rn

λ)λ converges towards the Liouville resolvent (RX
λ )λ in the sense that for all

function f ∈ Cb(D):

∀x ∈ D, lim
n→∞

Rn
λf(x) = RX

λ f(x).

Also, it is possible to get an explicit expression for the resolvent operator:

Proposition 3.3. For γ < 2, almost surely in X, the resolvent operator takes on
the following form for all measurable bounded function f on D:

RX
λ f(x) = E

B
[ ∫ ∞

0

e−λF (x,t)f(Bx
t )F (x, dt)

]
.

Proof. Given a measurable bounded function f on D, we have:

RX
λ f(x) =

∫ ∞

0

e−λtPX
t f(x) dt

=

∫ ∞

0

e−λt
E

B[f(Bx
t )] dt

= E
B
[ ∫ ∞

0

e−λtf(Bx
〈Bx〉t) dt

]

= E
B
[ ∫ ∞

0

e−λF (x,s)f(Bx
s )F (x, ds)

]
,

which completes the proof.

Theorem 3.4. For γ < 2, almost surely in X, the resolvent operator RX
λ is strong

Feller, i.e. maps the measurable bounded functions into the set of continuous bounded
functions.

12



Proof. Let us consider a bounded measurable function f and let us prove thatRX
λ f(x)

is a continuous function of x. To this purpose, write for some arbitrary ǫ > 0:

RX
λ f(x) = E

Bx
[ ∫ ∞

0

e−λF (x,s)f(Bx
s )F (x, ds)

]

= E
Bx

[ ∫ ǫ

0

e−λF (x,s)f(Bx
s )F (x, ds)

]
+ E

Bx
[ ∫ ∞

ǫ

e−λF (x,s)f(Bx
s )F (x, ds)

]

def
= Nǫ(x) +RX,ǫ

λ f(x).

We are going to prove that the family of functions (Nǫ)ǫ uniformly converges towards
0 on the compact subsets as ǫ → 0 (obviously, if D is compact, we will prove uniform
convergence on D) and that the functions RX,ǫ

λ f are continuous. First we focus on
(Nǫ)ǫ and write the obvious inequality:

sup
x∈B(0,R)

|Nǫ(x)| 6 ‖f‖∞ sup
x∈B(0,R)

E
Bx

[F (x, ǫ)].

From [14], we now that the latter quantity converges to 0 as ǫ to 0. Let us now prove
the continuity of RX,ǫ

λ f . By the Markov property of the Brownian motion, we get:

RX,ǫ
λ f(x) = E

Bx
[ ∫ ∞

ǫ

e−λF (x,s)f(Bx
s )F (x, ds)

]

= E
Bx
[
e−λF (x,ǫ)RX

λ f(B
x
ǫ )
]
.

Now we consider two points x and y inD and realize the coupling of (Bx, F (x, ·)) and
(By, F (y, ·)) explained in [14]. Recall that this coupling lemma allows us to construct
a Brownian motion Bx starting from x and a Brownian motion By starting from
y in such a way that they coincide after some random stopping time τx,y. Let us
denote by P

B the law of the couple (Bx, By) and E
B the corresponding expectation.

We obtain:

|RX,ǫ
λ f(x)− RX,ǫ

λ f(y)|

=
∣∣∣EB

[
e−λF (x,ǫ)RX

λ f(B
x
ǫ )
]
− E

B
[
e−λF (y,ǫ)RX

λ f(B
y
ǫ )
]∣∣∣

6

∣∣∣EB
[
e−λF (x,ǫ)RX

λ f(B
x
ǫ )
]
− E

B
[
e−λF (x,ǫ)RX

λ f(B
y
ǫ )
]∣∣∣

+
∣∣∣EB

[
e−λF (x,ǫ)RX

λ f(B
y
ǫ )
]
− E

B
[
e−λF (y,ǫ)RX

λ f(B
y
ǫ )
]∣∣∣

6 E
B
[∣∣RX

λ f(B
x
ǫ )−RX

λ f(B
y
ǫ )
∣∣]+ λ−1‖f‖∞E

B
[∣∣e−λF (x,ǫ) − e−λF (y,ǫ)

∣∣].

Concerning the first quantity, observe that it is different from 0 only if the two
Brownian motions have not coupled before time ǫ, in which case we use the rough
bound ‖RX

λ f‖∞ 6 λ−1‖f‖∞ to get:

E
B
[∣∣RX

λ f(B
x
ǫ )− RX

λ f(B
y
ǫ )
∣∣] = E

B
[∣∣RX

λ f(B
x
ǫ )−RX

λ f(B
y
ǫ )
∣∣; ǫ 6 τx,y

]

6 2λ−1‖f‖∞P(ǫ 6 τx,y). (3.2)
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This latter quantity converges towards 0 as |x − y| → 0. The second quantity is
treated with the same idea:

E
B
[∣∣e−λF (x,ǫ) − e−λF (y,ǫ)

∣∣]

=E
B
[∣∣e−λF (x,ǫ) − e−λF (y,ǫ)

∣∣; ǫ 6 τx,y
]
+ E

B
[∣∣e−λF (x,ǫ) − e−λF (y,ǫ)

∣∣; ǫ > τx,y
]

6 2P(ǫ 6 τx,y) + E
B
[∣∣e−λF (x,τx,y)−λF (x,]τx,y,ǫ]) − e−λF (y,τx,y)−λF (y,]τx,y,ǫ])

∣∣; ǫ > τx,y
]
.

Observe that, on the event {ǫ > τx,y}, we have F (x, ]τx,y, ǫ]) = F (y, ]τx,y, ǫ]). We
deduce:

E
B
[∣∣e−λF (x,ǫ) − e−λF (y,ǫ)

∣∣]

6 2P(ǫ 6 τx,y) + E
B
[∣∣e−λF (x,τx,y) − e−λF (y,τx,y)

∣∣; ǫ > τx,y
]

6 2P(ǫ 6 τx,y) + E
B
[
min

(
2, λ|F (x, τx,y)− F (y, τx,y)|

)]

6 2P(ǫ 6 τx,y) + E
B
[
min

(
2, λF (x, δ) + λF (y, δ)

)]
+ 2P(τx,y > δ) (3.3)

for some arbitrary δ > 0. Taking the lim sup in (3.3) as |x− y| → 0 (x, y ∈ B(0, R))
yields

lim sup
|x−y|→0

E
B
[∣∣e−λF (x,ǫ) − e−λF (y,ǫ)

∣∣] 6 E
B
[
min

(
2, λF (x, δ) + λF (y, δ)

)]
.

It is proved in [14] that, almost surely in X :

sup
x∈B(0,R)

EB[F (x, δ)] → 0 as δ → 0.

Therefore, we can choose δ arbitrarily close to 0 to get

lim sup
|x−y|→0

E
B
[∣∣e−λF (x,ǫ) − e−λF (y,ǫ)

∣∣] = 0.

By gathering the above considerations, we have proved that x 7→ RX,ǫ
λ f(x) is con-

tinuous over D. Since the family (RX,ǫ
λ f)ǫ uniformly converges towards RX

λ f on the
compact sets as ǫ → 0, we deduce that RX

λ f is continuous.

Now we focus on another aspect of the regularizing properties of the resolvent
family:

Theorem 3.5. Assume D = R2 and γ ∈ [0, 2[. There is an exponent α ∈ (0, 1)
(depending only on γ), such that, almost surely in X, for all λ > 0 the Liouville
resolvent is locally α-Hölder. More precisely, for each R and λ0 > 0, we can find a
random constant CR,λ0

, which is PX-almost surely finite such that, for all λ ∈]0, λ0]
and for all continuous function f : R2 → R vanishing at infinity:

∀x, y ∈ B(0, R), |RX
λ f(x)−RX

λ f(y)| 6 λ−1CR,λ0
‖f‖∞|x− y|α.

14



Proof. Fix λ > 0. Let f : R2 → R be a bounded Borelian function. Let us prove
that x 7→ RX

t
f(x) is locally Hölder. Without loss of generality, we may assume that

‖f‖∞ 6 1. To this purpose, let us work inside a ball centered at 0 with fixed radius,
say 1. Inside this ball, we consider two different points x, y. From this two points,
we start two independent Brownian motions Bx and By, and couple them in the
usual fashion to produce two new Brownian motions, call them still Bx and By, that
coincide after some stopping time τx,y. By applying the strong Markov property, we
get:

RX
λ f(x) = E

B
[ ∫ ∞

0

e−λF (x,s)f(Bx
s )F (x, ds)

]

= E
B
[ ∫ τx,y

0

e−λF (x,s)f(Bx
s )F (x, ds)

]
+ E

B
[ ∫ ∞

τx,y
e−λF (x,s)f(Bx

s )F (x, ds)
]

def
= Nx,y(x) +RX,x,y

λ f(x).

First we focus on Nx,y:

|Nx,y(x)| 6 E
B
[ ∫ F (x,τx,y)

0

e−λs ds
]

=
1

λ
E

B
[
1− e−λF (x,τx,y)

]

6
1

λ
E

B
[
min

(
1, λF (x, τx,y

)]
. (3.4)

Let us now treat the term RX,x,y
λ f . By the strong Markov property of the Brow-

nian motion, we get:

RX,x,y
λ f(x) = E

B
[ ∫ ∞

τx,y
e−λF (x,s)f(Bx

s )F (x, ds)
]

= E
B
[
e−λF (x,τx,y)RX

λ f(B
x
τx,y)

]
.

Therefore we have:

|RX,x,y
λ f(x)−RX,y,x

λ f(y)|

=
∣∣∣EB

[
e−λF (x,τx,y)RX

λ f(B
x
τx,y)

]
− E

B
[
e−λF (y,τx,y)RX

λ f(B
y
τx,y)

]∣∣∣

6

∣∣∣EB
[
e−λF (x,τx,y)RX

λ f(B
x
τx,y)

]
− E

B
[
e−λF (x,τx,y)RX

λ f(B
y
τx,y)

]∣∣∣

+
∣∣∣EB

[
e−λF (x,τx,y)RX

λ f(B
y
τx,y)

]
− E

B
[
e−λF (y,τx,y)RX

λ f(B
y
τx,y)

]∣∣∣

=
∣∣∣EB

[
e−λF (x,τx,y)RX

λ f(B
y
τx,y)

]
− E

B
[
e−λF (y,τx,y)RX

λ f(B
y
τx,y)

]∣∣∣

6 λ−1
E

B
[∣∣e−λF (x,τx,y) − e−λF (y,τx,y)

∣∣].
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In the above inequalities, we have used the facts thatBx
τx,y = By

τx,y and ‖RX
λ f‖∞ 6 λ−1.

It is readily seen that this quantity can be estimated by:

E
B
[∣∣e−λF (x,τx,y) − e−λF (y,τx,y)

∣∣]

6 E
B
[
min

(
1, λ|F (x, τx,y)− F (y, τx,y)|

)]

6 E
B
[
min

(
1, λF (x, τx,y) + λF (y, τx,y)

)]
(3.5)

Therefore, we can take the q-th power (q > 1) and use the Jensen inequality to get

|RX,x,y
λ f(x)− RX,y,x

λ f(y)|q 6 Cλ−q
E

B
[
min

(
1, λF (x, τx,y) + λF (y, τx,y)

)q]
. (3.6)

Observe that this bound holds for all λ and all functions f with ‖f‖∞ 6 1. So, let
us choose a countable family (gn)n of functions in C0(R

d) dense for the topology
of uniform convergence over compact sets and set fn = gn/‖gn‖∞. By gathering
(3.4)+(3.6), we get

E
X
[
sup
λ 6 λ0

sup
n

λq|RX
λ fn(x)−RX

λ fn(y)|
q
]
6 CE

X
E

B
[
min

(
1, λ0F (x, τx,y)+λ0F (y, τx,y)

)q]
.

We claim:

Lemma 3.6. For all x, y ∈ B(0, 1) and all χ ∈]0, 1
2
[, ǫ > 0, p ∈]0, 1[ and q > 1 such

that pq > 1, we have

E
X
E

B
[
min

(
1, λ0F (x, τx,y)

)q]
6 Cχ,p,q

(
λpq
0 |x− y|(2−ǫ)ξ(pq) + |x− y|ǫqχ

)
,

for some constant Cχ,p,q which only depends on χ, p, q and

∀q > 0, ξ(q) =
(
1 +

γ2

4

)
−

γ2

4
q2.

We postpone the proof of this lemma and come back to the proof of Theorem
3.5. We deduce that for all x, y ∈ B(0, 1), χ ∈]0, 1

2
[, ǫ > 0, p ∈]0, 1[ and q > 1 such

that pq > 1, we have

E
X
[
sup
λ 6 λ0

sup
n

λq|RX
λ fn(x)− RX

λ fn(y)|
q
]
6 Cχ,p,q,λ0

(
|x− y|(2−ǫ)ξ(pq) + |x− y|ǫqχ

)
,

for some constant Cχ,p,q,λ0
which only depends on χ, p, q, λ0. Now we fix χ ∈]0, 1

2
[.

Then we choose δ > 0 such that 1 + δ < min(2, 4
γ2 ). Since ξ(1 + δ) > 1, we can

choose ǫ > 0 such that (2 − ǫ)ξ(1 + δ) > 2. Then we choose q > 1 large enough so
as to make ǫχq > 2. Then we choose p ∈]0, 1[ such that pq = 1 + δ. We get

E
X
[
sup
λ 6 λ0

sup
n

λq|RX
λ fn(x)−RX

λ fn(y)|
q
]
6 Cχ,p,q,λ0

|x− y|β

for some β > 2 only depending on γ ∈ [0, 2[.
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From Theorem B.1, we deduce that for some α > 0 (only depending on γ)

and some positive P
X-almost surely finite random variable C̃ independent of n and

λ ∈]0, λ0] ∩Q:

sup
n

sup
λ∈]0,λ0]∩Q

λ
∣∣RX

λ gn(x)− RX
λ gn(y)

∣∣ 6 C̃‖gn‖∞|x− y|α. (3.7)

Observe that this relation is then necessarily true for all λ ∈]0, λ0] because of the
continuity of the resolvent with respect to the parameter λ. Now consider a function
f ∈ C0(R

2). There exists a subsequence (nk)k such that ‖f − gnk
‖∞ → 0 as k →

∞. In particular supk ‖gnk
‖∞ < +∞ and limk→∞ ‖gnk

‖∞ = ‖f‖∞. It is plain to
deduce from the uniform convergence of (gnk

)k towards f (and therefore the uniform
convergence of RX

λ gn towards RX
λ f) and (3.7) that:

∀x, y ∈ B(0, R), λ
∣∣RX

λ f(x)−RX
λ f(y)

∣∣ 6 C̃‖f‖∞|x− y|α.

The proof is over.

Proof of Lemma 3.6. Let us consider R > 0 such that R|x− y|2 6 1. We have

E
B
[
min

(
1, λ0F (x, τx,y)

)]

=E
B
[
min

(
1, λ0F (x, τx,y)

)
; τx,y 6 R|x− y|2

]

+ E
B
[
min

(
1, λ0F (x, τx,y)

)
; τx,y > R|x− y|2

]

6 E
B
[
min

(
1, λ0F (x,R|x− y|2)

)]
+ P

B
(
τx,y > R|x− y|2

)

6 E
B
[
min

(
1, λp

0F (x,R|x− y|2)p
)]

+ P
B
(
τx,y > R|x− y|2

)
.

The last inequality results from the fact that 0 < p < 1. Therefore, for any χ ∈]0, 1
2
[

E
B
[
min

(
1, λ0F (x, τx,y)

)]

6 λp
0E

B
[
F (x,R|x− y|2)p

]
+ P

B
(
τx,y > R|x− y|2

)

6 λp
0E

B
[
F (x,R|x− y|2)p

]
+ CχR

−χ,

the last inequality resulting from the fact that the law of the random variable τx,y|x−
y|−2 is independent from x, y and possesses moments of order χ for all χ ∈]0, 1

2
[. By

taking the q-th power and integrating with respect to E
X , we get:

E
X
[
E

B
[
min

(
1, λ0F (x, τx,y)

)]q]

6 2q−1λpq
0 E

X
[
E

B
[
F (x,R|x− y|2)p

]q]
+ 2q−1Cq

χR
−qχ

6 2q−1λpq
0 E

X
E

B
[
F (x,R|x− y|2)pq

]
+ 2q−1Cq

χR
−qχ.

Now we take R = |x− y|−ǫ and use (see [14]):
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Proposition 3.7. If γ2 < 4 and x ∈ R2, the mapping F (x, ·) possesses moments of
order 0 6 q < min(2, 4/γ2). Furthermore, if F admits moments of order q > 1 then,
for all s ∈ [0, 1] and t ∈ [0, T ]:

E
X
E

B[F (x, [t, t + s])q] 6 Cqs
ξ(q),

where Cq > 0 (independent of x, T ) and

ξ(q) =
(
1 +

γ2

4

)
q −

γ2

4
q2.

Thus we get:

E
X
[
E

B
[
min

(
1, λ0F (x, τx,y)

)]q]

6 Cχ,p,q

(
λpq
0 |x− y|(2−ǫ)ξ(pq) + |x− y|ǫqχ

)
,

and we prove the Lemma.

When D is compact, i.e. when D = T2 or S2, we get:

Theorem 3.8. Assume D = T2 or D = S2 and γ ∈ [0, 2[. There is an exponent
α ∈ (0, 1) (depending only on γ), such that, almost surely in X, for all λ > 0
the Liouville resolvent is α-Hölder. More precisely, for each λ0 > 0, we can find a
random constant Cλ0

, which is P
X-almost surely finite such that, for all λ ∈]0, λ0]

and for all continuous function f : D → R, ∀x, y ∈ D:

|RX
λ f(x)−RX

λ f(y)| 6 λ−1CR‖f‖∞|x− y|α.

Corollary 3.9. For each λ > 0, the resolvent operator RX
λ : C0(R

2) → Cb(R
2) is

compact for the topology of convergence over compact sets. In the case of the sphere
S2 (or the torus T2) equipped with a GFF X, the resolvent operator RX

λ : Cb(S
2) →

Cb(S
2) is compact.

Proof. This is just a consequence of Theorems 3.5 or 3.8.

Theorem 3.4 has the following consequences on the structure of the resolvent
family:

Theorem 3.10. (massive Liouville Green kernels). The resolvent family (RX
λ )λ>0

is absolutely continuous with respect to the Liouville measure. Therefore there exists
a family (rXλ (·, ·))λ, called the family of massive Liouville Green kernels, of jointly
measurable functions such that:

∀f ∈ Bb(D), RX
λ f(x) =

∫

D

f(y)rXλ (x, y)M(dy)

18



and such that:
1) (strict-positivity) for all λ > 0 and for all x ∈ D, for M(dy)-almost every y ∈ D,

rXλ (x, y) > 0,

2) (symmetry) for all λ > 0 and for every x, y ∈ D:

rXλ (x, y) = rXλ (y, x),

3) (resolvent identity) for all λ, µ > 0, for all x, y ∈ D,

rXµ (x, y)− rXλ (x, y) = (λ− µ)

∫

D

rXλ (x, z)r
X
µ (z, y)M(dz).

4) (λ-excessive) for every y,

e−λtPX
t (rλ(·, y))(x) 6 rλ(x, y)

for M-almost every x and for all t > 0.

Proof. It suffices to prove that, almost surely in X ,

∀A Borelian set, M(A) = 0 ⇒ ∀x ∈ D, RX
λ 1A(x) = 0.

Since the Liouville semigroup is invariant under the Liouville measure, we have for
all bounded Borelian set A

λ

∫

D

RX
λ 1A(x)M(dx) = M(A). (3.8)

Therefore, M(A) = 0 implies that for M-almost every x ∈ D: RX
λ 1A(x) = 0.

Since M has full support, we thus have at hand a dense subset DA of R2 such
that RX

λ 1A(x) = 0 for x ∈ DA. From Theorem 3.4, the mapping x 7→ RX
λ 1A(x) is

continuous. Therefore, it is identically null. Absolute continuity follows.
We apply Theorem [13, Lemma 4.2.4] to prove the existence of the massive

Liouville Green kernels. It remains to prove item 1. Consider a Borel set K and
x ∈ D such that RX

λ 1K(x) = 0. Then P
B a.s., we have

∫ ∞

0

e−λF (x,t)f(x+Bt)F (x, dt) = 0.

We deduce, by using the Markov property:

0 =E
B
[ ∫ ∞

1

e−λF (x,t)−F (x,1)
1K(x+Bt)F (x, dt)

]

=E
B
[
RX

λ 1K(x+B1)
]
.
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Since the transition probability of the standard Brownian motion are strictly pos-
itive, we deduce that the mapping x 7→ RX

λ 1K(x) vanishes over a set with full
Lebesgue measure. Furthermore, it is continuous by Theorem 3.4. Thus we have
RX

λ 1K = 0 identically. Finally, we get:

M(K) =

∫

D

RX
λ 1K(x)M(dx) = 0,

thus showing that the resolvent density is positive M almost surely.

3.2 Recurrence and ergodicity

As prescribed in [13, section 1.5], let us define the Green function for f ∈ L1(D,M)
by

Gf(x) = lim
t→∞

∫ t

0

PX
r f(x) dr.

We further denote gD the standard Green kernel on D.
Following [13], we say that the semi-group (PX

t )t, which is symmetric w.r.t.
the measure M , is irreducible if any PX

t -invariant set B satisfies M(B) = 0 or
M(Bc) = 0. We say that (PX

t ) is recurrent if, for any f ∈ L1
+(D,M), we have

Gf(x) = 0 or Gf(x) = +∞ M-almost surely.

Theorem 3.11. (Liouville Green function) The Liouville semi-group is irre-
ducible and recurrent.The Liouville Green function, denoted by GX

D , is given by

GX
Df(x) =

∫

D

gD(x, y)f(y)M(dy)

for all functions f ∈ L1(D,M) such that
∫

D

f(y)M(dy) = 0.

Proof. Irreducibility is a straightforward consequence of Theorem 3.10.
Let us establish recurrence. We carry out the proof in the case of D = R2. The

reader can easily adapt the proof to D = S2,T2. We first observe that

Gf(x) = lim
t→∞

∫ t

0

PX
r f(x) dr

= lim
t→∞

E
B
[ ∫ t

0

f(Bx
r
) dr

]

= lim
t→∞

E
B
[ ∫ F (x,t)

0

f(x+Br)F (x, dr)
]

= lim
t→∞

E
B
[ ∫ t

0

f(x+Br)F (x, dr)
]
.
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We have used the fact that F (x, t) almost surely converges towards +∞ as t → ∞
(see [14]). Now observe that

E
B
[ ∫ t

0

f(x+Br)F (x, dr)
]
=

∫

R2

(∫ t

0

e−
|x−u|2

2r

2πr
dr
)
f(u)M(du).

Let us assume that f has compact support. The above quantity diverges as t → ∞
like C ln t. To see this, we first compensate the divergence at infinity as follows:

E
B
[ ∫ t

0

f(x+Br)F (x, dr)
]
=

∫

R2

(∫ t

0

e−
|x−u|2

2r − e−
1

2r

2πr
dr
)
f(u)M(du)

+
(∫ t

0

e−
1

2r

2πr
dr
)∫

R2

f(u)M(du).

By passing to the limit as t → ∞, we get

lim
t→∞

∫

R2

( ∫ t

0

e−
|x−u|2

2r − e−
1

2r

2πr
dr
)
f(u)M(du)

=

∫

R2

(∫ ∞

0

e−
|x−u|2

2r − e−
1

2r

2πr
dr
)
f(u)M(du). (3.9)

In fact, the above computations need some further explanations. The Green kernel
appears through the relation

(∫ ∞

0

e−
|x−u|2

2r − e−
1

2r

2πr
dr
)
=

1

π
ln

1

|u− x|
.

To prove that this log term does not affect the convergence of the integral (3.9), we
have to use Corollary 2.21 in [14].

Obviously, we are thus left with two options. Either

∫

R2

f(u)M(du) = 0

and f = 0 M almost surely, which entails Gf = 0 M-almost surely, or

∫

R2

f(u)M(du) > 0

leading to Gf(x) = +∞. Put in other words, the Liouville semi-group is recur-
rent. The exact expression of the Liouville Green function results from the above
considerations.
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Remark 3.12. It may be worth saying here that the above proof works in dimension
2 (or 1) only. It is based on the recurrence of the standard 2-dimensional Brownian
motion. This is one point were techniques related to the Liouville Brownian motion
differ according to the dimension.

Let us also point out that the integral formula for the Liouville Green function
should be convenient to study its regularizing property. For instance, it is almost
obvious to see that Gf is continuous when f is bounded.

We can now apply [13, Theorem 4.7.3] to get

Theorem 3.13. Let us denote by PM the law of the Liouville Brownian motion with
initial distribution M . Let f ∈ L1(D,M) be a Borel measurable function.

1. It holds PM -almost surely that

lim
t→∞

1

t

∫ t

0

f(Br) dr =
1

M(D)

∫

D

f(x)M(dx).

2. Assume further that f is locally uniformly bounded. Then, Px-almost surely

lim
t→∞

1

t

∫ t

0

f(Br) dr =
1

M(D)

∫

D

f(x)M(dx).

Remark 3.14. Observe that the above theorem entails uniqueness of the invariant
probability measure for the Liouville Brownian motion in the case of the sphere or
the torus. With additional efforts, one could also establish in this way uniqueness in
the case of the whole plane up to multiplicative constants.

From [13, lemma 4.8.3], we deduce that there exists a positive constant c and
a nearly Borel measurable finely closed set B ⊂ D such that M(B) < +∞ and
r1(x, y) > c for all x, y ∈ B. Recall that r1 stands for the massive Liouville Green
kernel (see Theorem 3.10). Then [13, theorem 4.8.2] yields

Theorem 3.15. (Poincaré type inequality) There exists a strictly positive bounded
function g ∈ L1(D,M) such that g > 1B and:

∫

D

∣∣∣f(x)−
1

M(B)

∫

B

f(x)M(dx)
∣∣∣
2

g(x)M(dx) 6 CΣ(f, f),

for some constant C and all functions f ∈ F (i.e. in the domain of the Liouville
Dirichlet form).
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3.3 Liouville heat kernel

In this subsection, we investigate the existence of probability densities of the Liou-
ville semi-group with respect to the Liouville measure.

Theorem 3.16. Liouville heat kernel. For γ ∈ [0, 2[, the Liouville semigroup
(PX

t
)t>0 is absolutely continuous with respect to the Liouville measure. There exists

a family (pX
t
(·, ·))t > 0, called the Liouville heat kernel, of jointly measurable functions

such that:

∀f ∈ Bb(D), PX
t
f(x) =

∫

D

f(y)pX
t
(x, y)M(dy)

and such that:

1. (positivity) for all t > 0 and for all x ∈ D, for M(dy)-almost every y ∈ D,

pX
t
(x, y) > 0,

2. (symmetry) for all t > 0 and for every x, y ∈ D:

pX
t
(x, y) = pX

t
(y, x),

3. (semigroup property) for all s, t > 0, for all x, y ∈ D,

pX
t+s

(x, y) =

∫

D

pX
t (x, z)p

X
s
(z, y)M(dz).

Proof. All the properties result from Theorem 3.10 and [13, Theorems 4.1.2 and
4.2.4].

Let us stress that a complete analysis of the Liouville heat kernel is still miss-
ing. From Theorem 3.10, we know that for all x ∈ D and M-almost every y ∈ D,
pt(x, y) > 0 for some t belonging to a measurable set with positive Lebesgue mea-
sure. Yet, one may expect that pt(x, y) > 0 for all t. Furthermore, one may also
expect that pt(x, y) is a continuous function of (t, x, y). Finally, another interesting
question is to characterize the function pt as the unique minimal solution of the
Liouville heat equation, as it is standard in stochastic analysis. We end this section
by collecting some consequences of the above analysis on the behavior of Bt with
respect to the Liouville measure M .

3.4 The Liouville Brownian motion spends most of his time

in the thick points of X

In this section, it is convenient to make explicit the dependence of γ of the Liouville
measure, i.e. we write Mγ instead of M . Following Kahane [18], let us introduce the
γ-thick points of X :

Kγ = {x ∈ D; lim
n→∞

Xn(x)

ln cn+1
= γ} ,
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where the series (cn)n > 1 was introduced in [14], i.e.

E[Xn(x)Xn(y)] =

∫ cn+1

1

km(u(x− y))

u
du.

It is a well known fact that the Borel set Kγ gives full mass to the measure
Mγ , i.e. Mγ(K

c
γ) = 0: this was proved in Kahane’s seminal work [18] using the so-

called Peyrière measure. The sets Kγ appear also frequently in the general context
of multifractal formalism for multifractal measures (log-Poisson, discrete cascades,
etc...). The terminology ”thick points” is not due to Kahane but appears in [17] for
example. This implies that, if γ, γ′ ∈ [0, 2[ are such that γ 6= γ′, the measures Mγ

and Mγ′ are singular with respect to each other. In particular, the measure Mγ for
γ ∈]0, 2[ is singular with respect to the Lebesgue measure (which corresponds to
γ = 0). Let us also stress that Kγ should be distinguished from the support of Mγ

which is D.
As a consequence of Theorem 3.10, we obtain the following result where λ is the

Lebesgue measure:

Corollary 3.17. For γ ∈ [0, 2[, the Liouville Brownian motion spends Lebesgue-
almost all its time in the γ-thick points of X for all starting points x:

a.s. in X, ∀x ∈ D, a.s. under P
Bx

, λ{t > 0; Bx
t
∈ Kc

γ} = 0.

Remark 3.18.

• A weaker form of this result is proved in [3]: the author proves that

λ
(
{t > 0; Bx

t
∈ K̃c}

)
= 0

where

K̃ =
{
x ∈ D; lim inf

n→∞

Xn(x)

ln 1/cn+1
6 γ 6 lim sup

n→∞

Xn(x)

ln 1/cn+1

}

and for one fixed starting point.

• This result may also be recovered from the invariance of the measure M proved
in [14], but in that case only for M(dx)-almost all starting points (which is thus
also slightly weaker than our Corollary).

If one now relies on Theorem 3.16 instead, one obtains the following Corollary
(note that it different from the above one, not stronger, nor weaker).

Corollary 3.19. For γ ∈ [0, 2[, almost surely in X, for all t > 0

P
Bx

a.s., Bx
t
∈ Kγ.

Observe that the above corollary was already known when the initial law of the
Liouville Brownian motion is the Liouville measure [14]. Replacing the starting law
by the Dirac mass at x (a.s. in X for all x) is a much stronger statement.
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4 Degenerescence of the intrinsic metric associ-

ated to the Liouville Dirichlet form

4.1 Background on the geometric theory of Dirichlet forms
and extension of Riemannian geometry

As a strongly local regular Dirichlet form, (Σ,F) can be written as

Σ(f, g) =

∫

R2

dΓ(f, g) (4.1)

where Γ is a positive semidefinite, symmetric bilinear form on F with values in the
signed Radon measures on R2 (the so-called energy measure). Denoting by Pt(x, dy)
the transition probabilities of the semi-group, the energy measure can be defined by
the formula

∫

D

φ dΓ(f, f) = Σ(f, φf)−
1

2
Σ(f 2, φ)

= lim
t→0

1

2t

∫

D

∫

R2

φ(x)(f(x)− f(y))2Pt(x, dy)M(dx)

for every f ∈ F ∩ L∞(D,M) and every φ ∈ F ∩ Cc(D). The energy measure is
local, satisifes the Leibniz rule as well as the chain rule [13]. Let us denote by
Floc = {f ∈ L2

loc(D,M); Γ(f, f) is a Radon measure}.
The energy measure defines in an intrinsic way a distance in the wide sense dX

on D by

dX(x, y) = sup{f(x)− f(y); f ∈ Floc ∩ C(D),Γ(f, f) 6 M}

called intrinsic metric [4, 5, 7, 31]. The condition Γ(f, f) 6 M means that the energy
measure Γ(f, f) is absolutely continuous w.r.t to M with Radon-Nikodym derivative
d

dM
Γ(f, f) 6 1. In general, dX may be degenerate dX(x, y) = 0 or dX(x, y) = +∞

for some x 6= y.

4.2 Why it vanishes in the setting of Liouville quantum
gravity

Here we provide a rigorous proof in the next subsection followed by a more heuris-
tical explanation by considering the intrinsic metric associated to the n-regularized
Dirichlet forms (Σn,Fn) obtained by using Xn.

4.2.1 A proof that the intrinsic metric vanishes

Proposition 4.1. For γ ∈ [0, 2[, almost surely in X, the distance in the wide sense
dX reduces to 0 for all points x, y ∈ D.
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Proof. For f ∈ Floc ∩ C(D), the energy measure characterized by (see [13, (3.2.14)
and Th. 6.2.1]):

∀φ ∈ Cc(D),

∫

D

φ dΓ(f, f) = 2Σ(fφ, f)− Σ(f 2, φ).

It is worth mentioning here that the above formula implicitly implies that the
energy measure of f ∈ L2(D,M) does not depend on the choice of the element

f̃ ∈ H1
loc(D, dx) such that f = f̃ M-almost everywhere.

Routine computations on differentiation then entails that

∀φ ∈ Cc(D),

∫

D

φ dΓ(f, f) =

∫

D

φ(x)|∇f(x)|2 dx.

Since M and the Lebesgue measure are singular with respect to each other (see
above), the condition Γ(f, f) 6 M entails that ∇f = 0. In particular, f is constant.

4.2.2 A heuristical justification by looking at the n-regularized forms

It is tempting to write in a loose sense that

(Σn,Fn) → (Σ,F) . (4.2)

Now, it is easy to check that the intrinsic metric dn associated to the Dirichlet form

Σn(f, f) :=
1

2

∫

D

|∇f(x)|2dx , (4.3)

with domain
F =

{
f ∈ L2(D,Mn);∇f ∈ L2(D, dx)

}
,

is exactly the Riemannian distance with metric tensor given by

gn(x) = eγXn(x)−
γ2

2
E

[
X2

n

]
dx2. (4.4)

We have the following result, which is in some sense folklore within the community
but to our knowledge is not written down anywhere:

Proposition 4.2. The couple (D, dn) converges towards the trivial distance, mean-
ing that for all x, y ∈ D, a.s. in X:

dn(x, y) 6 Cx,ye
− γ2

8
E[X2

n(s)]

for some random constant Cx,y > 0.
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Proof. By definition,

dn(x, y) = inf{

∫ 1

0

e
γ
2
Xn(σt)−

γ2

4
E[X2

n(σt)]|σ̇t| dt; σ rectifiable from x to y}.

Obviously, this distance is bounded from above by the weight of the segment joining
x to y, i.e.

dn(x, y) 6

∫

[x,y]

e
γ

2
Xn(s)−

γ2

4
E[X2

n(s)] ds

=e−
γ2

8
E[X2

n(s)]

∫

[x,y]

e
γ

2
Xn(s)−

γ2

8
E[X2

n(s)] ds

where ds stands for the standard arc length on D. The arc length restricted to the
segment [x, y] is a Radon measure in the class R+

1 of [18]. Therefore, for γ ∈ [0, 2[,
the limit

Cx,y = lim
n→∞

∫

[x,y]

e
γ
2
Xn(s)−

γ2

8
E[X2

n(s)] ds

exists and is non trivial.

Conclusion

Roughly speaking, one may say that the geometric aspect of Dirichlet forms at the
level of constructing a distance is not as powerful as one might hope looking at
its degree of generality. If the machinery seems to be efficient when the underlying
space is not too far from a smooth Riemannian geometry, it does overcome the issue
of renormalization. The reader may object that it is not clear that the Liouville
distance exists and this could be an explanation to the fact that the intrinsic metric
of Dirichlet forms vanishes: we stress that this objection is not relevant since it
does not even work in dimension 1 though the distance is perfectly explicit and non
trivial.

A Index of notations

• X : Gaussian Free Field,

• M (or Mγ): Liouville measure,

• (Bx
t )t: a standard Brownian motion starting from x,

• (Σ,F): Dirichlet-form,

• (RX
λ )λ > 0: Liouville resolvent operator,

• Bb(D): space of bounded measurable functions on D,
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• C(D): space of continuous functions on D,

• Cb(D): space of bounded continuous functions on D,

• C0(D): space of continuous functions on D vanishing at infinity,

• Cc(D): space of continuous functions on D with compact support,

• Lp(D, µ): Borel measurable functions on D with µ-integrable p-th power,

• H1(D, dx): standard Sobolev space,

• H1
loc(D, dx): functions which are locally in H1(D, dx).

B Reinforced Kolmogorov’s continuity criterion

In this section, we prove the following result:

Theorem B.1. Assume that (fn)n is a sequence of random functions defined on
the same probability space (Ω,F ,P) such that for some q, β > 0 and for all x, y ∈
B(0, R) ⊂ Rd:

E
[
sup
n

|fn(x)− fn(y)|
q
]
6 C|x− y|d+β.

For all α ∈]0, β

q
[, we can find a modification of fn for each n (still denoted by fn)

and a random constant C̃, which is P-almost surely finite such that:

∀n, ∀x, y ∈ B(0, R), |fn(x)− fn(y)| 6 C̃|x− y|α.

Proof. For simplicity, we carry out the proof in dimension 1 and we assume that x, y
belong to the set [0, 1]. Let us consider α ∈]0, β/q[. We get:

P

(
max

k=1...2N
sup
n

∣∣fn(
k

2N
)− fn(

k − 1

2N
)
∣∣ > 2−Nα

)

= P

( 2N⋃

k=1

{
sup
n

∣∣fn(
k

2N
)− fn(

k − 1

2N
)
∣∣ > 2−Nα

})

6

2N∑

k=1

P

({
sup
n

∣∣fn(
k

2N
)− fn(

k − 1

2N
)
∣∣q > 2−Nqα

})

6 2Nqα

2N∑

k=1

E

(
sup
n

∣∣fn(
k

2N
)− fn(

k − 1

2N
)
∣∣q
)

6 2Nqα

2N∑

k=1

C2−N(1+β)

= C2Nqα−Nβ .
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Since α ∈]0, β/q[, we have
∑∞

N=1 2
Nqα−Nβ < ∞. Borel-Cantelli’s lemma yields

P

(
lim sup

N

{
max

k=1...2N
sup
n

∣∣fn(
k

2N
)− fn(

k − 1

2N
)
∣∣ > 2−Nα

})
= 0.

Put in other words, there exists a measurable set A ∈ F such that P(A) = 1 and
∀ω ∈ A, ∃Nω ∈ N, ∀N > Nω,

max
k=1...2N

sup
n

∣∣fn(
k

2N
)− fn(

k − 1

2N
)
∣∣ 6 2−Nα.

Let us denote by Dm =
{

k
2m

, 0 6 k 6 2m
}
the set of dyadic numbers of order m.

Let m, p ∈ N tels que m > p > Nω, and consider s, t ∈ Dm such that s < t
and |t − s| 6 2−p. Then s = k

2m
and we can find a1, . . . , am−n ∈ {0, 1} such that

t = k
2m

+ a1
2p+1 + · · ·+ am−p

2m
. We obtain for ω ∈ A:

sup
n

|fn(t, ω)− fn(s, ω)|

= sup
n

|fn(
k

2m
+

a1
2p+1

+ · · ·+
am−p

2m
, ω)− fn(

k

2m
, ω)|

6

m−p∑

j=1

sup
n

|fn(
k

2m
+

a1
2p+1

+ · · ·+
aj
2p+j

, ω)− fn(
k

2m
+

a1
2p+1

+ · · ·+
aj−1

2p+j−1
, ω)|

6

m−p∑

j=1

2−(p+j)α.

Let us now consider s, t ∈ D =
⋃

m Dm such that |s − t| 6 2−Nω . Let p ∈ N such
that |s − t| 6 2−p and |s − t| > 2−p−1. Let m > p such that s, t ∈ Dm. From the
previous computations, we get:

sup
n

|fn(t, ω)− fn(s, ω)| 6

m∑

j=p+1

1

2jα

6
2α

2α − 1
|t− s|α.

For each n, the mapping t 7→ fn(t, ω) is therefore α-Hölder on D ∩ [0, 1] so that
it can be extended to the whole [0, 1] while remaining α-Hölder with the same
Hölder constant. Since fn is continuous in probability for each n, this extension is a
modification of fn for all n.
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