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Abstract

The combination of concentrations and δ13C signatures of Particulate Organic Car-
bon (POC) and sterols provides a powerful approach to study ecological and envi-
ronmental changes both in the modern and ancient ocean, but its application has
so far been restricted to the surface area. We applied this tool to study the biogeo-5

chemical changes in the modern ocean water column during the BONUS-GoodHope
survey (Feb–Mar 2008) from Cape Basin to the northern part of the Weddell Gyre.
Cholesterol and brassicasterol were chosen as ideal biomarkers of the heterotrophic
and autotrophic carbon pools, respectively, because of their ubiquitous and relatively
refractory nature.10

We document depth distributions of concentrations (relative to bulk POC) and δ13C
signatures of cholesterol and brassicasterol from the Cape Basin to the northern Wed-
dell Gyre combined with CO2 aq. surface concentration variation. While relationships
between surface water CO2 aq. and δ13C of bulk POC and biomarkers have been pre-
viously established for surface waters, our data show that these remain valid in deeper15

waters, suggesting that δ13C signatures of certain biomarkers could be developed as
proxies for surface water CO2 aq. Our data suggest a key role of zooplankton fecal ag-
gregates in carbon export for this part of the Southern Ocean. We observed a general
increase in sterol δ13C signatures with depth, which is likely related to a combination
of particle size effects, selective feeding on larger cells by zooplankton, and growth20

rate related effects Additionally, in the southern part of the transect south of the Polar
Front (PF), the release of sea-ice algae is hypothesized to influence the isotopic signa-
ture of sterols in the open ocean. Overall, combined use of δ13C and concentrations
measurements of both bulk organic C and specific sterol markers throughout the water
column shows the promising potential of analyzing δ13C signatures of individual ma-25

rine sterols to explore the recent history of plankton and the fate of organic matter in
the SO.
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1 Introduction

The intensity of organic matter export combined with the efficiency of deep water
heterotrophic reprocessing of this material sets the sequestration’s efficiency of the
oceanic biological carbon pump (Honjo et al., 2008; Boyd and Trull, 2007; Battle et
al., 2000). However, it appears difficult to balance the organic C demand by twilight5

zone heterotrophs (currently defined as 100–1000 m) by the export flux from the upper
mixed layer (Burd et al., 2010; Steinberg et al., 2008; Reinthaler et al., 2006; Aŕıstegui
et al., 2005). Therefore it is essential to better understand the processes controlling the
export and reprocessing of exported OM (Boyd and Trull, 2007). Gaining information
about the sources and fate of sinking and suspended biogenic particles is necessary10

to improve our knowledge on what is happening below the euphotic layer, where the
attenuation of the export flux is the strongest. Wakeham et al. (2009) state that one
way to improve our understanding about mechanisms controlling interrelated biogeo-
chemical processes involved in particle sinking and decomposition is to determine the
chemical compositions of those particles sinking rapidly through the water column as15

well as of the suspended fine particles with longer residence time.
While several studies have examined the δ13C of the bulk particulate organic carbon

(POC) in the Southern Ocean (Lourey et al., 2004; Trull and Armand, 2001; Popp et
al., 1999; Bentaleb et al., 1998; Dehairs et al., 1997; Rau et al., 1997; Kennedy and
Robertson, 1995; François et al., 1993), fewer studies have focused on specific com-20

pounds. O’Leary et al. (2001); Tolosa et al. (1999) and Popp et al. (1999) report on
the factors controlling the carbon isotopic composition of phytoplankton based on the
study of δ13CPOC, δ13Csterols and δ13Cphytol. Both these studies, however, were mainly
limited to an investigation of the surface particles, so the distribution of these biomark-
ers in deeper waters remains unknown. To the best of our knowledge, no information25

is available on specific compounds and their isotopic composition for the intermediate
and deep Southern Ocean. However, identifying the food web components control-
ling the C flux in the deeper water column and understanding compositional changes
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of suspended and sinking organic material is important to better constrain the fate of
organic matter exported to the deep ocean. We investigated this by studying the vari-
ability in concentration of individual compounds and their 13C isotopic composition.

While cholesterol (27∆5; cholest-5-en-3β-ol) is produced by some algae (Volkman,
2003; 1986) it is commonly considered as a biomarker for consumer organisms and a5

proxy for zooplanktonic herbivory (Grice et al., 1998). Schouten et al. (1998) propose
cholesterol as a general biomarker for the eukaryotic marine community, thereby avoid-
ing the complexity inherent to species-specific sterols that have different isotopic off-
sets relative to phytoplankton δ13C. A general biomarker averages out the effects due
to variability of biosynthetic pathways, cell size, geometry, and growth rate between10

individual species. Grice et al. (1998) show via controlled mesocosm experiments
that grazers convert different algal precursor sterols into cholesterol without signifi-
cant isotopic fractionation. Moreover, Chikarahishi (2006) in accordance with Grice et
al. (1998) suggest that no substantial carbon isotopic fractionation occurs during either
heterotrophic sterol assimilation or de novo synthesis.15

Schouten et al. (1998) state that the refractory nature and ubiquitous character of
cholesterol as an eukaryotic marker should favor the integrity of the δ13Ccholesterol sig-
natures when particles sink to greater depth, thereby preserving the information ac-
quired in surface waters. Brassicasterol (28∆5,22: 24-Methylcholesta-5,22E-dien-3β-
ol) is reported in a large number of algal classes (Volkman, 2003; 1986) and is consid-20

ered as a strict phytosterol, i.e. it cannot be biosynthesized by zooplankton. For these
reasons, it is commonly used as an indicator of marine algae and of diatoms in partic-
ular in the environment. Recently, Rampen et al. (2010) stressed that when diatoms
dominate the phytoplankton community, sterols, and brassicasterol in particular (abun-
dant in the pennate diatoms) provide useful information on the type of diatoms that are25

present. Therefore, for the Southern Ocean where diatoms are dominant but where
other phytoplankton groups contribute to the primary production, we will consider bras-
sicasterol as a strict phytoplankton indicator. Because of their ubiquitous and relative
refractory nature (e.g. Volkman, 1986, 2003), cholesterol and brassicasterol were thus
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chosen in this study as ideal markers of the heterotrophic and autotrophic carbon pools
that have potential for being sequestered in the deep ocean.

As a part of a broader study on the biogeochemistry and C fluxes along the Green-
wich Meridian, we document variations in concentration (relative to bulk POC) and
δ13C compositions of cholesterol and brassicasterol over the whole water column from5

the Cape Basin to the northern Weddell Gyre. Combined with data on CO2aq. con-
centrations, our results furthermore enable to verify earlier surface waters observa-
tions about CO2 substrate concentration and C isotopic composition of bulk POC and
biomarkers. They also document to what extent this substrate-dependent C isotopic
signature, acquired in the surface is preserved deeper in the water column. This is10

important since particles may, or may not, become isotopically homogenous at depth
as a result of mixing, depending on magnitude of sinking velocity relative to advection.
This comes to answering the question whether the system is operating in 1-D (strong
surface to deep links) or 3-D (strong mixing and homogenization in the deep ocean)
configuration.15

2 Materials and methods

2.1 Sampling and hydrology

The “Biogeochemistry in the Southern Ocean: Interactions between Nutrients, Dy-
namics and Ecosystems Structures” (BGH) expedition took place in the South East
Atlantic and the Atlantic sector of the Southern Ocean during summer 2008 (February-20

March 2008) on board R/V Marion Dufresne (voyage track showed in Fig. 1). The
BGH project in the region south of South Africa was built on two main objectives re-
lated to: (1) the large scale inter-ocean exchanges and (2) the characterization of the
biogeochemical processes involved in the internal cycling of trace elements, isotopes
and carbon. South of Africa, the Southern Ocean (SO) provides the export channel for25

North Atlantic Deep Water (NADW) to the global ocean and the passage for heat and
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salt water from the Indian and Pacific oceans. The eastward flowing Antarctic Circum-
polar Current (ACC), the South Atlantic Current and NADW meet with the westward
flow of Indian waters carried by the Agulhas Current, leading to water mass exchanges
through jets, meanders, vortices, and filament interactions. Indeed, the Agulhas Cur-
rent is the major western boundary current of the Southern Hemisphere (Lutjeharms,5

2006) and a key component of the global ocean “conveyor” circulation controlling the
return flow to the Atlantic Ocean (Gordon, 2003; 1986). Unusual dynamics pervade the
motion of this warm-water current – as it moves west around the Southern tip of Africa,
it is reflected back east by the ACC. Not all waters are captured by this sudden diver-
sion of course – parts of the Agulhas Current leak away into the South Atlantic Ocean10

(BGH cruise report). However, the ACC fronts (Fig. 1) represent almost imperme-
able barriers delimiting zones with relatively constant hydrological and biogeochemical
properties, and lower baroclinic transport (Sokolov and Rintoul, 2007). Cross frontal
exchanges occur but mainly locally close to sharp topographic features. Water par-
ticles spend several years in each zone before to be advected northward by Ekman15

pumping, and subsequently take part in several winter convective mixings (S. Speich,
personal communication, 2009).

Amongst the sites studied during BGH, five sites had sufficient station occupation
time (about 48 h) to enable whole water column suspended matter sampling with High
Volume In Situ Filtration Systems (HVFS) because this operation is time consuming (620

to 8 h per deployment). Up to a maximum of 12 HVFS units were deployed covering the
entire water column from the surface to the deep ocean. The five sites were selected
to cover the major zonal systems framed by fronts (Fig. 1). The complete salinity and
temperature sections during BGH are available in Fig. 1.

Suspended particulate organic matter was sampled using in situ large volume filtra-25

tion systems (Challenger Oceanics and McLane WTS6-1-142LV systems) fitted with
142 mm diameter filters holders. Water was pumped through two successive filters:
(i) a 53 µm mesh nylon screen (filter SEFAR-PETEX®; polyester) and (ii) a QM-A quartz
fiber filter (∼1 µm porosity, Pall Life). Prior to use PETEX screens were conditioned by
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soaking in HCl 5 %, rinsed with Milli-Q grade water, dried at ambient temperature un-
der a laminar flow hood and were stored in clean plastic zip-bags till use. QMA filters
were conditioned by combustion at 450 ◦C during 4h and were stored in clean plastic
zip-bags till use.

Since the suspended matter samples were also intended for analysis of 234Th (Plan-5

chon et al., this issue), filters were partitioned among the different end-users, using
sterile scalpels and a custom-build INOX steel support for the PETEX screens and
a plexiglass punch of Ø = 25.3 mm for the QMA filters. These operations were con-
ducted under a laminar flow hood. Whenever possible, both size fractions (>53 µm and
53�1 µm) were sampled for biomarkers analyses. This was in general the case for the10

upper ocean mixed layer. Below the mixed layer, the large particle fraction (>53 µm)
could not be recovered because screens carried too little material. Aliquots dedicated
to compound specific isotope analysis (CSIA) were packed in cryotubes and stored
at –80 ◦C till processing in the home-laboratory. Aliquots dedicated to the analysis
of δ13CPOC were dried at 50 ◦C and stored in Petri dishes at ambient temperature till15

processing in the home laboratory.

2.2 δ
13CPOC: sample preparation and analysis

POC concentrations and δ13CPOC were analyzed via elemental analyzer – isotope ra-
tio mass spectrometer (EA-IRMS). Prior to this, inorganic carbon (carbonates) was
removed by exposing the filters to concentrated HCl vapor inside a closed-glass con-20

tainer during 4 h (Lorrain et al., 2003). After drying at 50 ◦C the samples were packed
in silver cups and analyzed with a Thermo Flash 112 elemental analyzer configured
for C analysis and coupled on-line via a Con-Flo III interface to a Thermo-Finnigan
Delta V IRMS. Acetanilide and IAEA-CH-6 reference materials were used for calibrat-
ing concentrations and isotopic composition, respectively. The bulk POC dataset for25

large (>53 µm Ø) and small (53�1 µm Ø) particles is presented in Table 1.
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2.3 δ
13Csterols: sample preparation and analysis

Samples were processed following the method described in Boschker (2004). Briefly,
total lipids were extracted using a modified method from Bligh and Dyer (1959) with
chloroform / methanol / Milli-Q water (v:v, 15:15:6 mL) mixture. Usually, 70 to 80 %
of the chloroform phase containing the total lipid fraction was recovered, implying that5

true concentrations are 20 to 30 % underestimated (Boschker, 2004).
Since the final standard error on the δ13C measurements is estimated to range be-

tween 1.1 and max 2.0 ‰, and because this extraction step implies permanent sample
shaking to homogenize and optimize recovery of the extract, we assume that isotopic
bias due to incomplete recovery is negligible compared to the actual accuracy and10

precision of the measurement.
The total lipid extract was then separated into neutral, glyco-, and polar lipids on

silica chromatographic column (0.5 g Kieselgel 60; Merck): (i) the neutral phase was
eluted with chloroform (7 mL), (ii) the glycolipidic phase with acetone (7 mL), and (iii) the
polar phase with methanol (10 mL). The glycolipidic and the polar phases were stored15

at –20 ◦C while the neutral phase was immediately processed for analysis.
Neutral phases were completely dried under gentle inert N2 flow (to avoid degra-

dation) while the glyco-lipids and the polar phases were stored at –20 ◦C for further
analyses; and a known quantity of squalane used as internal standard (IS, i.e., a sta-
ble compound which does not co-elute with natural compounds present in the samples)20

was added. To estimate compound concentrations in the samples, we use as reference
the GC-c-IRMS peak area of squalane since the added IS amount is known.

To increase volatility and enhance thermal stability of sterols for their separation by
gas chromatography (e.g. Lagarda et al., 2006), dried neutral lipids were derivatized
using bis-(trimethylsilyl)-trifluoroacetamide (BSTFA, 99 %)/toluene (v:v, 1:1). Trimethyl-25

sylil (TMS) groups are substituted to the hydrogen of the hydroxyl groups of the com-
pounds to form trimethylsyliloxy groups [-O-Si-(CH3)3]. In practice, derivatization is
achieved by adding 50 µL of BSTFA-toluene to the dried samples (and squalane) and
heating during 60 min at 60 ◦C.
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All the TMS-derivatized neutral fractions (+ IS) were analyzed using a Trace GC Ul-
tra coupled to Trace Plus MS (Interscience) for compound identification and a Thermo
Finnigan GC equipped with a combustion furnace (CuO/NiO/Pt reactor at 940 ◦C)
coupled to a DeltaPlus XL isotope ratio mass spectrometer (IRMS), for δ13C and con-
centration measurements. Compound identification was achieved by (i) retention time5

matching between standard mix and sample, (ii) GC-MS mass spectrometry charac-
terization (matching with Goad and Akihisa, 1997).

Both gas chromatographs were equipped with similar capillary columns [DB-5-type
(J&W Scientific), 30 m×0.32 mm i.d. with 0.25 µm film thickness]. Identical tempera-
ture programming was used for both GC ovens starting from 50 ◦C (2 min) to 300 ◦C (1510

min) with a ramp of 4 ◦C min−1. Carrier gas flow (He) was 2 mL min−1, and injection
occurred in splitless mode at 300 ◦C. Blanks (hexane) and mixtures of standards were
regularly measured in between sample analyses (standard bracketing) to check the
stability of the systems and absence of possible contaminants.

The carbon isotopic composition of squalane (internal standard), treated similarly as15

the samples (extracted neutral phase), was used to check reproducibility and accuracy
of the GC-c-IRMS system. Aliquots of 0.5 mg squalane powder are weighed into tin
capsules (IVA, 3.3×5 mm) and analyzed via EA-IRMS (Thermo) using IAEA-CH6 as
reference material. A good agreement is observed between the mean δ13Csqualane

obtained via EA-IRMS (δ13Csqualane = –20.2±0.1 ‰, 1σ, n = 3) and GC-c-IRMS20

(δ13Csqualane = –21.2±0.9 ‰, 1σ, n=69).
Due to the addition of a trimethylsylil group to each individual compound (TMS-

derivatization), the δ13C of cholesterol (27∆5; cholest-5-en-3β-ol) and brassicast-
erol (28∆5,22; 24-Methylcholesta-5,22E-dien-3β-ol) obtained from GC-c-IRMS need to
be corrected. Five standards: 5α-cholestane, cholesterin-α24, stigmasterol-α22, β-25

sitosterol, 7-dehydrocholesterol are used for this purpose. Comparison between mean
δ13C measured by GC-c-IRMS on derivatized (n=3) and non-derivatized (n=3) stan-
dards’ mix is achieved using a functional relationship estimation by maximum likelihood
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(FREML) (Fig. 2a) via Eq. 1:

δ13Csterol =
(n+3)×δ13CTMS−sterol −1×δ13CBSTF A

n
(1)

Where δ13Csterol is the measured carbon isotopic signature of non-derivatized standard
sterol, n is the number of replicates, δ13CTMS−sterol is the measured carbon isotopic
signature of derivatized standard sterol and δ13CBSTFA is the measured carbon isotopic5

signature of BSTFA-toluene used to derivatize sterols.
Since no certified reference materials for compound-specific stable isotope mea-

surements exist, we furthermore compare mean δ13C measured by GC-c-IRMS and
EA-IRMS of the same non TMS-derivatized compounds (n= 3) (Fig. 2B) and include
it in the δ13Csterol correction following a FREML equation as described above (equa-10

tion 1 applied for non-derivatized standard sterols analyzed either via EA-IRMS or via
GC-c-IRMS).

Final δ13C values for each compound are thereby corrected for isotopic deviation
from TMS-derivatization, as well as possible isotopic deviation from GC-c-IRMS com-
pared to EA-IRMS. The uncertainty on final δ13C of cholesterol (cho) and brassicast-15

erol (bra) (±1σ; Tables 2 and 3) is calculated by propagating standard deviations from
triplicate measurements (i.e. 1σ) and correction from derivatization.

3 Results

3.1 Contents of cholesterol, brassicasterol and POC-bulk

Results for POC (large and small particles), brassicasterol and cholesterol concentra-20

tions in the small (1�53 µm) and large (>53 µm) particle size fractions and are listed
in Tables 1, 2 and 3, respectively. Brassicasterol and cholesterol contents are of simi-
lar magnitude. Cholesterol was usually slightly less abundant than brassicasterol, but
was detectable over the entire water column, while brassicasterol was undetectable
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(i.e. concentrations are below the GC-c-IRMS/GC-MS detection limit) in deeper water
at the most northward stations S1 and S2.

Depth profiles of large particle POC (LP-POC) are shown relative to total POC (T-
POC = LP-POC + SP-POC, where SP-POC is small particle POC) to highlight specific
features of the profiles (Fig. 3, upper panel). To that purpose we also plotted the pa-5

rameters vs. density rather than vs. depth. Depth profiles of small particles cholesterol
(SP-cholesterol) and brassicasterol (SP-brassicasterol) are shown relative to SP-POC
(Fig. 3, lower panel) following the same rationale.

3.1.1 General features

Relative contents of LP-POC and SP-sterols changed considerably in surface waters10

along the studied transect. Overall, the contributions of LP-POC ranged from 0.8 to
27.0 % of total POC, with highest values at S3 (27.0 %) in the Polar Frontal Zone (PFZ),
and S5 (25.8 %) in the northern Weddell Gyre. LP-POC values often displayed a max-
imum in mesopelagic to deep waters. This maximum was clearly visible at S1 (750 m),
S3 (450 m) but less prominent at S2 (250 m) and absent at S4 (Fig. 3, upper panel). At15

S5, an LP-POC maximum was present at 1500 m, below the mesopelagic layer. With
the exception of station S4, a systematic increase of LP-POC over T-POC ratio was
apparent near the seafloor (nepheloid layer), ranging between 2.7 % (station S1) and
12.3 % (station S2). The large error bars (up to 100 %) in Fig. 3 reflected the large
variability between close-by sampled depths (see also Tables 1, 2) reflecting both het-20

erogeneity of the system (as an example, close-by depths were often sampled with an
interval of 24h) and variability due to analytical method.

Profiles of relative SP-cholesterol and SP-brassicasterol contents (Fig. 3, lower
panel) were also characterized by mesopelagic maxima, except at S1 where bras-
sicasterol below 750 m was under detection limit and at S4 where no mesopelagic25

maximum was present. The depths of mesopelagic maxima for cholesterol and bras-
sicasterol were rather similar between sites, and ranged between circa 200 and 800 m
(Fig. 3 lower panel). The highest brassicasterol contents were observed at S1 and S5
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in good accordance with the presence of the diatom pigment fucoxanthin in surface
water (J. Ras, personal communication, 2009). Below the mesopelagic maximum the
relative contents of cholesterol and brassicasterol decreased toward the seafloor (S1,
S2, S3; Fig. 3 lower panel), or remained rather unchanged (S4, S5). In contrast to rel-
ative contents of LP-POC, no increase of brassicasterol and cholesterol contents was5

observed near the seafloor.

3.1.2 Site specific features

The surface waters at station S1 showed the highest (relative) SP-brassicasterol con-
tent and also the highest concentration (65.3 ng L−1) of the whole dataset (Fig. 3
and Table 2). This is in accordance with the observed high concentrations of Chl-a10

and phaeopigments (Le Moigne et al., 2012). The profiles of relative SP-cholesterol
and LP-POC contents at S1 were quite similar, with pronounced surface and broad
mesopelagic maxima: the latter reached circa 100 % of the surface content for choles-
terol, and circa 40 % for LP-POC.

Station S2, which was also located in the area of high Chl-a and phaeopigment15

concentrations, north of the Sub-Antarctic Front (SAF) (Le Moigne et al., this issue),
showed LP-POC contents relatively similar than at S1. Here surface water brassicas-
terol reached its second highest value (46.8 ng L−1; Table 2) for the entire cruise, in
agreement with the high chloropigments concentrations (J. Ras, personal communica-
tion, 2009). The mesopelagic maximum of relative cholesterol and brassicasterol con-20

tents, located at about 600 m, was pronounced and sharp, whereas relative content of
LP-POC shows a weak mesopelagic maximum expanding from 200 to 1000 m (Fig. 3).
At this site the increase of LP-POC in approach of the seafloor was the strongest
(reaching up to 12 % of total POC) of the entire survey.

At S3 the mesopelagic LP-POC content was the highest of the entire section25

(Fig. 3). A clear broad mesopelagic maximum of LP-POC and SP-cholesterol content
was present between 500 and 600 m. SP-brassicasterol showed a weak maximum
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expanding from the near-surface water to 600 m. Again, profiles of LP-POC and
SP-cholesterol relative contents were quite similar.

Station S4 was located above the Atlantic-Indian ridge in an area with lowest Chl-a
and phaeopigment concentrations (Le Moigne et al., this issue). At this site, no
mesopelagic maximum was observed and depth profiles of SP-sterols and LP-POC5

were quite similar. The maximum relative content of SP-sterols and LP-POC was
meanwhile located closer to the surface, at 80 m.

Station S5 was characterized by deep reaching Chl-a concentrations (circa 150 m)
and small sub-surface (100–125 m) phaeopigment concentration (Le Moigne et al., this
issue). Surface waters showed the highest relative content of LP- POC (Fig. 3) and also10

the highest total POC concentrations (up to 25.8 µg l−1; Table 1) of the entire cruise.
A second LP-POC maximum was present at 1500 m (Fig. 3). The relative contents
of brassicasterol and cholesterol showed a sharp mesopelagic maximum ranging be-
tween 300 to 500 m. Brassicasterol showed a second smaller maximum at 1500 m,
coinciding with the LP-POC maximum.15

At all stations the brassicasterol/cholesterol ratio for the small particle size fraction
was the highest in the upper 100 m (Table 2). In the mesopelagic and deep ocean
this ratio decreased systematically to reach a value close to 1. This condition reflected
the relative variation of autotrophic organic material (brassicasterol) vs. heterotrophic
material (cholesterol) contribution to the export flux of organic material with increasing20

depth. For large particles the brassicasterol to cholesterol ratio stayed close to 1 with
very surface waters having slightly larger ratios than underlaying waters (Table 3). Such
low values reflected larger contributions of hetetrotrophs vs. autotrophs in this large
size fraction of particles compared to the smaller sized particles.

3.2 δ
13C composition of POC, cholesterol and brassicasterol25

The vertical profiles for δ13CLP−POC, δ13CSP−POC, δ13CSP−cholesterol and
δ13CSP−brassicasterol are shown in Figure 4 (all dataset in Tables 1 and 2). Note
that for S1 and S2 SP-brassicasterol data are limited to the upper water column, since
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concentrations fell below detection limit deeper in the deeper water column. The range
of δ13C variation through the water column can reach up to 10 ‰ (see for example
the δ13CSP−cholesterol profile at station S2; Fig. 4). At stations S1 and S2 δ13C profiles
of sterols and bulk POC do cross over at depth, while at stations S3 to S5 these are
clearly separated from each other.5

At S1 and to a lesser extent at S2, δ13CLP−POC values decreased below 2750 m and
converge toward the δ13CSP−POC values (Table 2, Fig. 4). At these depths the water
mass consisted of diluted North Atlantic Deep Water (NADW) from the eastern route
(S. Speich, personal communication, 2009). This could be an indication of NADW
transporting highly degraded organic matter constituted by isotopically light refractory10

lipidic material since it has been shown that proteins and carbohydrates (higher δ13C
isotopic signals than lipids, see Galimov, 2006) are more labile compared to lipids and
are then removed preferentially from the particulate organic matter (POM) (Degens,
1969). Also, intense bacterial degradation of the more labile carbohydrates and pro-
teins could explain this strong decrease in δ13C-POC observed for large particles at15

S1 and S2. Stations S1 and S2 are defined by mixed phytoplanktonic community com-
posed of dinoflagellates, chromophytes, nanoflagellates and cyanobacteria, and are
defined as systems supported to a large degree by regenerated production (Joubert et
al., this issue). Taking the time lag due to sinking speed into account, observed varia-
tions of δ13CSP−POC and δ13CLP−POC along the S1 and S2 depth profiles could indeed20

be linked to high degradation processes occurring in the surface water.
At S2 all δ13C values in the upper 600 m decreased with depth, whereas below

600 m they increased (note that SP-brassicasterol was not detected below 600 m).
Below 1500 m LP-δ13CPOC decreased again, as observed at S1 (see above). At S3
below the surface waters δ13CLP−POC and δ13CSP−cholesterol showed a gradual increase25

with depth, while δ13CSP−POC and δ13CSP−brassicasterol remained rather unchanged
over the entire water column (Fig. 4). At S4 within the upper 100 m δ13CLP−POC

and δ13CSP−brassicasterol decreased with depth. At greater depth, δ13CLP−POC and
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δ13CSP−cholesterol increased rather uniformly with depth while δ13CSP−POC barely
changed with depth. δ13CSP−brassicasterol strongly increased from the surface water to
1000 m. At S5 all components showed a gradual δ13C increase with depth (Fig. 4).

4 Discussion

Since this study presents the first complete depth profiles of δ13C data on cholesterol5

and brassicasterol in the Southern Ocean from Cape Basin to the northern Weddell
Gyre, we focus the discussion on the observed variation below the surface layers, with
the aim of using these proxies to provide insight into the fate of organic matter sinking
out of the surface water where the photosynthetic signal is acquired.

4.1 Variation of brassicasterol and cholesterol content with depth10

The increase of SP-sterol contents relative to SP-POC and (Fig. 3, lower panel) in the
mesopelagic layer (100 to 1000 m) overlaps with the domain of excess 234Th activity
and excess particulate Barium during the BONUS-GoodHope expedition, discussed by
Planchon et al. (2012). In that paper it is reported that excess 234Th and particulate
Barium reflect the processes of particle break-up and organic matter remineralisation.15

The observation that in some cases the contribution of large particles to total POC
(Fig. 3, upper panel) also increases in mesopelagic waters may reflect local zooplank-
tonic activity, possibly feeding on the vertical particle flux thereby synthesizing choles-
terol. Our present data do confirm the significance of mesopelagic waters as a region
where the flux of material exported from the surface undergoes major changes.20

Figure 5a shows the depth variation of brassicasterol over cholesterol ratios (bra:cho)
with depth (see also Table 2). Two clear trends emerge from these data: (i) first,
bra:cho ratios are highly variable and mainly >1 in the upper 500 m waters (surface
water and upper part of the mesopelagic layer); (ii) secondly, bra:cho ratios stabilize
at values of ∼1 in the lower 500 m waters (lower mesopelagic layer and deep water.25
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Furthermore, the lowest value of bra:cho (0.5 at station S2, 608 m; 0.4 at station S4,
749 m; Table 2) are observed at intermediate depths, between 500 and 1000 m. As al-
ready highlighted in the Results section, the general decrease of bra:cho ratios reflects
the relative decrease of autotrophic organic material (brassicasterol - phytoplankton)
vs. heterotrophic material (cholesterol - zooplankton) with increasing depth and its5

stabilization around 1 in the deep water. These observations lead to the hypothesis
that the role of zooplankton in the carbon export composition increases with depth
compared to the surface water and shows a maximum role between 500 and 1000 m
in the mesopelagic layer. Deeper, the bra:cho ≈ 1 is probably due to an equilibrium
reached between the 2 components and their most refractory fraction below the twi-10

light zone where most of the attenuation of the carbon export flux occurs.
To evaluate the importance of such processes at different depth layers we propose in

Fig. 6 (panel B is a zoom of panel A) the linear regressions obtained from the correlation
between bra and cho concentrations, taking into account that the entire dataset can
be split in two groups (group A from surface to 500 m, group B from 500 m to the15

deep ocean). We obtain a general image for the BONUS-GoodHope transect covering
5 complete water column sampling stations located in five different Southern Ocean
regions (see Sect. 2.1.). Regression slopes are 0.5±0.1 (p-value < 0.05) and 1.5±0.2
(p-value < 0.05) for the upper 500 m and the water column below 500m, respectively.

Our results suggest that in the upper 500 m the major contributor to the sterol pool20

is phytoplankton, whereas between 500 and 1000 m it becomes zooplankton. Finally,
these two components reach stable proportions below 1000 m depth. These results
suggest a key role of faecal aggregates in routing carbon to the deep ocean, as high-
lighted by Ebersbach et al. (2011) for the Australian sector of the Southern Ocean.
However, further data would be of great interest to enlarge the resulting observations25

for the case of BONUS-GoodHope transect.
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4.2 Variation of δ13C signatures with depth

We observed that in general the δ13CSP−sterols but also δ13CLP−POC (S1, S2 excepted;
see above Sect. part 3.2. and Fig. 4) increase with depth, whereas δ13CSP−POC re-
mains stable throughout the water column profile. Figure 5b shows depth variations
of calculated values of εcholesterol and εbrassicasterol for the complete dataset. This ε is5

based on a simple calculation (εsterol (‰) = δ13CSP−sterol−δ13CSP−POC) allowing us to
estimate the apparent offset between the 13C isotopic signal of SP-POC and studied
sterols. Indeed ε brassicasterol ranges between –13.6 ‰ and –4.1 ‰ in the upper 500 m
and then stabilizes around –7 ‰ below 500 m. On the other hand, ε cholesterol shows a
pronounced increase from the surface water (εcholesterol ranges between -12.3 ‰ and10

–5.2 ‰) to the deep ocean where it reaches a value of ∼ +5‰. The stabilization of
ε brassicasterol around -7 ‰ below 500 m is in accordance with previous laboratory ex-
periments estimating a εsterol of –7 ‰ (Bidigare et al., 1997; Schouten et al., 1998; see
also Popp et al., 1999 for an application to Southern ocean surface water data analy-
sis). However, previous studies were performed for laboratory experiments on growth15

rate of various phytoplankton groups or surface water samples, while the present ob-
servation concerns samples below the euphotic layer where no more biosynthesis of
brassicasterol is possible since it is only synthesized by phytoplankton. However, we
previously observed that δ13CSP−POC is stable through the entire water column, and
thus hypothesize that the stable εbrassicasterol of –7 ‰ below 500m indicates that this20

sterol is biosynthesized in the surface water and not below. On the other hand, the
increase of ε cholesterol with depth could reflect several factors which will be described
below.

Although it can not be excluded that the observed increase of δ13C-cholesterol is
partly due to the Suess effect reflecting the invasion of the upper ocean by isotopically25

light anthropogenic CO2 reflected till the secondary producers, this would imply a large
age difference between deep and surface ocean suspended matter (the former much
older than the latter; Suess, 1980). Considering particle sinking velocities between
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50 and 150 m per day (McDonnell and Buesseler, 2010) it is evident that the time
lag between the bloom events that generate the deep ocean particles and those that
generate the particles in the upper layers is much inferior to the period covering the
bulk of the anthropogenic CO2 emissions (weeks, months vs. years). Therefore, it is
probable that the observed lower δ13C values for surface ocean SP-sterols compared5

to deep ocean values are due to factors other than the Suess effect. Below, we discuss
several possible mechanisms leading to isotopically heavier organic carbon and also
sterols.

4.2.1 Growth rate related effect

Fry and Wainright (1991) report that fast-growing diatoms are 13C-enriched compared10

to more slowly growing cells. Highest growth rates occur during the early season when
there is no nutrient limitation, while later in the season growth rates decrease due
to the onset of nutrient limitation conditions (see e.g. Arrigo, 2002), the latter leading
to more pronounced isotope fractionation and thus more 13C-depleted phytoplankton
(e.g., Popp et al., 1999). During the end of the growing season, we would thus ex-15

pect relatively 13C-depleted phytoplankton in the upper water column, while the 13C-
enriched cells from the start of the growing season would have reached the deeper wa-
ter column. Such mechanism could explain the observed enrichment in δ13Ccholesterol
with depth in the case of BONUS-GoodHope, which took place during the austral sum-
mer, i.e., the end of the productive season.20

4.2.2 Particle size related effects

Pancost et al. (1997) report a particle size-dependency for δ13Cbrassicasterol, with a 13C
enrichment in suspended particles >20 µm relative to the <20 µm fraction. This sug-
gests that surface-area to volume ratios control the fractionation of carbon isotopes by
diatoms, as confirmed by Popp et al. (1998). Therefore, a relatively increased con-25

tribution of larger phytoplankton to the export flux could explain the observed δ13C
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enrichment with depth. Selective feeding of zooplankton on larger cells and active
transport of this material to deeper layers during migration (Steinberg et al., 2008)
might cause the translocation of isotopically heavier material to deeper waters, while
leaving isotopically lighter material -associated with smaller particles- in the surface
layers.5

4.2.3 Sea-ice algae related effect

A further possible process leading to 13C-enriched organic material is related to the ac-
tivity of phytoplankton thriving in sea-ice brines. Sea-ice phytoplankton is significantly
enriched in 13C compared to pelagic phytoplankton in adjacent open waters because
of carbon limitation in the brine pockets and due to physiological properties such as10

the presence of carbon concentrating mechanisms and/or the uptake of bicarbonate
(HCO−

3 ) (Gleitz et al., 1996; Gibson et al., 1999; Villinski et al., 2000). Melting of sea-
ice with release of sea-ice phytoplankton occurs during the growth season, so these
isotopically heavy particles, if sinking out of the surface waters, can be expected to
be found deeper in the water column. For the most southern stations (S4, S5), which15

are influenced by the Seasonal Ice Zone (SIZ) in winter, sinking of sea-ice algae could
contribute to 13C enrichment of organic C at depth.

4.2.4 Other processes potentially affecting variations of δ13CPOC

Several further processes different from those listed above could affect the isotopic
composition of deep ocean POC. These processes include: (i) preferential degradation20

of the more labile carbohydrate and protein material which is 13C-enriched compared
to lipids (Degens, 1969; Galimov, 2006); (ii) 13C enrichment of sinking particles due
to selective grazing on the larger 13C-enriched cells (see discussion above) followed
by fecal pellet production; (iii) loss of 13C-depleted carbon associated with methane
production by prokaryotes within zooplankton digestive tracts (Freeman, 2001; Hayes,25

1993); (iv) increase in the contribution of heterotrophic POC to the total POC pool, due
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to transfer of organic carbon to higher trophic levels (∼1–2 ‰ enrichment per increasing
trophic level due to respiratory effects; DeNiro and Epstein, 1978; Fry, 1988; Fry and
Sherr, 1984).

We note, however, that δ13CSP−POC did not show an increase with depth. We hy-
pothesize that in this case there may be a balance between a δ13CSP−POC decrease5

due to preferential loss of 13C-enriched, more labile carbon phases (carbohydrates,
proteins; see above) and a δ13CSP−POC increase due to the trophic level succession
effect, inducing an increase ∼1–2 ‰ keeping δ13CSP−POC rather unchanged through
the deep water column. Alternatively, it might simply be that small particles are indeed
representative of organic matter biosynthesized in the surface water. This would imply10

then a fast transfer mechanism for these particles. Recent work by McDonnell and
Buesseler (2010) did reveal that sinking velocity is largest not only for the largest parti-
cles they studied (up to 1 mm), but also for the small sized particles (<50 µm). Clearly,
any realistic scenario for 13C enrichment of biomarkers with depth needs also to com-
ply with the observation that POC of the <53 µm size class does not show a significant15
13C enrichment with depth.

In summary, the observed isotopic increase for SP-cholesterol with depth would need
a cell size or growth rate related impact on isotopic fractionation and a mechanism sep-
arating isotopically heavy from light cells. This mechanism could be (1) a separation
in time between sinking of isotopically heavier cells (early season) and light cells (late20

season) and/or (2) selective zooplankton grazing on larger isotopically heavier cells
and their transfer to the deep sea via fecal pellets. The first hypothesis implies an age
difference between deep and surface particles, while the second one does not. How-
ever, the absence of a significant δ13C variation of SP-POC with depth requires that
the above processes affecting δ13CSP−cholesterol are somehow neutralized for SP-POC25

(via a balance between preferential degradation of isotopically heavy compounds such
as carbohydrates and proteins and isotopic enrichment due to trophic translocation of
organic matter).
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As an additional hypothesis, we also stress a possible effect of high pressure on
cholesterol biosynthesis occurring below the surface water: cholesterol is a component
of cell membrane and the idea is that 13C-13C covalent bond is stronger than 12C-12C
covalent bond. Such specificity could be of great interest to resist high pressure effect
and would imply an increase of δ13Ccholesterol with depth.5

Our observations stress the interest of studying both δ13CPOC and δ13Csterol in sink-
ing and suspended particles since it allows gaining information on the fate of organic
matter in the whole water column via cross-comparison.

4.3 Variation of whole water column δ
13C signatures with [CO2]aq.

Figure 7 shows the latitudinal variation of δ13CLP−POC (Fig. 7a), δ13CSP−POC (Fig. 7b),10

δ13CSP−cholesterol (Fig. 7c), δ13CSP−brassicasterol (Fig. 7d) vs. surface CO2aq. concentra-

tion (µmol kg−1) (from Gonzáles-Dávila et al., 2011) for the arbitrarily defined surface
water (0–100 m), mesopelagic layer (100–1000 m), deep ocean (>1000 m) and bot-
tom waters. In parallel, we obtain a good correlation between δ13CSP−brassicasterol

and δ13CSP−cholesterol all dataset (δ13CSP−cholesterol = (0.7×δ13CSP−cholesterol) – 8.0;15

R2 =0.8; not shown).
For the global ocean (Goericke and Fry, 1994) and the Southern Ocean (Lourey et

al., 2004; O’Leary et al., 2001; Popp et al., 1999; Dehairs et al., 1997), a number of
studies highlight a close inverse relationship between sea surface temperature (SST),
CO2 aq. and δ13CPOC. François et al. (1993) demonstrate using models from O’Leary20

(1981) and Farquhar et al. (1982), that the carbon isotopic composition of phytoplank-
ton is primarily determined by (i) the isotopic composition of the source of inorganic
carbon; (ii) the isotopic fractionation during transport into and out of the cell; (iii) isotopic
discrimination during carboxylation and the degree of leakage of intracellular inorganic
carbon. When focus is on the isotopic composition of the source (marine algae take up25

either CO2 aq. or bicarbonate HCO−
3 , or both), François et al. (1993) stress that δ13C-

bicarbonate varies little from warm to cold surface water (∼ +1 to +2‰; Kroopnick,
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1985) and in case phytoplankton incorporate bicarbonate it would tend to increase
δ13CPOC. In contrast, δ13CCO2 aq. systematically decreases from ∼–7.5 ‰ in warm
water to ∼ -10 ‰ in cold Southern Ocean surface water. François et al. (1993) con-
clude that changes in the isotopic composition of CO2 aq. can contribute significantly
to the observed latitudinal trend in δ13CPOC (a circa 2.5 ‰ decrease contribution). For5

δ13Csterols in surface water Popp et al. (1999) and Tolosa et al. (1999) demonstrate
a similar behavior than for δ13CPOC in Southern Ocean and in Indian Ocean surface
waters, respectively.

Several factors such as substrate concentration, growth rate, cell geometry, plank-
ton species, and nutrient availability reviewed in François et al. (1993) and Popp et10

al. (1999) may account for the covariance between δ13C of phytoplankton or spe-
cific compounds and CO2 aq., and for the differences between regressions for the
different C pools. However, the good correlation between δ13CSP−brassicasterol and
δ13CSP−cholesterol all dataset (see above) mainly reflects the key role of change in the
isotopic composition of CO2 aq. with latitude.15

4.3.1 Surface water variations

δ13CLP−POC and δ13CSP−POC values decrease from –21.2±0.7 (S1, 36◦31’S) to –
29.4±0.5 ‰ (S5, 57◦33′ S) and from –20.9±0.1 (S1) to –28.7±0.2 ‰ (S5), respec-
tively (Fig. 7a, b; Tables 4, 5). In contrast, CO2 aq. concentrations increase between
36◦ S and 57◦ S from 10.7±0.3 µmol kg−1 to 24.0±0.3 µmol kg−1 (Table 5, Gonzáles-20

Dávila et al., 2011). This results in significant inverse correlations between δ13CPOC

and surface CO2 aq.. The δ13C decrease is similar between small and large particles
reaching on average 8.0±0.2 ‰ from S1 to S5 (from Table 4). Such a decrease is sim-
ilar to what has been reported by Goericke and Fry (1994) for Southern Ocean waters,
but larger than the value of approximately 5 ‰ reported by François et al. (1993).25

As observed for δ13CPOC, the decrease in δ13CLP and SP−cholesterol, and
δ13CLP and SP−brassicasterol in the surface water coincides with an increase in CO2 aq.
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content (Table 4). However, the average (LP and SP) decrease reaches –
11.1±1.9 ‰ and –14.7±0.9 ‰ for cholesterol and brassicasterol, respectively (from
Table 4), which is larger than for small and large particle POC. This observation is
in agreement with Popp et al. (1999) who report that the individual sterol isotopic
compositions in surface waters (WOCE SR3 transect, 145◦ E, between 45◦55′ S to5

65◦24′ S) generally decrease southward and exceed the variations in bulk δ13CPOC.
Our data reveal for large particles that the difference in δ13C composition between

LP-POC and LP-cholesterol is between –6.0 and –10.3 ‰ (Table 4), while the differ-
ence between LP-POC and LP-brassicasterol δ13C ranges between –6.8 and –13.9 ‰.
For small particles the difference between POC and cholesterol ranges between –6.2 to10

–9.3 ‰ and the difference between POC and brassicasterol between –5.8 to –10.9 ‰.
Such offsets appear to increase southward. Tolosa et al. (1999) estimate the δ13C
isotopic difference between bulk organic matter and cholesterol to be 5 ‰, and stress
that such difference is typically observed between whole plant material and extractable
lipids (Hayes, 1993). While for the northern part of the BGH transect our data are close15

to the observations of Tolosa et al. (1999), in general we observe a larger δ13C differ-
ence between POC and cholesterol, and the discrepancy is enhanced southward. This
enhanced discrepancy could be related to larger cells contribution (diatoms).

4.3.2 Mesopelagic and deep ocean

For the δ13CLP−POC regressions against CO2aq. the slopes are quite variable (Fig. 7a,20

Table 5) without a clear trend with depth. On the other hand, the slopes of the
δ13CSP−POC vs. CO2aq. regressions are quite conservative throughout the water col-

umn (Fig. 7b, Table 5). Thus, observations of δ13CSP−POC signal conservation with
depth suggest that this proxy would be useful for paleoclimatology. On the other hand,
this proxy is confirmed as useless to trace fate of organic matter in the whole water25

column on its own since it shows stable signal from the surface to the deep ocean.
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While the slopes of the regressions of δ13CSP−cholesterol vs. CO2 aq. are signifi-
cantly conserved with depth (Fig. 7c, Table 5), the regression intercepts do evolve
with depth revealing a tendency for higher δ13Ccholesterol values in the deep ocean
and in proximity of the seafloor (see Sect. 4.2.1 and 4.2.2. for hypothetical explana-
tion). δ13CSP−brassicasterol shows a significant decrease of regression slopes between5

surface and deep ocean and from the north to the south part of the Southern Ocean
(Fig. 7d, Table 5). It is not unlikely (though not confirmed here) that this reflects an
enhanced contribution of sea-ice diatoms south of the BGH transect (S4 and S5, see
above Sect. 4.2.3.), although this cannot be unambiguously demonstrated by our data.
These two proxies appear thus useful to trace fate of organic matter in the whole water10

column.

5 Conclusions

Although the BONUS-GoodHope transect crossed several frontal structures and spe-
cific biogeochemical zones, our study showed several general patterns in brassicas-
terol and cholesterol concentrations, bra:cho ratios, and δ13C signatures of POC,15

cholesterol and brassicasterol along depth and latitudinal gradients. First, the bra:cho
ratio, which reflects the relative importance of autotrophs vs. heterotrophs, shows a
general trend relevant for each of the five studied stations: in the upper 500 m depth
the major component of organic material is phytoplankton (bra:cho ratios highly vari-
able and >1) , whereas between 500 and 1000 m depth the major component becomes20

zooplankton (bra:cho ratios reaching values <1 in the mesopelagic layer). Finally, these
two components reach stable ratio below 1000 m depth (bra:cho ∼1). Our observations
support a key role of fecal aggregates in the fate of organic matter and export to deep
ocean.

Second, depth variation of εbrassicasterol and ε cholesterol shows again general trends25

valuable for the five stations. This indeed highlights (i) that brassicasterol is only biosyn-
thesized in the surface water; thus showing a stable value close -7 ‰ below 500 m
depth in accordance with Schouten et al. (1998) and Bidigare et al. (1997); (ii) an
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increase of εcholesterol with depth which is mainly defined to be related to growth rate
related effect and/or particle size related effect and selective feeding by zooplankton. A
role of sea-ice algae release south of the transect is also proposed to act on latitudinal
and depth variations of δ13Cbrassicasterol and δ13Ccholesterol. As an additional hypothesis,
we also suggest that a high pressure effect on cholesterol biosynthesis below the sur-5

face water might induce an increase of δ13Ccholesterol in deeper waters.
Third, the relationship between CO2aq. concentration and δ13CSP−sterols is generally

maintained throughout the deep ocean. This observation was not expected a priori,
since circulation of deep waters carrying suspended matter formed in different regions
may possibly dilute the isotopic signatures resulting from biological activity in local10

surface waters. It thus seems that export of organic matter and fate of organic com-
pounds in the deep sea closely fit to a 1D scheme (surface to deep ocean). In case
further studies confirm this observation, the fact that regressions of δ13Ccholesterol and
δ13CSP−POC versus CO2aq. are quite conservative with depth highlights the potential of
these proxies for surface water CO2 aq. concentration. Future field work is necessary15

to confirm variability and trends observed during this study, and to adequately constrain
the application of such this potential proxy.

While not conclusive, this first dataset on combined δ13C and concentrations mea-
surements of both bulk organic C and specific sterol markers throughout the water
column shows the promising potential of analyzing δ13C signatures of individual ma-20

rine sterols to explore the recent history of plankton and the fate of organic matter in
the SO.
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Table 1. δ13CPOC (‰) and POC concentration (µg l−1) for large (>53 µm) and small
(53>>1 µm) particles. Standard error on δ13C measurements is the analytical standard devi-
ation (σSD =± 0.10 ‰). N. D. means no data.

large particles small particles
depth density δ13C-

POC
POC δ13C-

POC
POC % large vs. total

(m) (g L−1) (‰) (µg l−1) (‰) (µg l−1) (large + small)

station S1
36◦31′ S 50 1025.9 −20.8 1.6 −20.9 11.8 11.8
13◦07E 75 1026.4 −21.7 1.0 N.D. N.D.

125 1026.9 −21.5 0.2 −22.5 11.3 1.8
175 1027.4 −23.5 0.0 N.D. N.D.
250 1027.7 −22.6 0.1 −21.1 2.9 4.1
500 1029.2 −18.1 0.1 −21.6 2.1 3.7
750 1030.5 −19.7 0.1 −21.8 2.1 5.4
1250 1033.3 N.D. N.D. −21.2 1.0
2750 1040.3 −15.7 0.0 −26.8 2.6 0.8
4700 1049 −25.3 0.1 −26.4 3.5 2.7

station S2
42◦28′ S 30 1026.2 −19.7 4.6 −21.6 38.6 10.6
08◦55′ S 75 1026.7 −20.5 1.6 −22.3 21.2 7.0

130 1027.2 −21.7 0.3 −22.3 5.3 4.7
250 1028 −21.9 0.4 −23.2 4.3 7.8
590 1029.8 −21.6 0.0 −24.7 1.2 3.9
608 1030.1 −21.8 0.2 −24.8 2.7 7.9
1450 1034.4 −16.9 0.0 −21.9 1.2 2.6
2900 1041 −25.1 0.1 −23.1 0.7 12.4
2910 1041.1 −19.4 0.0 −23.6 0.6 3.6
3940 1045.7 −26.0 0.1 −21.9 0.8 12.3

station S3
47◦33′ S 20 1026.6 −25.4 2.9 −25.0 39.9 6.8
04◦22′ S 50 1026.7 −25.2 1.1 −24.9 39.6 2.7

150 1027.6 −24.9 0.7 −23.8 5.0 12.8
230 1028.2 −24.5 0.1 −22.8 3.9 2.6
450 1029.5 −23.5 0.9 −23.5 2.4 27.0
550 1030 −23.2 0.9 −23.8 2.8 24.2
1060 1032.5 −23.0 0.1 −24.9 2.1 5.4
1088 1032.6 −23.9 0.3 −24.0 1.1 18.8
2023 1037.2 −20.8 0.1 −24.3 1.1 4.5
2043 1037.3 −22.9 0.1 −24.4 1.2 4.6
4320 1047.4 −22.7 0.1 −24.6 0.9 6.2

station S4
51◦52′ S 40 1027 −23.3 1.3 N.D. N.D.
00◦00′ E 80 1027.3 −24.3 3.1 −26.5 17.7 14.8

100 1027.4 −24.9 2.3 −26.4 15.7 12.8
125 1027.6 −25.0 1.1 −26.2 14.2 7.1
165 1028.1 −25.6 0.4 −26.4 5.6 7.5
400 1029.5 −26.1 0.1 −26.7 3.5 3.1
749 1031.2 N.D. N.D. −27.2 2.8
1108 1033 −24.6 0.1 −26.7 2.9 2.4
2468 1039.2 −23.5 0.0 −27.2 2.8 1.7

station S5
57◦33′ S 50 1027.6 −29.1 6.6 −28.9 18.9 25.8
00◦03′ E 90 1028 −29.7 2.5 −28.6 13.9 15.1

125 1028.2 −30.3 1.7 −28.9 8.4 16.9
300 1029.2 −28.0 0.0 −28.7 3.2 1.2
500 1030.2 −25.4 0.1 −28.2 1.9 4.4
650 1030.8 −26.4 0.1 −28.5 4.6 3.1
1500 1034.9 −22.9 0.1 −26.8 0.8 11.4
2500 1039.4 −24.3 0.0 −27.4 1.5 1.6
3884 1045.6 −22.8 0.0 −27.9 2.7 1.1
3894 1045.6 −23.8 0.0 −26.3 0.5 6.4
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Table 2. Small particles (53>>1 µm): δ13C (‰) and concentrations (ng L−1) of cholesterol and
brassicasterol. Standard error propagation on δ13C (±1σ) is calculated via FREML regression
correction (see e.g. method section). N.D. means no data.

depth density δ13Ccholesterol cholesterol δ13Cbrassicasterol brassicasterol bra/cho
(m) (g L−1) (‰) (ng L−1) (‰) (ng L−1) (no unit)

station S1
36◦31′ S 50 1025.9 −27.6±1.2 37,6 −25.8±1.5 65.3 1.7
13◦07E 75 1026.4 −25.0±1.1 24.8 −27.7±1.2 42.1 1.7

125 1026.9 −26.6±1.1 18,0 −26.7±1.1 17.3 1.0
250 1027.7 −22.6±1.1 9.8 −25.2±1.1 6.5 0.7
750 1030.5 −23.7±1.1 7.1 − −
1250 1033.3 −21.5±1.1 3.0 − −
2750 1040.3 −20.9±1.1 2.3 − −
4700 1049.0 -21.4±1.1 2.7 − −

station S2
42◦28′ S 30 1026.2 −26.8±1.1 33.8 −27.4±1.1 46.8 1.4
08◦55′ S 75 1026.7 −27.0±1.1 24.5 −26.6±1.1 30.1 1.2

130 1027.2 −29.4±1.2 8.8 −29.0±1.2 9.3 1.1
250 1028 −28.9±1.2 8.1 −30.1±1.3 6.9 0.9
590 1029.8 −31.0±1.3 5.1 −30.3±1.3 3.7 0.7
608 1030.1 −30.3±1.3 6.1 −28.1±1.2 3.4 0.5
1450 1034.4 −23.7±1.1 1.3 − −
2900 1041 −20.3±1.1 0.7 − −
2910 1041.1 −23.9±1.1 0.8 − −
3940 1045.7 −18.2±1.1 0.7 − −

station S3
47◦33′ S 20 1026.6 −37.1±1.6 7.4 −36.9±1.6 38.9 5.3
04◦22′ S 50 1026.7 −31.5±1.3 17.3 −34.9±1.5 37.8 2.2

150 1027.6 −30.0±1.2 5.0 −31.2±1.3 7.8 1.6
230 1028.2 −30.0±1.2 3.9 −31.2±1.3 5.8 1.5
450 1029.5 −30.6±1.2 3.3 −30.2±1.3 3.7 1.1
550 1030 −30.4±1.2 6.0 −30.7±1.3 4.4 0.7
1060 1032.5 −29.7±1.2 2.9 −31.1±1.3 1.6 0.6
1088 1032.6 −27.3±1.1 1.8 −30.0±1.3 1.5 0.8
2023 1037.2 −29.7±1.2 0.9 −29.3±1.2 0.7 0.7
2043 1037.3 −27.8±1.1 1.0 −29.2±1.2 0.9 1.0
4320 1047.4 −26.4±1.1 0.3 −30.9±1.3 0.3 1.0

station S4
51◦52′ S 80 1027.3 −34.3±1.4 20.1 −35.8±1.5 32.8 1.6
00◦00′ E 100 1027.4 −35.5±1.5 13.0 −37.0±1.6 32.7 2.5

125 1027.6 −33.8±1.4 15.6 −35.70±1.5 29.6 1.9
165 1028.1 −32.8±1.3 6.2 −40.0±1.8 9.7 1.6
400 1029.5 −34.3±1.4 2.9 −37.5±1.6 3.4 1.2
749 1031.2 −32.7±1.3 5.9 −36.3±1.6 2.2 0.4
1108 1033 −32.8±1.3 1.1 −32.8±1.4 1.3 1.2
2468 1039.2 −30.1±1.2 1.0 −33.9±1.4 1.1 1.2

station S5
57◦33′ S 50 1027.6 −37.0±1.6 15.8 −40.6±1.8 28.7 1.8
00◦03′ E 90 1028 −36.8±1.6 16.0 −40.9±1.8 25.6 1.6

125 1028.2 −36.8±1.6 9.8 −39.8±1.8 14.7 1.5
300 1029.2 −34.2±1.4 6.1 −37.1±1.6 10.5 1.7
500 1030.2 −32.9±1.3 5.6 −37.3±1.6 4.6 0.8
650 1030.8 −33.5±1.4 3.2 −37.7±1.6 3.3 1.0
1500 1034.9 N.D. N.D. −35.1±1.5 0.8
2500 1039.4 −30.7±1.2 0.8 −34.9±1.5 0.7 0.9
3884 1045.6 −30.4±1.2 0.6 −33.5±1.4 0.6 1.1
3894 1045.6 −31.2±1.2 0.5 −35.6±1.5 0.7 1.2
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Table 3. Large particles (>53 µm): δ13C (‰) and concentrations (ng l−1) of cholesterol and
brassicasterol in the upper part of the water column. Standard error propagation on δ13C
(±1σ) is calculated via FREML regression correction (see e.g. method section). No results are
available for station S3 since the amount of material collected was too small to permit analysis.

(‰) (ng l−1) (‰) (ng l−1) bra/cho
depth (m) δ13Ccholesterol cholesterol δ13Cbrassicasterol brassicasterol (no unit)

station S1
36◦31′ S 50 −27.2±1.1 1.14 −28.0±1.2 1.17 1.0
13◦07E 75 −27.2±1.1 1.13 − −

125 −29.1±1.2 1.21 −31.4±1.3 1.31 1.1
station S2
42◦28′ S 30 −30.2±1.3 1.25 −29.9±1.2 1.22 1.0
08◦55′ S 75 −29.1±1.2 1.21 −29.0±1.2 1.20 1.0

608 −31.8±1.3 1.33 − −
station S4
51◦52′ S 40 −37.1±1.6 1.60 −49.0±1.3 1.31 0.8
00◦00′ E 80 −36.1±1.5 1.53 −45.3±2.1 2.06 1.3

100 −38.5±1.7 1.69 −46.7±2.2 2.15 1.3
125 −33.8±1.4 1.40 −37.3±1.6 1.61 1.2

station S5
57◦33′ S 50 −37.0±1.6 1.59 −41.9±1.9 1.87 1.2
00◦03′ E 90 −42.4±2.0 1.95 −44.8±2.0 2.03 1.0
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Table 4. Mixed layer depth MLD (m), sea surface temperature, surface CO2 aq. concentra-
tion (µmol kg−1), surface δ13C (‰) for LP and SP-POC, LP and SP-cholesterol, LP and SP-
brassicasterol. Standard deviation (±1σ) is the average standard deviation with one exception
(*) = analytical standard error (±1σ). STZ = Sub-Tropical Zone, SAZ = Sub-Antarctic Zone,
PFZ = Polar Frontal Zone, IPFZ = Intermediate Polar Frontal Zone (also named Southern
Antarctic Circumpolar Current Front SACCF), and WG = Weddell Gyre.

mixed layer surface water (I) surface water δ13C cholesterol δ13C cholesterol δ13C brassicasterol δ13C brassicasterol δ13C POC δ13C POC
station latitude longitude SO depth (m) SST (◦C) [CO2]aq. (µmol kg−1) large particles small particles large particles small particles large particles small particles

region

S1 36◦31′ S 13◦07′ E STZ 40 20.2±0.7 10.7±0.3 −27.2±0.0 −27.1±0.7 −28.0±1.2 −26.7±1.3 −21.2±0.7 −20.9 ±0.1 (*)
S2 42◦28′ S 08◦55′ E SAZ 50 13.2±0.3 13.7±0.5 −29.7±0.7 −26.9±0.1 −29.5±0.6 −27.0±0.6 −20.1±0.6 −21.9±0.6
S3 47◦33′ S 04◦22′ E PFZ 100 6.4±0.1 18.1±0.2 no data −34.3±4.0 no data −35.9±1.4 −25.3±0.2 −25.0±0.1
S4 51◦52′ S 00◦00′ E IPFZ 100 2.4±0.3 20.7±0.2 −37.2±1.2 −34.9±0.8 −47.0±1.9 −36.4±0.8 −24.2±0.8 −26.4±0.1
S5 57◦33′ S 00◦03′ E WG 80 0.39±0.01 24.0±0.3 −39.7±3.8 −36.9±0.1 −43.3±2.0 −40.7±0.2 −29.4±0.5 −28.7±0.2

(I) data from Gonzáles−Dávila et al. (2011)
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Table 5. Slope, standard error, p-value and R2 for variation of δ13C (‰), POC large particles,
small particles, cholesterol and brassicasterol in small particles vs. surface CO2 aq. content,
for the arbitrary defined surface water (0–100 m), mesopelagic layer (100–1000 m) and deep
ocean (1000 -seafloor).

slope p-value R2

δ13C-POC large particles
surface water −0.62±0.12 <0.05 0.81
mesopelagic layer −0.48±0.04 <0.05 0.97
deep ocean −0.25±0.04 <0.05 0.88

δ13C-POC small particles
surface water −0.60±0.04 <0.05 0.99
mesopelagic layer −0.47±0.05 <0.05 0.90
deep ocean −0.48±0.08 = 0.05 0.92

δ13C-cholesterol small particles
surface water −0.84±0.13 <0.05 0.91
mesopelagic layer −0.73±0.10 <0.05 0.86
deep ocean −0.88±0.14 <0.05 0.89

δ13C-brassicasterol small particles
surface water −1.13±0.14 <0.05 0.94
mesopelagic layer −0.94±0.20 >0.05 0.83
deep ocean −0.79±0.17 >0.05 0.90
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 1 

Figure 1. Left part of panel = BONUS-GoodHope voyage track and super station locations (S1 2 

at 36°31’S; S2 at 42°28’S; S3 at 47°33’S; S4 at 51°52’S; S5 at 57°33’S). The background is 3 

Sea Surface Temperature SST (°C) from the CERSAT/ODYSSEA satellite. A SST scale is 4 

given at the bottom of the image. The north-south gradient in SST is typical of the region in 5 

summer. Approximate location of ACC fronts in summer (STF = Sub-Tropical Front, SAF = 6 

Sub-Antarctic Front North, PF = Polar Front, SACCF = South Antarctic Circumpolar Current 7 

Front, Sbdy = southern boundary of the ACC) are shown. The area north of the STF is the 8 

Sub-Tropical Zone (STZ); the Sub-Antarctic Zone (SAZ) is located between STF and SAF; 9 

the Polar Front Zone (PFZ) is located between the SAF and PF; the Antarctic Zone (AZ) is 10 

located between the PF and Sbdy, and south of the Sbdy is identified as the northern part of 11 

the Weddell Gyre (WG). 12 

Right part of panel = Complete salinity S1 PSU (lower panel) and temperature T1 (°C, upper 13 

panel) sections during BGH (from BGH cruise report; courtesy from S. Speich). Station 14 

locations are shown. 15 

PFPF

Fig. 1. Left part of panel = BONUS-GoodHope voyage track and super station locations (S1
at 36◦31′ S; S2 at 42◦28′ S; S3 at 47◦33′ S; S4 at 51◦52′ S; S5 at 57◦33′ S). The background
is Sea Surface Temperature SST (◦C) from the CERSAT/ODYSSEA satellite. A SST scale
is given at the bottom of the image. The north-south gradient in SST is typical of the re-
gion in summer. Approximate location of ACC fronts in summer (STF = Sub-Tropical Front,
SAF = Sub-Antarctic Front North, PF = Polar Front, SACCF = South Antarctic Circumpolar
Current Front, Sbdy = southern boundary of the ACC) are shown. The area north of the STF
is the Sub-Tropical Zone (STZ); the Sub-Antarctic Zone (SAZ) is located between STF and
SAF; the Polar Front Zone (PFZ) is located between the SAF and PF; the Antarctic Zone (AZ)
is located between the PF and Sbdy, and south of the Sbdy is identified as the northern part
of the Weddell Gyre (WG). Right part of panel = Complete salinity S1 PSU (lower panel) and
temperature T1 (◦C, upper panel) sections during BGH (from BGH cruise report; courtesy from
S. Speich). Station locations are shown.
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

Figure 2. Standard mix based functional relationship fit for accuracy (A) sylilation vs. non-8 

sylilation, (B) GC-c-IRMS vs. EA-IRMS, and their respective FREML scaled residuals plot. 9 
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Fig. 2. Standard mix based functional relationship fit for accuracy (A) sylilation vs. non-
sylilation, (B) GC-c-IRMS vs. EA-IRMS, and their respective FREML scaled residuals plot.
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Fig. 3. Upper panel: profiles of large particle (>53 µm) POC content over total POC content
(in %). Lower panel: profiles of small particle (1<<53 µm) cholesterol and brassicasterol con-
tent over small particle POC content (in ‰). Y-axis depth is shown as seawater density; the
100 m (dashed line) and 1000 m (dotted line) depth horizons are shown. The standard error is
estimated as ±30 % for brassicasterol and cholesterol. Error bars shown represent the average
standard deviation (±1σSD) for two close by samples (see also Tables 1 and 2).
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Figure 4: Profiles of δ13CPOC (‰) for large (>53µm) and small (1<<53µm) particles, 1 

δ13Ccholesterol (‰) and δ13Cbrassicasterol (‰) for small particles vs. seawater density. Each panel 2 

represents depth profiles per station. Horizontal lines = the 100 and 1000m horizons. 3 
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Fig. 4. Profiles of δ13CPOC (‰) for large (>53 µm) and small (1<<53 µm) particles,
δ13Ccholesterol(‰) and δ13Cbrassicasterol (‰) for small particles vs. seawater density. Each panel
represents depth profiles per station. Horizontal lines = the 100 and 1000 m horizons.
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 1 

 2 

 3 

Figure 5. Panel A = vertical profile of small particle brassicasterol vs. cholesterol 4 

concentrations ratio (no unit; from Table 2) for the whole dataset. Panel B = vertical profile of 5 

ε cholesterol and ε brassicasterol for the whole dataset (ε sterol (‰) = δ13Csterol – δ13CSP-POC). The grey 6 

rectangle represents the range of 500m depth horizons along the transect (see Table 2). 7 
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Fig. 5. Panel A = vertical profile of small particle brassicasterol vs. cholesterol concentrations
ratio (no unit; from Table 2) for the whole dataset. Panel B = vertical profile of ε cholesterol and
ε brassicasterol for the whole dataset (ε sterol (‰) = δ13Csterol – δ13CSP−POC). The grey rectangle
represents the range of 500 m depth horizons along the transect (see Table 2).
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Figure 6. Correlation between SP-cholesterol and SP-brassicasterol concentrations (panel B is 8 

a zoom of panel A) for the whole dataset. Data are spread in two groups: upper 500m (white 9 

squares) and lower 500m (black squares) following observation of Fig. 5 (see Discussion part 10 

4.1.). 11 
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Fig. 6. Correlation between SP-cholesterol and SP-brassicasterol concentrations (panel B is
a zoom of panel A) for the whole dataset. Data are spread in two groups: upper 500 m (white
squares) and lower 500 m (black squares) following observation of Fig. 5 (see Discussion part
4.1.)
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Figure 7. Upper panel: relationship between surface water (0-100m) CO2 aq concentration 3 

(µmol kg-1, Table 4) and δ13CPOC (‰) in large (> 53µm) (A) and small (1 << 53µm) (B) 4 

particles in surface water (0-100m, closed diamonds), mesopelagic layer (100-1000m, open 5 

square), deep ocean (>1000m, closed triangles), and bottom waters (crosses). Lower panel: 6 

relationship between surface water CO2 aq concentration and small particles (1 << 53µm) 7 

δ13Ccholesterol (C) and δ13Cbrassicasterol (D) in surface water (0-100m, closed diamonds), 8 

mesopelagic layer (100-1000m, open square), deep ocean (>1000m, closed triangles), and 9 

bottom water (crosses). Averages (± 1σ) are given in Table 5. Standard errors are not shown 10 

here for sake of clarity. 11 
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Fig. 7. Upper panel: relationship between surface water (0–100 m) CO2 aq. concentration

(µmol kg−1, Table 4) and δ13CPOC (‰) in large (>53 µm) (A) and small (1<<53 µm) (B) par-
ticles in surface water (0–100 m, closed diamonds), mesopelagic layer (100–1000 m, open
square), deep ocean (>1000 m, closed triangles), and bottom waters (crosses). Lower panel:
relationship between surface water CO2 aq. concentration and small particles (1<<53 µm)

δ13Ccholesterol (C) and δ13Cbrassicasterol (D) in surface water (0–100 m, closed diamonds),
mesopelagic layer (100–1000 m, open square), deep ocean (>1000 m, closed triangles), and
bottom water (crosses). Averages (±1σ) are given in Table 5. Standard errors are not shown
here for sake of clarity.
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