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Abstract. Surface sediments collected from deep basins
(1018–4087 m depth) of the eastern Mediterranean Sea (Io-
nian Sea, southern Aegean Sea and northwestern Levantine
Sea) were analyzed for aliphatic and polycyclic aromatic hy-
drocarbons as tracers of natural and anthropogenic inputs.
Concentrations of total aliphatic hydrocarbons,n-alkanes
and the unresolved complex mixture (UCM) of aliphatic
hydrocarbons varied significantly, ranging from 1.34 to
49.2 µg g−1, 145 to 4810 ng g−1 and 0.73 to 36.7 µg g−1, re-
spectively, while concentrations of total polycyclic aromatic
hydrocarbons (PAHs) ranged between 11.6 and 223 ng g−1.
Molecular profiles of determined hydrocarbons reflect a
mixed contribution from both natural and anthropogenic
sources in deep-sea sediments of the eastern Mediterranean
Sea, i.e., terrestrial plant waxes, degraded petroleum prod-
ucts, unburned fossil fuels and combustion of grass, wood
and coal. Hydrocarbon mixtures display significant variabil-
ity amongst sub-regions, reflecting differences in the relative
importance of inputs from various sources and phase asso-
ciations/transport pathways of individual hydrocarbons that
impact on their overall distribution and fate. Hydrocarbon
concentrations correlated significantly with the organic car-
bon content of sediments, indicating that the latter exerts an
important control on their transport and ultimate accumula-
tion in deep basins. Additionally, water masses’ circulation

characteristics also seem to influence the regional features
and distribution patterns of hydrocarbons. Our findings high-
light the role of deep basins/canyons as repositories of both
natural and anthropogenic chemical species.

1 Introduction

Hydrocarbons are ubiquitous components of the organic ma-
terial introduced into coastal and open sites of the world’s
oceans. They enter the marine environment through both
atmospheric (dry/wet deposition, gas exchange across the
air–water interface) and aquatic pathways (direct discharges,
continental run-offs, off-shelf export) the relative importance
of which largely depends on the geographical setting of a
given area. Although they may derive from natural sources,
both marine and terrestrial, a large proportion of hydrocar-
bons is related to various anthropogenic activities that re-
sult in the formation and release of hazardous organic pollu-
tants. On account of their wide variety of sources, hydrocar-
bons occur as complex mixtures in the marine environment
(Bouloubassi et al., 1997; Gogou et al., 2000; Prahl and Car-
penter, 1984; Tolosa et al., 1996; Yunker et al., 2002).

Due to their hydrophobic nature, hydrocarbons in the ma-
rine realm tend to associate with particles resulting in their
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downward transport through the water column and final ac-
cumulation in sediments (Bouloubassi et al., 2006; Dachs
et al., 2002; Deyme et al., 2011; Parinos et al., 2013; Prahl
and Carpenter, 1979; Tsapakis et al., 2006). The sources and
physico-chemical properties of individual compounds deter-
mine their phase associations, dispersion pathways, pre- and
post-deposition fate in the marine environment and their ul-
timate preservation in marine sediments (Dachs and Eisenre-
ich, 2000; Simo et al., 1997; Wang et al., 1999; Yunker et al.,
2002; and references therein).

Aliphatic hydrocarbons derive from natural sources such
as terrestrial plant waxes, marine phytoplankton and bacte-
ria (Brassell et al., 1978), while they are also major compo-
nents of petroleum products (Wang et al., 1999). The unre-
solved complex mixture (UCM) of aliphatic hydrocarbons,
a commonly observed contaminant mixture in marine sedi-
ments consisting of branched alicyclic hydrocarbons (Gough
and Rowland, 1990), has been proven as toxic to sediment-
dwelling organisms (Scarlett et al., 2007). Polycyclic aro-
matic hydrocarbons (PAHs) are an important and ubiqui-
tous class of environmental contaminants. They have been
classified as priority pollutants by national and international
environmental agencies (e.g., EPA-US, EEA-EU) since cer-
tain homologues are highly carcinogenic and mutagenic,
exhibiting tendency to bioaccumulate in aquatic organisms
(Samanta et al., 2002). PAHs’ formation and release in the
environment is related to various anthropogenic activities in-
cluding pyrolysis/combustion of organic material (biomass
burning, incomplete combustion of fossil fuels) and release
of petroleum products (Neff, 1979; Simoneit, 1984; Yunker
et al., 2002; and references therein). PAHs of biogenic ori-
gin may also occur in environmental samples. Such evidence
has been reported for perylene, retene (Laflamme and Hites,
1978; Wakeham et al., 1980) and phenanthrene (Cabrerizo et
al., 2011; Nizzetto et al., 2008).

The eastern Mediterranean Sea (EMS), and especially its
coastal area, is a region under intense anthropogenic pres-
sure resulting in pollutant discharges (EEA, 2006). The open
EMS, being an important region of merchant shipping and
oil transportation, receives substantial amounts of petroleum
discharges, mainly along shipping routes (REMPEC, 2008;
UNEP, 2010). Atmospheric deposition is another important
pathway for the introduction of hydrocarbons into the EMS
(Castro-Jiménez et al., 2012; Gogou et al., 1996; Tsapakis
et. al., 2003; Tsapakis and Stefanou, 2005) including signif-
icant inputs of Saharan dust (Jickells et al., 2005), especially
during dust storm events, that contain both natural and an-
thropogenic hydrocarbons (Ladji et al., 2010).

Aliphatic hydrocarbons and PAHs have been investigated
over the last decades in surficial sediments of the EMS,
primarily in coastal or shallow basin sites in the Aegean
Sea, southern Italy, the coast of Egypt and the Adriatic Sea
(Aboul-Kassim and Simoneit, 1995; Alebic-Juretic, 2011;
Botsou and Hatzianestis, 2012; Cardellicchio et al., 2007;
Gogou et al., 2000; Gonul and Kucuksezgin, 2012; Guzzella

and De Paolis, 1994; Marcomini et al., 1986; Nemr et al.,
2007; Sklivagou et al., 2008; Yilmaz et al., 1998). However,
there is an important lack of data regarding their occurrence
in deep basins, which might represent a long-term sink for
hydrocarbons. To fill this gap we report here the first data set
on sedimentary aliphatic and polycyclic aromatic hydrocar-
bons in deep EMS basins (1018–4087 m depth). The aim of
this study is to assess their occurrence, major sources and
transport pathways and to evaluate the role of deep EMS
basins as their repository.

2 Oceanographic setting

The EMS is a semi-enclosed basin that connects with the
western Mediterranean Sea through the Strait of Sicily. It
includes four major sub-basins: the Ionian and Levantine
basins, the Adriatic Sea and the Aegean Sea.

EMS presents a complex circulation pattern, with water
masses’ distribution being influenced by both large-scale and
mesoscale variability. As a concentration basin, it is charac-
terized by an antiestuarine circulation that transforms surface
Atlantic Waters (AW), entering through the Strait of Sicily
at the upper 100–200 m of the water column, into Levantine
Intermediate Waters (LIW) in the eastern part of the region
(Rhodes gyre), which leave the basin as a westward current
through the Strait of Sicily at depths between 200 and 500 m.
Intermediate water masses are also formed occasionally in
the southern Aegean Sea (Cretan Intermediate Water – CIW),
with characteristics similar to those of LIW, which feed the
EMS through the Cretan Arc straits. Mesoscale variability,
creating permanent and transient eddies/gyres, enhances ex-
changes between continental shelf waters and slope waters
(Malanotte-Rizzoli et al., 1997; Millot and Taupier-Letage,
2005; Robinson et al., 1992).

Deep-water layers of the EMS originate mainly in the
Adriatic Sea and are exported by means of bottom-arrested
currents towards the abyssal layers of the Ionian Basin, flow-
ing in an eastward path all the way towards the eastern Lev-
antine Basin. The Aegean Sea also contributes to deep-water
formation, and may even become more effective than the
Adriatic as a deep-water source, as in the case of the East-
ern Mediterranean Transient (EMT) during the early 1990s
(Roether et al., 1996; Theocharis et al., 1999). The water
column of the EMS is well oxygenated. The oxygen mini-
mum found at depths of about 1000 to 2000 m is equivalent
to 70–75 % of saturation, while in deeper layers ventilation
is enhanced by deep-water formation (Meador et al., 2010;
Schlitzer et al., 1991).

Mean sedimentation rates in deep EMS basins are low and
generally do not exceed 5 cm kyr−1, mainly due to its olig-
otrophic character and the minor influence from riverine in-
puts (Garcia-Orellana et al., 2009). Thus, aeolian transport
is of major importance for the delivery of land-derived nat-
ural and anthropogenic material to the open marine sites of
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the EMS. Atmospheric circulation patterns are characterized
by winds of dominant north-northeast direction (central and
eastern Europe and Balkans) from May to September, while
from October to April the prevalence of north-northwest sec-
tor is less pronounced. Especially in March/April and in
October/November winds from the north-northwest, south-
southwest (Africa) and west sectors (marine influence) are
roughly equally distributed. This leads to complex aerosol
dynamics, with large anthropogenic and natural emissions
and intensive interaction between aerosols and gaseous pol-
lutants, resulting in a variation of deposition modes (dry vs.
wet) and composition of background aerosols in open EMS
areas (Gogou et al., 1996; Lee et al., 2010; Mihalopoulos et
al., 1997; Mandalakis et al., 2009; Polymenakou et al., 2008;
Tsapakis and Stefanou, 2005, 2007; and references therein).

3 Materials and methods

3.1 Sampling

Sediment cores were collected with a multicorer at 22 sta-
tions in deep basins (1018–4087 m depth) of the Ionian Sea,
Cretan Sea (southern Aegean Sea) and northwestern Levan-
tine Sea during four oceanographic cruises conducted be-
tween January 2007 and June 2012 (Fig. 1, Table 1). Jan-
uary 2007 samples were collected during the M71 Leg. 3
cruise of the R/VMeteor(University of Hamburg, Germany),
while May 2010, 2011 and June 2012 samples were collected
during corresponding cruises of the R/VAegaeo(HCMR,
Greece). The undisturbed top centimeter (1 cm) of each core
was recovered, wrapped in pre-combusted (450◦C, 6 h) alu-
minum foil and stored at−20◦C till further analysis.

3.2 Methods

For the analysis of organic carbon (OC) content, freeze-dried
and grounded sediment samples were initially de-carbonated
using repetitive additions of HCl (25 %,v/v), separated by
60◦C drying steps, until no effervescence was observed. Or-
ganic carbon was then determined by combustion in an oxy-
gen atmosphere and the produced carbon dioxide was quan-
titatively measured using a Flash 1112 elemental analyzer.

For the analysis of aliphatic and polycyclic aro-
matic hydrocarbons freeze-dried sediments were
spiked with a mixture of perdeuterated internal
standards ([2H50]n-tetracosane, [2H10]phenanthrene,
[2H10]pyrene, [2H12]chrysene, [2H12]perylene and
[2H12]benzo[ghi]perylene) and solvent extracted three
times by sonication with a dichloromethane : methanol
mixture (4: 1, v/v). Combined extracts were fractionated on
a silica column, applying a modified protocol after Gogou
et al. (1998). Aliphatic hydrocarbons were eluted with 6 mL
n-hexane and PAHs with 10 mLn-hexane/toluene (9: 1,
v/v). Both fractions were concentrated by vacuum rotary

Table 1.Location and characteristics of sampling sites.

Station Location Water Sampling Organic

Lat. N Long. E depth (m) date carbon (%)

RED2.1 33◦42.81′ 26◦20.45′ 2720 May 2010 0.37
RED3 35◦24.14′ 23◦24.10′ 2976 May 2010 0.37
RED3.1 35◦18.17′ 23◦18.92′ 3314 May 2010 0.58
RED4 35◦45.71′ 25◦06.00′ 1620 May 2010 0.42
RED5 35◦40.57′ 25◦06.12′ 1018 May 2010 0.39
RED7 34◦36.11′ 24◦08.73′ 3589 May 2011 0.51
RED8 36◦04.47′ 25◦17.07′ 1715 May 2011 0.33
RED9 36◦00.03′ 23◦53.55′ 1200 May 2011 0.40
RED1.1 34◦24.13′ 26◦14.67′ 3568 Jun 2012 0.54
RED15.1 34◦36.55′ 25◦55.49′ 2428 Jun 2012 0.62
RED13 34◦57.01′ 25◦54.90′ 1101 Jun 2012 0.46
H01 35◦45.00′ 23◦00.00′ 2117 Jan 2007 0.29
H02 35◦45.00′ 21◦00.00′ 3008 Jan 2007 0.45
H03 35◦45.00′ 18◦30.00′ 4087 Jan 2007 0.63
H04 35◦55.00′ 16◦00.00′ 3750 Jan 2007 0.65
H05 37◦30.00′ 18◦30.00′ 3154 Jan 2007 0.57
H07 39◦10.00′ 17◦45.00′ 1866 Jan 2007 1.15
H12 38◦50.00′ 19◦45.00′ 1450 Jan 2007 0.15
Her01 33◦55.44′ 27◦44.45′ 2680 Jan 2007 0.31
Her03 33◦40.00′ 29◦00.00′ 3090 Jan 2007 0.49
IER01 34◦26.54′ 26◦11.51′ 3626 Jan 2007 0.52
Rho02 35◦37.12′ 27◦42.03′ 1305 Jan 2007 0.47

evaporation, transferred to a 1.5 mL amber vial and excess
solvent was evaporated under a gentle nitrogen stream.

Instrumental analysis was carried out by gas chro-
matography mass spectrometry (GC-MS) on an Agilent
7890 GC, equipped with an HP-5MS capillary column
(30 m× 0.25 mm i.d.× 0.25 µm phase film), coupled to an
Agilent 5975C MSD. For the analysis of aliphatic hydrocar-
bons the MSD operated in full scan mode and the GC oven
temperature was initially held at 60◦C for 2 min, brought to
80◦C at a rate of 25◦C min−1, then to 300◦C at a rate of
5◦C min−1 and finally held at 300◦C for 35 min. PAHs were
analyzed using a selected ion monitoring (SIM) acquisition
program. The oven temperature program was the same as in
the case of aliphatic hydrocarbons but with a 300◦C final
isothermal of 6 min. Helium was used as carrier gas at a flow
of 1.1 mL min−1.

Standard solutions of the targeted compounds, purchased
from Dr. Ehrenstorfer GmbH, were spiked with the internal
standards and run on each injection set in order to derive rel-
ative response factors (RRFs) of the analytes. The precision
of the analytical method used for PAHs determination was
evaluated by analyzing the standard reference material SRM
1941b – NIST USA (organics in marine sediment). The de-
termined values ranged between 93 and 106 % of the certified
values, while in terms of repeatability the relative standard
deviation was below 5 %. Procedural blanks processed were
found to be free of contamination.

Cluster analysis (joining clustering method) was applied
to group stations with similarn-alkane or PAH profiles,
using the relative homologues’ concentrations for the total
sum of compounds monitored, respectively, as starting data.
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Fig. 1.Location of sampling sites across the eastern Mediterranean Sea (see also Table 1). The map was produced using the GEBCO Digital
Atlas (IOC, IHO and BODC, 2003).

Ward’s method was used for amalgamation of clusters while
distances between objects were measured as Euclidean dis-
tances.

Spatial distributions of concentrations and characteris-
tic parameters of aliphatic and polycyclic aromatic hydro-
carbons were visualized using Ocean Data View – ODV
(Schlitzer, 2011).

4 Results

4.1 Organic carbon

Organic carbon (OC) contents ranged from 0.15 to 1.15 %
(Table 1). These values are comparable to those reported
for the open northwestern Mediterranean Sea (0.38–1.47 %,
Bouloubassi et al., 1997; 0.23–1.85 %, Roussiez et al., 2006;
0.7–1.5 %, Tolosa et al., 1996) and the open Cretan Sea
(0.30–0.82 %; Gogou et al., 2000). Maximum values are
found off the Gulf of Taranto (station H07), followed by deep
Ionian Sea basins (stations H04 and H03), while minimum
values are found in the northeastern Ionian Sea (station H12).

4.2 Molecular profile of hydrocarbons

Sedimentary aliphatic hydrocarbons comprised of a series of
resolved compounds, mainlyn-alkanes (NA), and a UCM.

C12 to C42 n-alkanes were the main resolved constituents,
representing on average 56 % of their total sum. Their molec-
ular profile (Fig. 2a) was dominated by long-chain homo-
logues (Cn ≥ 24) maximizing atn-C31 with an elevated
odd/even carbon preference index (CPI24–35= 4.86 on av-
erage, Table 2). NA with Cn > 35 constituted a large frac-
tion at some stations (> 30 %), while Cn ≤ 23 NA without
odd/even carbon preference (CPI14–23 ∼ 1) were also abun-
dant in others (∼ 15 % on average). A UCM, present as a
unimodal hump centered aroundn-C30, was the major com-
ponent of aliphatic hydrocarbons accounting for up to 81 %
of their total sum (69 % on average).

Twenty-five PAHs comprising parent (unsubstituted) com-
pounds with 3–6 rings and alkyl-substituted homologues
were determined. A typical PAH molecular profile is pre-
sented in Fig. 2b. Phenanthrene and its alkylated homologues
dominated amongst low-MW PAHs (3 rings). Their sum, re-
ferred to hereafter as

∑
Phe, accounted for 23± 6 % of total

PAHs. High-MW parent compounds (≥ 4 rings) were dom-
inated by benzofluoranthenes, indeno[1,2,3-cd]pyrene and,
to a lesser degree, chrysene. Their sum, referred to here-
after as

∑
COMB, excluding perylene which may have nat-

ural sources (Venkatesan, 1988), represents 55± 8 % of total
PAHs.

Biogeosciences, 10, 6069–6089, 2013 www.biogeosciences.net/10/6069/2013/
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Fig. 2. Molecular profile ofn-alkanes(A) and PAHs(B) in deep-sea sediments of the study area. Individual compound abundances are
normalized as percentage of the total sum of NA or PAHs (TPAH25), respectively, and presented along with min–max deviation lines. NA
homologues are assigned with their number of carbon atoms. PAH abbreviations: fluorene (Fl), dibenzothiophene (DBT), methyldibenzoth-
iophenes (C1-DBT), dimethyldibenzothiophenes (C2-DBT), phenanthrene (Phe), methylphenanthrenes (C1-Phe), dimethylphenanthrenes
(C2-Phe), trimethylphenanthrenes (C3-Phe), anthracene (Anth), fluoranthene (Flth), pyrene (Pyr), methylpyrenes (C1-Pyr), dimethylpyrenes
(C2-Pyr), retene (Ret), benz[a]anthracene (BaA), chrysene/triphenylene (Chry/Tri), methylchrysenes (C1-Chry), dimethylchrysenes (C2-
Chry), benzo[b/j/k]fluoranthenes (BFlths), benzo[e]pyrene (BeP), benzo[a]pyrene (BaP), perylene (Per), indeno[1,2,3-cd]pyrene (IndP),
benzo[ghi]perylene (BgP) and dibenz[a,h]anthracene (DBA).

Table 2.Concentrations (per dry weight and OC-normalized) and characteristic parameters of aliphatic hydrocarbons determined in deep-sea
sediments of the eastern Mediterranean Sea.

Station TAHC UCM NA Ter.NA TAHC UCM NA Ter.NA CPI24–35 UCM/TRes Pr / Ph
(µg g−1) (µg g−1) (ng g−1) (ng g−1) (mg g−1 OC) (mg g−1 OC) (µg g−1 OC) (µg g−1 OC)

RED2.1 37.5 24.8 4810 1800 10.0 6.64 1290 483 1.93 3.2 0.61
RED3 16.2 10.8 1680 442 4.39 2.93 455 120 2.90 2.9 n.d
RED3.1 43.2 31.7 3820 1260 7.49 5.50 662 218 3.63 4.1 n.d
RED4 13.0 7.75 1790 819 3.11 1.86 428 196 5.36 2.3 0.57
RED5 11.6 6.41 1660 805 2.96 1.64 424 206 5.07 1.8 0.72
RED7 28.6 21.7 2410 938 5.62 4.27 473 184 3.99 4.9 n.d
RED8 7.32 5.32 681 414 2.25 1.63 209 127 6.40 4.0 n.d
RED9 6.84 5.11 586 400 1.73 1.29 148 101 7.25 4.5 n.d
RED1.1 15.5 11.3 1500 892 2.88 2.11 279 166 6.07 4.2 n.d
RED15.1 15.1 10.8 1530 772 2.45 1.76 249 126 5.26 4.0 n.d
RED13 8.47 5.66 1050 720 1.84 1.23 227 156 7.95 3.2 n.d
H01 3.23 1.71 550 374 1.10 0.58 187 127 6.64 1.8 n.d
H02 20.1 14.5 2160 800 4.43 3.19 476 176 3.57 4.2 n.d
H03 49.2 36.7 4670 1350 7.80 5.82 740 214 2.80 4.7 n.d
H04 24.2 18.6 2090 1100 3.71 2.85 321 169 4.04 5.3 0.78
H05 32.0 23.9 2930 1210 5.59 4.16 510 211 4.07 4.5 n.d
H07 15.7 12.5 997 467 1.37 1.09 86.9 40.8 4.39 5.7 0.72
H12 1.34 0.73 145 80.7 0.91 0.50 98.7 54.9 4.14 1.6 n.d
Her01 12.4 8.64 1460 603 4.02 2.79 471 195 4.43 3.7 n.d
Her03 20.0 14.5 2100 767 4.10 2.96 430 157 3.69 4.2 n.d
IER01 15.1 10.6 1800 1070 2.92 2.05 347 206 6.37 3.9 n.d
Rho02 8.06 5.00 1160 774 1.73 1.07 248 166 6.88 2.6 n.d

TAHC: total aliphatic hydrocarbons (sum of total resolved compounds and UCM); UCM: unresolved complex mixture; NA:n-alkanes; Ter.NA: sum of terrestrialn-alkanes
(n-C27, n-C29, n-C31 andn-C33); CPI24−35: carbon preference index in the carbon rangen-C24 to n-C35; UCM/TRes: relative abundance of UCM compared to total resolved
aliphatic hydrocarbons (TRes); Pr: pristane; Ph: phytane; n.d: not detected.

4.3 Concentrations and spatial distribution of
hydrocarbons

Concentrations of total aliphatic hydrocarbons (TAHC: sum
of resolved compounds and UCM), UCM and NA in the
study area are presented in Table 2. TAHC and UCM
concentrations varied significantly, ranging from 1.34 to
49.2 µg g−1 (average 18.4 µg g−1) and 0.73 to 36.7 µg g−1

(average 13.1 µg g−1), respectively, while NA concentra-
tions ranged between 145 and 4810 ng g−1, averaging
1890 ng g−1. Normalized to OC content, TAHC, UCM and
NA concentrations ranged from 0.91 to 10.0 mg g−1 OC
(average 3.75 mg g−1 OC), 0.50 to 6.64 mg g−1 OC (aver-
age 2.63 mg g−1 OC) and 86.9 to 1290 µg g−1OC (average
398 µg g−1 OC), respectively.

www.biogeosciences.net/10/6069/2013/ Biogeosciences, 10, 6069–6089, 2013
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Fig. 3.Spatial contour maps of TAHC, UCM and NA absolute (per dry weight) and their OC-normalized concentrations in deep-sea sediments
across the eastern Mediterranean Sea. TAHC, UCM and NA are defined in the text.

Spatial distributions of absolute (per dry weight) and
OC-normalized TAHC, UCM and NA concentrations in
the study area are illustrated in Fig. 3. The highest
TAHC levels were recorded in central Ionian Sea deep
basins (average 31.4 µg g−1 or 5.38 mg g−1 OC), followed by
deep northwestern Levantine basins (average 19.3 µg g−1 or
4.40 mg g−1 OC), while lower values were recorded at Cre-
tan Sea stations (average 9.69 µg g−1 or 2.51 mg g−1 OC). In
deep basins of the Ionian Sea and the northwestern Levan-
tine Sea, TAHC, UCM and NA absolute and OC-normalized
concentrations display generally a common increasing west-
ward trend, with maximum concentrations recorded at station
H03 in the central Ionian Sea and station RED2.1 located in
the northwestern Levantine Sea. An almost twofold increase
is observed in the concentrations of aliphatic hydrocarbons
at the deep station of the western Cretan Straits’ canyons
(RED3.1) in comparison to the neighboring RED3 located
in the upper slope of the adjacent margin. Minimum TAHC,
UCM and NA absolute and OC-normalized concentrations
were recorded at station H12 in the northeastern Ionian Sea
(Table 2).

Table 3 summarizes concentrations of PAHs in the study
area. TPAH25 refers to the total sum of compounds mon-
itored, while

∑
PAH13 refers to the sum of 13 parent

compounds mostly considered in environmental studies,
i.e., Fl, Phe, Anth, Flth, Pyr, BaA, Chry, BFlths, BeP,
BaP, IndP, BgP and DBA (for abbreviations, see Fig. 2).
TPAH25 and

∑
PAH13 concentrations ranged from 11.6

to 223 ng g−1 (average 63.6 ng g−1) and from 5.90 to
130 ng g−1 (average 38.3 ng g−1), respectively. The concen-
trations of

∑
COMB ranged from 5.08 to 118 ng g−1 (av-

erage 33.9 ng g−1), while
∑

Phe ranged between 2.74 and
38.3 ng g−1, averaging 15.0 ng g−1. Normalized to OC con-
tent, TPAH25,

∑
COMB and

∑
Phe concentrations ranged

from 3.92 to 38.8 µg g−1 OC (average 12.8 µg g−1 OC), 1.73
to 20.6 µg g−1 OC (average 6.90 µg g−1 OC) and 0.80 to
7.28 µg g−1 OC (average 3.01 µg g−1 OC), respectively.

Spatial distributions of absolute (per dry weight) and OC-
normalized TPAH25,

∑
Phe and

∑
COMB concentrations in

the study area are illustrated in Fig. 4. The highest TPAH25
levels were recorded at central Ionian Sea deep stations (av-
erage 118 ng g−1 or 20.0 µg g−1 OC), while lower concen-
trations were recorded at both northwestern Levantine deep
basins (average 49.5 ng g−1 or 10.1 µg g−1 OC) and Cre-
tan Sea stations (average 41.9 ng g−1 or 9.28 µg g−1 OC).
TPAH25 absolute and OC-normalized concentrations dis-
play, as in the case of sedimentary aliphatic hydrocar-
bons, a common increasing westward trend, with maximum
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Table 3. Concentrations (per dry weight and OC-normalized), characteristic parameters and source-specific diagnostic ratios of polycyclic
aromatic hydrocarbons (PAHs) determined in deep-sea sediments of the eastern Mediterranean Sea.

Station TPAH25
∑

PAH13
∑

COMB
∑

Phe TPAH25
∑

COMB
∑

Phe
∑

Phe / C0 / (C0+C1) Flth / BaA / IndP /
(ng g−1) (ng g−1) (ng g−1) (ng g−1) (µg g−1 OC) (µg g−1 OC) (µg g−1 OC)

∑
COMB Phe (Flth+ Pyr) (BaA+ Chry) (IndP+ BgP)

RED2.1 59.7 36.4 31.0 17.4 16.0 8.31 4.67 0.56 0.43 0.53 0.27 0.58
RED3 51.4 32.0 28.0 13.2 13.9 7.58 3.58 0.47 0.42 0.56 0.22 0.59
RED3.1 109 63.2 54.2 33.3 18.9 9.40 5.78 0.61 0.39 0.58 0.26 0.58
RED4 52.0 28.9 24.4 18.3 12.4 5.84 4.37 0.75 0.38 0.52 0.28 0.61
RED5 50.0 34.5 30.5 11.4 12.8 7.79 2.91 0.37 0.46 0.55 0.29 0.59
RED7 114 50.8 42.6 37.1 22.4 8.36 7.28 0.87 0.39 0.63 0.24 0.55
RED8 40.2 27.2 24.3 8.01 12.3 7.45 2.46 0.33 0.56 0.59 0.28 0.57
RED9 25.5 18.6 17.2 4.34 6.45 4.35 1.10 0.25 0.50 0.60 0.25 0.57
RED1.1 39.6 27.8 24.5 7.43 7.37 4.55 1.38 0.30 0.62 0.60 0.28 0.56
RED15.1 32.0 24.1 22.3 4.91 5.21 3.63 0.80 0.22 0.57 0.60 0.26 0.59
RED13 39.1 25.4 22.0 9.12 8.49 4.78 1.98 0.41 0.52 0.58 0.25 0.51
H01 11.6 5.90 5.08 4.42 3.92 1.73 1.50 0.87 0.33 0.59 0.21 0.55
H02 41.2 30.7 27.6 7.46 9.07 6.07 1.64 0.27 0.63 0.58 0.26 0.58
H03 93.9 54.4 49.5 19.2 14.9 7.85 3.04 0.39 0.50 0.61 0.22 0.54
H04 113 60.4 55.1 24.3 17.4 8.46 3.73 0.44 0.46 0.58 0.27 0.51
H05 223 130 118 38.3 38.8 20.6 6.67 0.32 0.55 0.65 0.35 0.54
H07 118 70.4 61.2 31.7 10.3 5.34 2.77 0.52 0.51 0.59 0.28 0.54
H12 17.5 9.58 8.26 2.74 11.9 5.63 1.86 0.33 0.70 0.67 0.15 0.58
Her01 45.3 32.7 28.7 8.53 14.6 9.27 2.76 0.30 0.65 0.62 0.32 0.55
Her03 29.9 20.9 18.9 6.04 6.13 3.88 1.24 0.32 0.57 0.66 0.25 0.57
IER01 42.7 23.4 21.0 12.7 8.24 4.06 2.44 0.60 0.44 0.63 0.19 0.58
Rho02 50.0 36.2 31.5 10.0 10.7 6.75 2.14 0.32 0.63 0.64 0.24 0.54

TPAH25: total sum of polycyclic aromatic hydrocarbons;
∑

PAH13: sum of 13 parent compounds mainly considered in marine pollution studies (i.e., Fl, Phe, Anth, Flth, Pyr, BaA,
Chry, BFlths, BeP, BaP, IndP, BgP and DBA);

∑
COMB: sum of high MW parent compounds (≥ 4 rings) excluding perylene;

∑
Phe: sum of Phe, C1-Phe, C2-Phe and C3-Phe;

abbreviations of PAH compounds are presented in Fig. 2.

concentrations found in the central Ionian Sea (station
H05, 223 ng g−1 or 38.8 µg g−1 OC), associated with max-
ima for both

∑
Phe and

∑
COMB concentrations. Secondary

TPAH25 maxima were recorded at stations H07 (northwest-
ern Ionian Sea) and RED7 (southern Crete), while a sig-
nificant increase is observed for TPAH25 absolute and OC-
normalized concentrations at the deep station of the west-
ern Cretan Straits’ canyons (RED3.1) in comparison to the
neighboring RED3 located in the upper slope of the adjacent
margin. Minimum PAH concentrations were recorded at sta-
tion H12 in the northeastern Ionian Sea and station H01 in
the western Cretan Straits (Table 3).

5 Discussion

5.1 Aliphatic and polycyclic aromatic hydrocarbons
levels

Concentrations of total aliphatic hydrocarbons in the inves-
tigated deep basins of the EMS are comparable to those re-
ported for surface sediments in unpolluted to moderately pol-
luted coastal and/or open-sea areas in the Mediterranean,
such as the Cretan Sea (Gogou et al., 2000), the north
Aegean Sea (Hatzianestis et al., 1998), the open northwest-
ern Mediterranean Sea (Tolosa et al., 1996), and in other
sites worldwide, e.g., the East China Sea (Bouloubassi et al.,
2001), the open Black Sea (Wakeham, 1996) and southern
New England (Venkatesan et al., 1987). They are at least one
order of magnitude lower than those reported for coastal ar-
eas subjected to enhanced urban and/or fluvial inputs such as

Saronikos Gulf, Greece (Sklivagou et al., 2008); the coastal
area off Barcelona, Spain (Tolosa et al., 1996); the Danube
estuary, Black Sea (Readman et al., 2002; Wakeham, 1996);
and the coastal area off Alexandria, Egypt (Aboul-Kassim
and Simoneit, 1995).

Total sedimentary PAH concentrations are also sig-
nificantly lower than those reported for surface sedi-
ments in coastal/estuarine areas in the Mediterranean Sea
and worldwide receiving enhanced anthropogenic inputs
(e.g., Bouloubassi et al., 2012; Cardellicchio et al., 2007;
Lipiatou and Saliot, 1991; Sklivagou et al., 2008; Tolosa
et al., 1996; Witt, 1995). They are also lower than con-
centrations found in deep-sea settings such as the Black
Sea (Wakeham, 1996), Cap Ferret Canyon/Atlantic Ocean
(OSPAR QRS, 2000) and the Arctic Ocean (Yunker et al.,
2011). They rather fall within the range found in the Cretan
Sea (Gogou et al., 2000) and in deep-sea settings in the north-
western Mediterranean Sea (Tolosa et al., 1996), the central
Pacific Ocean (Ohkouchi et al., 1999) and the South China
Sea (Yang, 2000).

5.2 Sources of aliphatic and polycyclic aromatic
hydrocarbons

The composition and concentrations of aliphatic and poly-
cyclic aromatic hydrocarbons reflect a mixed contribution
from both natural and anthropogenic sources in deep EMS
sediments. However, differences in physico-chemical prop-
erties and particle associations of individual hydrocarbons
affect their dispersion pathways, their relative stability in the
marine environment and preservation in marine sediments,
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Fig. 4.Spatial contour maps of TPAH25,
∑

Phe and
∑

COMB absolute (per dry weight) and their OC-normalized concentrations in deep-sea
sediments across the eastern Mediterranean Sea. TPAH25,

∑
Phe and

∑
COMB are defined in the text.

and thus should be considered when interpreting hydrocar-
bon profile characteristics.

5.2.1 Natural sources

Natural inputs in deep EMS surficial sediments are of domi-
nant terrestrial origin as evidenced by the pattern of C24–C35
n-alkanes with elevated odd/even carbon preference (Fig. 2a,
Table 2) characteristic of epicuticular plant waxes (Eglin-
ton and Hamilton, 1967). The sum of major terrestrialn-
alkanes (n-C27, n-C29, n-C31 andn-C33), referred to here-
after as Ter.NA, averaged 50 % of total NA (Table 2), show-
ing the importance of natural terrestrial inputs throughout
the study area. Terrestrial plantn-alkanes are major compo-
nents of eastern Mediterranean aerosols (Gogou et al., 1996),
with the latter constituting major vehicles for the transport of
terrestrial organic matter in deep-sea sediments of the EMS
(Gogou et al., 2000; Gogou and Stephanou, 2004) due to the
minor influence from riverine inputs (see Sect. 2).

The low abundance of C15, C17 and C19 n-alkanes (< 5 %
of NA) reflects a minor contribution from marine (plank-
tonic) sources in the study area. This is consistent with the
overall ultra-oligotrophic character of the eastern Mediter-
ranean Sea (Krom et al., 2003) and the labile character of

short-chain planktonic hydrocarbons, relative to the refrac-
tory long-chain terrestrialn-alkanes, which may also con-
tribute to enhancement of terrestrial fingerprints (Prahl and
Carpenter, 1984; Prahl et al., 1997). Bacterial sources, ev-
idenced by the presence of hopenes (hop-17(21)-ene, hop-
13(18)-ene and 17β(H)-hop-22(29)-ene, Fig. 5), are also of
minor importance.

Regarding PAHs, the presence of retene (7-Isopropyl-
1-methylphenanthrene) also reflects inputs from terrestrial
plants, mainly conifers (Wakeham et al., 1980) or inputs re-
lated to pinewood combustion (Ramdahl, 1983). However,
retene represented less that 4 % of TPAH25 in all stations,
except station H05 in which it accounted for∼ 18 % of total
PAHs (see also Sect. 5.3).

5.2.2 Anthropogenic sources

Amongst aliphatic hydrocarbons, a series of C27-C35
hopanes, a commonly used persistent geochemical indicator
of oil pollution even in highly weathered oils (Wang et al.,
1999), was identified in all samples (Fig. 5) exhibiting a dom-
inant thermodynamically stable 17α(H), 21β(H)- configura-
tion, with 17β(H), 21α(H)- compounds being less promi-
nent, while extended C31-C35 homologues were present as
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Fig. 5. Characteristic ion fragmentogram (m/z 191). Numerals refer to carbon numbers of hopane series;αβ = 17α(H),21β(H)-hopanes;
βα = 17β(H),21α(H)-hopanes; S and R= C22 S and R configuration; Ts: 18α(H)-22,29,30-trisnorneohopane; Tm: 17α(H)-22,29,30-
trisnorhopane;(A) hop-17(21)-ene;(B) hop-13(18)-ene;(C) 17β(H)-hop-22(29)-ene (diploptene).

pairs of the C22 diastereoisomers (22S and 22R) with a
22S / 22S+22R ratio value close to 0.6. These patterns typify
oil-derived hydrocarbons (Mackenzie, 1984) indicating pol-
lutant inputs from fossil fuel products.

The UCM recorded in all stations indicates chronic oil pol-
lution of deep EMS sediments (Brassell and Eglinton, 1980;
Farrington and Quinn, 1973). Supportive to the above, its
relative abundance compared to the total resolved aliphatic
hydrocarbons (TRes) (UCM/TRes= 3.7 on average, Ta-
ble 2) is a positive indication of contribution from degraded
petroleum products (Simoneit, 1984). Aliphatic compounds
of crude oil and petroleum products released in aquatic en-
vironments are subjected to degradation, with a prominent
initial microbial preference for straight-chain compounds
(Wang et al., 1999). This leads to the gradual removal of
major compounds that can be resolved by gas chromatog-
raphy and the subsequent appearance of a UCM, consist-
ing of branched alicyclic hydrocarbons, which can persist in
sediments for decades (Scarlett et al., 2007, and references
therein).

The elevated abundance of NA with Cn > 35 at some sta-
tions points to enhanced contribution of heavy fuel oil resid-
uals (Brooks et al., 1954; Hsieh et al., 2000), while Cn ≤ 23
NA without odd/even carbon preference (CPI14−23∼ 1)
likely derive from fossil inputs (light diesel, Wang et al.,
1999) and/or reworked algal material (Saliot, 1981). How-
ever, the presence of the isoprenoid alkanes pristane (Pr) and
phytane (Ph) along with the Cn ≤ 23 NA in corresponding
stations with a ratio Pr / Ph< 1 (Table 2) argues for a fossil
origin of the Cn ≤ 23n-alkanes.

Regarding PAHs, the dominance of alkylated homologues
relative to the unsubstituted compound mainly within the
phenanthrene series but also within the dibenzothiophene,
pyrene and chrysene series, together with the high abun-
dance of parent PAH with≥ 4 rings (Fig. 2b), reflects an ad-
mixture of PAHs deriving from both unburned fossil fuels
(petroleum) and pyrolytic / combustion sources (Laflamme
and Hites, 1978; Sporstøl et al., 1983; Wakeham et al., 1980).

We further applied a number of diagnostic PAH ratios pro-
posed by Yunker et al. (2002) in order to further assess PAH
sources in the study area (Table 3). However, these ratios
should be considered with caution as their values may change
to different extents during the environmental fate of PAHs
(Tobiszewski and Namieśnik, 2012, and references therein).
The Flth / (Flth+ Pyr) and IndP / (IndP+ BgP) ratios exhibit
values> 0.50, averaging 0.60± 0.04 and 0.56± 0.02, re-
spectively, indicative of pyrolytic / combustion sources for
these compounds (grass, wood and coal combustion). The
BaA / (BaA+ Chry) ratio ranged between 0.15 and 0.35 (av-
erage 0.26± 0.04), indicating rather an admixture of both
pyrolytic and fossil contributions. In the lower MW range
the C0 / (C0 + C1) Phe ratio ranged between 0.33 and 0.70
(average 0.51± 0.10), indicating varying elevated contribu-
tions of pyrolytic / combustion (ratio> 0.5) or petroleum re-
lated (ratio< 0.5) phenanthrene sources in the study area.
However, within the phenanthrene series the sum of C1-,
C2- and C3-alkylated homologues accounted for 58–85 %
of

∑
Phe (average 72 %), indicating that even at stations

where C0 / (C0 + C1) Phe ratio values are> 0.5, the large
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Fig. 6. Sampling sites, oil spills’ normalized density reported in the study area for the years 1999–2004 (modified after Ferraro et al.,
2007; reprinted from Ferraro et al., 2007, copyright (2007), with permission from Elsevier) and main EMS tanker/crude oil shipping routes
(REMPEC, 2008).

proportion of determined total phenanthrenes is related to
petroleum-derived alkylated homologues contribution.

The ratio of total phenanthrenes (
∑

Phe) mostly de-
rived from petrogenic inputs and

∑
COMB representing

pyrolytic / combustion PAHs (
∑

Phe /
∑

COMB) ranged be-
tween 0.22 and 0.87 (Table 3), averaging 0.45± 0.19, im-
plying that overall PAH mixtures in the study area derive
from dominant pyrolytic sources. However, PAHs deriving
from pyrolytic / combustion sources are strongly associated
with fine combustion particles (soot and/or char black car-
bon) that protect them from degradation during transport
from initial sources, through the water column and in sed-
iments (Gogou et al., 1996; Simo et al., 1997; Tolosa et
al., 1996; Dachs and Eisenreich, 2000; Yunker et al., 2002).
In contrast, several studies have highlighted the selective
degradation of low-MW labile compounds such as phenan-
threne and its methyl derivatives in the marine environment
(e.g., Bouloubassi et al., 2012; Simo et al., 1997; Tsapakis et
al., 2003). Unlike PAHs of pyrolytic origin, these compounds
enter the water column mainly through air–water diffusive
exchange (Castro-Jiménez et al., 2012) or are directly intro-
duced into surface waters following the release of petroleum
products (Wang et al., 1999). Direct and indirect evidence
of biodegradation has been suggested as an important fac-
tor affecting low-MW PAHs’ abundance during transport in
the water column (Berrojalbiz et al., 2009, 2011). Indeed, at-
mospheric inputs of phenanthrenes in the Mediterranean Sea
are reported to be two orders of magnitude higher than set-
tling fluxes (Castro-Jiménez et al., 2012; Dachs et al., 1997;

Deyme et al., 2011; Tsapakis et al., 2006). As a consequence,
an apparent predominance of pyrolytic / combustion PAHs is
commonly observed in marine sediments unless outstanding
petroleum-related inputs have occurred.

Long-range atmospheric transport has been recognized
as an important pathway for the introduction of both low-
and high-MW PAHs and anthropogenic aliphatic hydrocar-
bons (e.g., UCM) across the EMS (Castro-Jiménez et al.,
2012; Gogou et al., 1996; Tsapakis et al., 2003; Tsapakis
and Stefanou, 2005). Concentrations of PAHs in background
aerosols of the study area have been reported to be rather
uniform in remote areas away from major urban centers or
point sources (Castro-Jiménez et al., 2012; Tsapakis et al.,
2003; Tsapakis and Stefanou, 2005). However, PAH com-
position of background EMS aerosols and subsequent air–
water interactions are subjected to strong variability due to
the interplay of several factors such as air-mass trajectory
variations, deposition mode (dry/wet) and several chemical
and physical processes such as gas–particle phase distribu-
tions and transformation reactions, which are often difficult
to evaluate on the long-term (Tsapakis and Stefanou, 2005,
2007; see also Sect. 2). Petroleum inputs related to direct dis-
charges from merchant shipping and / or oil transportation in
the EMS have been reported to be elevated along shipping
routes. Fig. 6 presents oil spills’ normalized density reported
for the study area regarding the year span 1999–2004 (Fer-
raro et al., 2007) and main EMS tanker/crude oil shipping
pathways (REMPEC, 2008).
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Fig. 7. Hierarchical diagram obtained from cluster analysis of stations with regard ton-alkane profile(A), clustered stations(B) and char-
acteristic GC-MS traces for each returning cluster(C). NA homologues are assigned with their number of carbon atoms. Pr: pristane; Ph:
phytane; I.S: internal standard.

5.3 Regional characteristics of sedimentary aliphatic
and polycyclic aromatic hydrocarbons

Cluster analysis (joining clustering method) was applied to
group stations with similarn-alkane or PAH profiles (see
Sect. 3.2). Thus, stations are clustered into three main groups
according to theirn-alkane composition (Fig. 7). Cluster I
stations (RED2.1, RED4, RED5, H04 and H07) are charac-
terized by high abundances of Ter.NA along with low-MW
homologues (Cn ≤ 23). Cluster II stations (RED8, RED1.1,
IER01, H12, RED15.1, RED9, H01, RED13 and Rho02) are
characterized by high abundances of Ter.NA and low concen-
trations of both low and higher-chain NA. Stations in clus-
ter III (RED3, RED3.1, RED7, H02, Her01, Her03, H05 and
H03) are characterized by high abundances of Ter.NA along
with the presence of long-chain NA homologues (Cn > 35).

With regard to their TPAH25 composition characteristics,
stations are also clustered into three main groups (Fig. 8).
Cluster I stations (RED2.1, RED3.1, RED3, RED4, RED5,
RED7, H03, H07, H04, H01, IER01 and H12) are char-
acterized by elevated abundance of alkylated homologues
within the phenanthrene, dibenzothiophene, pyrene and chry-
sene series, indicating enhanced relative contribution of pet-
rogenic PAHs. Cluster II stations (RED8, RED1.1, RED13,
RED9, RED15.1, H02, Her03, Her01 and Rho02) display
maximum values for high-MW parent compounds along with

dominance of parent phenanthrene, pyrene and chrysene, in-
dicating predominance of pyrolytic PAHs. Finally, cluster III
(station H05) is characterized by the highest concentration
of retene (∼ 18 % of TPAH25), a naturally derived PAH (see
Sect. 5.2.1), while the low relative abundance of alkylated
compounds and high contribution of

∑
COMB (> 50 % of

TPAH25) indicate pyrolytic PAH predominance.
Taking into consideration the facts deriving from cluster

analysis and spatial distribution of aliphatic and polycyclic
aromatic hydrocarbons concentrations discussed above, the
regional characteristics of hydrocarbon mixtures in the
study area can be assessed. For this purpose, the ra-
tio of total phenanthrenes to pyrolytic / combustion PAHs
(
∑

Phe /
∑

COMB) is also depicted (Fig. 9a). The latter,
varying between 0.22 and 0.87 (Table 3), allows for the as-
sessment of fossil vs. pyrolytic / combustion PAH mixtures
spatial trends (e.g., Bouloubassi et al., 2001, 2012).

5.3.1 Ionian Sea

Deep basins of the central Ionian Sea (stations H02, H03,
H04 and H05) display the highest levels, on average, of
both anthropogenic inputs and terrestrial natural inputs, re-
flected in both absolute and OC-normalized TAHC, UCM,
Ter.NA and TPAH25 concentrations, in comparison to both
northwestern Levantine deep basins and the Cretan Sea
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Fig. 8. Hierarchical diagram obtained from cluster analysis of stations with regard to PAH profile(A), clustered stations(B) and molecular
profile for each returning cluster(C). Individual compound abundances are normalized as percentage of TPAH25 and presented along with
min–max deviation lines. PAH abbreviations are presented in Fig. 2.

(Tables 2,3; see also Sect. 4.3). High UCM and UCM / OC-
normalized concentrations (maximum values at station H03)
indicate chronic oil pollution of surface sediments, while the
elevated contribution from heavy oil residuals as inferred
by n-alkanes with Cn > 35 (Fig. 7, stations H02, H03 and
H05) and light diesel inputs (Fig. 7, station H04) is indicative
of strong fossil inputs.

∑
Phe /

∑
COMB and C0 / (C0 + C1)

Phe ratio values (Fig. 9a,b) along with PAHs profile (Fig. 8)
further indicate an increase in the relative abundance of pet-
rogenic contributions from east to west. Indeed, stations H02,
H03 and H04 are located along the main tanker/crude oil
shipping pathway from Greece to Italy, displaying a high
density of oil spills, with maximum in the area around sta-
tion H04 (Fig. 6).

In the northern Ionian Sea, station H07 located off the
Gulf of Taranto in southern Italy lies in an area subjected to
anthropogenic pressure (Cardellicchio et al., 2007). Our hy-
drocarbon data indicate enhanced fossil inputs, reflected in
the PAHs profile, the elevated

∑
Phe /

∑
COMB ratio values

and the abundance of short-chainn-alkanes (Figs. 7b,c; 8b,c;
9a; Table 3). However, TAHC, TPAH25 and TAHC / OC-,
TPAH25 / OC-normalized concentrations (Tables 2,3) point
to a rather moderate pollutant load, while Ter.NA and
Ter.NA / OC-normalized concentrations also reflect low ter-
restrial biogenic inputs, in comparison to the neighboring
deep basins of the central Ionian Sea. Station H12 in the
northeastern Ionian Sea, although located along a main ship-
ping route from the Aegean Sea to the Adriatic Sea character-
ized by a high density of oil spills (Fig. 6), displays minimum

values of TAHC, UCM, TPAH25 and Ter.NA concentrations
(Tables 2,3; Figs. 3,4), indicating minimum pollutant load
and terrestrial contributions amongst studied sites.

5.3.2 Cretan Sea (southern Aegean Sea) and western
Cretan–Antikythera Straits

Cretan Sea stations (RED4, RED5, RED8, RED9) display,
on average, lower pollutant load and terrestrial inputs com-
pared to the central Ionian Sea deep basins and the northwest-
ern Levantine deep basins, as inferred from TAHC, Ter.NA,
UCM, TPAH25 absolute and OC-normalized concentrations
(Tables 2,3; see also Sect. 4.3).

∑
Phe /

∑
COMB ratio val-

ues (Fig. 9a, Table 3), abundance of short-chainn-alkanes
(Fig. 7b,c) and PAHs profile (Fig. 8b,c) indicate an enhanced
contribution of fossil inputs at stations RED4 and RED5.

At stations located in the western Cretan–Antikythera
Straits and southern Crete (H01, RED3, RED3.1 and
RED7, respectively), the abundance of long-chainn-alkanes
(Fig. 7b,c) and PAHs profile characteristics (Fig. 8b,c), along
with

∑
Phe /

∑
COMB and C0 / (C0+C1) Phe ratio values

(Fig. 9a, b; Table 3), are indicative of strong fossil inputs
in this area. Moreover, station RED3.1 located in the western
Cretan Straits’ canyons displays high TAHC, UCM, Ter.NA,
TPAH25 absolute and OC-normalized concentrations (Ta-
bles 2,3), comparable to those found, those found in central
Ionian Sea deep basins, and a twofold increase of concentra-
tions in comparison to the neighboring RED3 located in the
upper slope of the adjacent margin. Station RED7 located in
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Fig. 9. Spatial distribution of the ratios
∑

Phe /
∑

COMB (A) and
C0 / (C0+C1) Phe(B) in the study area.(B) is presented along with
literature guidelines for specific sources (Yunker et al., 2002).

southern Crete deep basins also presents high TAHC, UCM,
Ter.NA and TPAH25 absolute and OC-normalized concen-
trations (Tables 2,3), indicating overall an elevated accumu-
lation of both anthropogenic inputs and terrestrial natural in-
puts in the two aforementioned stations.

5.3.3 Northwestern Levantine Sea

Northwestern Levantine Sea stations (IER01, RED1.1,
RED15.1, RED13, Her01, Her03 and Rho02) display rather
moderate pollutant load and terrestrial natural inputs in com-
parison to central Ionian Sea deep basins (stations H03 and
H05), reflected in both absolute and OC-normalized TAHC,
UCM, Ter.NA and TPAH25 concentrations (Tables 2,3).∑

Phe /
∑

COMB ratio values and PAHs’ profile (Table 3,
Fig. 8c) indicate enhanced petrogenic inputs at station IER01
located in the Ierapetra Deep in comparison to neighboring
stations (RED1.1, RED15.1 and RED13). However, TAHC,
TPAH25, TAHC / OC- and TPAH25 / OC-normalized concen-
trations along withn-alkanes profile (Fig. 7b,c) for station
IER01 are not indicative of a strong fossil fingerprint.

On the contrary, for station RED2.1 high levels of both an-
thropogenic inputs and terrestrial natural inputs, comparable
to, or even higher than, those found in central Ionian Sea deep
basins, reflected in both absolute and OC-normalized TAHC,
UCM, Ter.NA and TPAH25 concentrations (Tables 2,3), ele-
vated

∑
Phe /

∑
COMB ratio values (Fig. 9a, Table 3), pres-

ence of short-chainn-alkanes (Cn ≤ 23, Fig. 7b,c) and PAHs’
profile (Fig. 8b,c) are indicative of high pollutant load, en-
hanced fossil inputs and high terrestrial inputs at this sta-
tion, in comparison to the adjacent stations in the northwest-
ern Levantine Sea (Her01, Her03) and around Ierapetra Deep
(IER01, RED1.1, RED15.1 and RED13).

5.4 Drivers of hydrocarbons’ distribution in deep-sea
sediments of the eastern Mediterranean Sea

In order to assess the main processes driving hydrocarbons’
distribution in deep-sea sediments of the study area, cor-
relation analysis was performed for sedimentary aliphatic
and polycyclic aromatic hydrocarbons concentrations (per
dry weight and OC-normalized), OC content, water column
depth and sedimentological parameters of collected sedi-
ments. Statistically significant correlations are presented in
Table 4.

TAHC, UCM, NA, Ter.NA, TPAH25,
∑

COMB and
∑

Phe
concentrations show significant correlation with OC, indicat-
ing that OC exerts an important control on the distribution
of both natural and anthropogenic hydrocarbons in the study
area. This is in agreement with earlier observations in coastal
and open-sea marine sediments (Bouloubassi et al., 2012; De
Luca et al., 2004; Gogou et al., 2000; Mayer, 1993; Oros and
Ross, 2004; Readman et al., 2002; Tsapakis et al., 2003; Witt,
1995; Yang, 2000) and is attributed to the high affinity of hy-
drophobic aliphatic and polycyclic aromatic hydrocarbons to
organic matter.

TAHC show higher correlation to OC than TPAH25 in
terms of absolute (per dry weight) concentrations, reflected
in both correlation coefficient values and level of signifi-
cance, while although TAHC and TPAH25 absolute concen-
trations correlate significantly at the 0.01 level, TAHC / OC-
and TPAH25 / OC-normalized concentrations exhibit less sig-
nificant correlation. The above imply that although OC ex-
erts the main control on the distribution of both TAHC and
TPAH25 in the study area, the dispersal of PAHs is prob-
ably affected by additional factors, such as the partition-
ing between natural OC and combustion-derived elemen-
tal (black) carbon that has been reported to exert major
control on PAHs’ distribution in sediments (Accardi-Dey
and Gschwend, 2002, 2003). Consistently, TAHC / OC- and∑

COMB / OC-normalized concentrations do not exhibit any
significant correlation, probably due to the fact that high-
MW pyrolytic / combustion PAHs (

∑
COMB) show a higher

affinity to elemental carbon rather than OC as a carrier
phase (Boehm and Farrington, 1984; Gustafsson et al., 1997),
while, in contrast, TAHC / OC- and

∑
Phe / OC-normalized

concentrations are significantly correlated at the 0.01 level.
This trend probably reflects the fact that low-MW phenan-
threnes (mostly of fossil origin), related to the dissolved
and colloidal phases in the water column, are more effi-
ciently absorbed by organic-rich particles, e.g., phytoplank-
ton and fecal pellets, which constitute the major vehicles for
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particulate OC sinking in the deep sea (Berrojalbiz et al.,
2009; Bouloubassi et al., 2006; Castro-Jiménez et al., 2012;
Dachs et al., 1996, 1997).

The partitioning of aliphatic and polycyclic aromatic hy-
drocarbons in sediments has also been related to specific
grain-size properties (i.e., clays, silts and/or sands; Boehm
and Farrington, 1984; Bouloubassi et al., 2012; Prahl and
Carpenter, 1984). However, in our data set there is no signif-
icant correlation between aliphatic and polycyclic aromatic
hydrocarbons’ concentrations and grain-size characteristics
of collected sediments (Table 4). This implies that hydrocar-
bon phase associations may not be similar amongst various
source materials and/or different regions in the study area,
while an overprint resulting from point sources (mainly fossil
due to intense maritime traffic) could also blur potential as-
sociations, and thus should be considered. Although extreme
caution should be exercised when considering interpolations
in wide geographical areas, since the overall low density of
available stations may not allow appreciation of occurring
variations, no significant correlation between aliphatic and
polycyclic aromatic hydrocarbons’ concentrations and grain
size was found even when limiting the data set to specific
sub-regions (Ionian Sea, Cretan Sea, northwestern Levantine
Sea; data not shown).

Overall, concentrations of total aliphatic hydrocarbons
(TAHC) correlate with water column depth (Table 4), indi-
cating that deep EMS basins act as their repository. How-
ever distinct trends are observed for various aliphatic com-
ponents. Anthropogenic UCM concentrations (both absolute
and OC-normalized) are better correlated with water col-
umn depth than terrestrial plantn-alkanes (Table 4), im-
plying enhanced accumulation of fossil aliphatic hydrocar-
bons in deep-basin sediments relative to biogenic terrestrial
ones. This is further supported by the significant correla-
tions of CPI24–35 (r = −0.559;p = 0.006) and UCM/TRes
(r = 0.656;p = 0.007) with water column depth. Several fac-
tors could explain these trends. UCM is known to be more re-
fractory than biogenic hydrocarbons (Simoneit, 1982), while
different transport pathways and/or phase associations for
natural and fossil aliphatic hydrocarbons may also have im-
pacted on their distribution and fate. Moreover, although
long-range atmospheric transport constitutes a major trans-
port pathway for both terrestrial plant and fossiln-alkanes in
the open EMS, the latter are also directly introduced into sur-
face waters following the release of petroleum products (see
Sect. 5.2).

Regarding PAHs, the lack of correlation between TPAH25,∑
COMB,

∑
Phe concentrations and water column depth

(Table 4) could probably be attributed to the partitioning
of PAHs between natural OC and combustion-derived black
carbon as discussed above. However, the selective degra-
dation of low-MW phenanthrenes and differences in trans-
port mechanisms/phase associations of individual PAH com-
pounds discussed in Sect. 5.2 should also be considered.
Amongst PAHs, retene concentrations do not correlate with

terrestrial n-alkanes (Ter.NA) despite their common ori-
gin, while retene does not exhibit significant correlation ei-
ther with OC. However, retene correlated significantly with
high-MW pyrolytic / combustion PAHs (

∑
COMB), indicat-

ing an overall probable relative significant contribution from
sources related to pinewood combustion rather than terres-
trial plant resins.

Lack of correlation between Ter.NA and
∑

COMB con-
centrations also indicate different sources and/or transport
pathways for naturally derived terrestrialn-alkanes and
pyrolysis/combustion-derived PAHs. The above is in agree-
ment with the fact that terrestrialn-alkanes are transported in
aerosols, which constitute the likely major transport pathway
of both Ter.NA and

∑
COMB in the open EMS (see Sects. 2

and 5.2), both as plant waxes and smoke from biomass burn-
ing (Bendle et al., 2007; Yunker et al., 2011), while instead
pyrolysis/combustion-derived

∑
COMB compounds’ trans-

port and dispersal is associated with fine soot and/or char
black carbon combustion particles (Yunker et al., 2002, and
references therein). Finally, NA concentrations significant
correlation to

∑
Phe could be attributed to the constituent

characteristics of totaln-alkanes, which except for Ter.NA,
that account for an average of 50 % of their total sum (see
Sect. 5.2 and Table 2), comprise also of a large percent-
age of labile aliphatic compounds whose high relative abun-
dance, as in the case of

∑
Phe, is likely attributed to enhanced

petroleum-related inputs in specific areas.
Water masses’ circulation characteristics also seem to in-

fluence regional features and distribution patterns of hydro-
carbons in the study area. The low hydrocarbon content
of station H12 located in the northeastern Ionian Sea, evi-
denced by the minimum values of TAHC, UCM, TPAH25,
Ter.NA and corresponding OC-normalized concentrations
(Tables 2,3; Sect. 5.3.1), is probably related to its low OC
content (0.15 %, Table 1) as a result of strong near-bottom
currents that could lead to the resuspension and dispersal of
sedimentary material (Poulos et al., 1999). Indeed, station
H12 is predominantly composed (∼ 80 %) of poorly sorted
silt with sand-sized fraction representing∼ 5 % of the total
mass (Pedrosa-Pàmies, unpublished data).

Deep Ionian Sea basins display high accumulation of both
terrestrial-related natural inputs and petroleum-related an-
thropogenic inputs in comparison to both northwestern Lev-
antine deep basins and Cretan Sea (Tables 2,3; Sects. 4.3 and
5.3.1). The renewal time of the Ionian deep and bottom wa-
ters is approximately 58 yr (Schlitzer et al., 1991), and thus
deep Ionian Sea basins may act as a long-term repository of
hydrocarbons exported from the Adriatic Sea, since the lat-
ter is their main deep-water source (see Sect. 2). Supportive
to the above, stations H05 and H03 located along the out-
flow of deep Adriatic waters in the Ionian Sea present ele-
vated Ter.NA and TAHC absolute and OC-normalized con-
centrations (Table 2) with an increasing trend from the shal-
lower H05 to the deeper station H03, while station H05 also
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Fig. 10.Spatial contour map of %
∑

Phe contribution in the central
Aegean Sea, Cretan Sea (southern Aegean Sea), western Cretan–
Antikythera Straits and northwestern Levantine surface sediments.
Data regarding central Aegean Sea sediments are reported by
Hatzianestis and Sklivagou (2001), data regarding Cretan Sea sedi-
ments are a combination of data reported in this study and data re-
ported by Hatzianestis and Sklivagou (2001), while data regarding
northwestern Levantine sediments are reported in this study.

∑
Phe

sum includes Phe, C1-Phe and C2-Phe, while %
∑

Phe is calculated
on the basis of 15 PAH compounds common for Hatzianestis and
Sklivagou (2001) and this study, i.e., Phe, C1-Phe, C2-Phe, Anth,
Flth, Pyr, BaA, Chry, BFlths, BeP, BaP, Per, IndP, BgP and DBA
(PAH abbreviations are presented in Fig. 2); RC: Rhodes cyclone;
IA: Ierapetra anticyclone; CC: Cretan cyclone; PA: Pelops anticy-
clone; orange lines: Cretan intermediate/deep-waters outflow; cyan
lines: Aegean Sea surface waters pathways. Bathymetric data were
produced using the GEBCO Digital Atlas (IOC, IHO and BODC,
2003).

presents high relative abundance of retene, a naturally de-
rived PAH (see Sect. 5.2.1 and cluster analysis of PAHs).

As discussed in Sect. 5.3.2, stations located in the western
Cretan–Antikythera Straits and southern Crete display strong
fossil inputs, while stations RED4 and RED5 in the Cre-
tan Sea also display an enhanced fossil signature (Fig. 9a).
Hatzianestis and Sklivagou (2001) have reported a signifi-
cantly high contribution of

∑
Phe in central Aegean Sea sur-

face sediments (> 60 % of total PAHs determined), which is
attributed to outstanding petroleum-related inputs, followed
by an elevated contribution of

∑
Phe in the southern Aegean

Sea (Cretan Sea) surface sediments. These data combined
with results reported in this study (Fig. 10) evidence a de-
creasing southward trend for sedimentary %

∑
Phe contri-

bution from the central Aegean Sea to the Cretan Sea and
western Cretan–Antikythera Straits.

This trend could be attributed to water masses’ circulation
patterns of the Aegean Sea and mesoscale activity at the Cre-
tan Straits exit, along with chemical characteristics of low-
MW petrogenic PAHs. The latter, entering the water column
through air–water diffusive exchange or directly into surface
waters following the release of petroleum products, occur
mainly in the dissolved phase, and thus display longer res-
idence time in the water column prior to their settling, lead-
ing to a potential subjection to long-distance transport. The
general cyclonic circulation of the Aegean Sea results in an
almost constant net outflow, in the upper 400 m of depth, to-
wards the EMS observed in the western Cretan Straits (Kon-
toyiannis et al., 1999, 2005). Surface water masses are also
transformed during winter in the central Aegean Sea (and the
Cyclades Plateau) into denser intermediate water which then
fills the Cretan Basin, finally outflowing to the EMS through
the Cretan Straits (Gertman et al., 2006). This transfer may
be also be enhanced during periods of deep-water forma-
tion in the Aegean Sea, when dense water outflows through
the eastern and western Cretan Straits’ canyons (Lykousis et
al., 2011). Moreover, water masses exiting the Cretan Straits
are subject to the influence of permanent/transient mesoscale
gyres presented in Fig. 10. The above likely contribute to
the southward transfer of petrogenic PAHs introduced into
surface waters of the central Aegean Sea, comprising an im-
portant advective source of fossil-related PAHs for waters of
the southern Aegean Sea and western Cretan–Antikythera
Straits, with elevated inputs also reflected, following their
subsequent settling, in their increased relative abundance in
surface sediments.

In this procedure, the western Cretan Straits’ canyons
and southern Crete deep basins (stations RED3.1 and
RED7) seem to represent a significant sink for hydrocar-
bons, reflected in the almost twofold elevated values of
TAHC, UCM, NA and TPAH25 concentrations (Tables 2,3;
Sect. 5.3.2), in agreement with earlier observations regard-
ing the transfer and distribution of organic pollutants in deep-
canyon settings (Bouloubassi et al., 2012; Dachs et al., 1997;
Fang et al., 2009; Salvadó et al., 2012). The fact that the
station located within the canyons (RED3.1) shows an ap-
proximately twofold increase in OC content compared to the
neighboring station (RED3) located in the upper slope of the
adjacent margin (Table 1) is in agreement with earlier ob-
servations of fine-grained and OC-rich sediment transfer in
the western Cretan Straits’ canyons (Kerhervé et al., 1999;
Pusceddu et al., 2010). Indeed, station RED3.1, and also
RED7 in southern Crete, are mainly composed of silt and
clay fractions (Pedrosa-Pàmies, unpublished data) that likely
exert an important control on the enhanced accumulation
of TAHC, UCM, NA, TPAH25, but also Ter.NA, reflected
in their elevated OC-normalized concentrations in these sta-
tions (Tables 2,3; Sect. 4.3), in agreement with earlier reports
on the preferential partitioning/accumulation of aliphatic and
polycyclic aromatic hydrocarbons in fine-grained sediment
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fractions (Boehm and Farrington, 1984; Bouloubassi et al.,
2012; Prahl and Carpenter, 1984).

6 Conclusions

Aliphatic and polycyclic aromatic hydrocarbons’ profile
characteristics, source-specific molecular markers and their
diagnostic indices reveal mixed contributions from both nat-
ural and anthropogenic compounds accumulating in deep-sea
surface sediments of the eastern Mediterranean Sea (EMS).
Natural hydrocarbons derive from both autochthonous ma-
rine (planktonic and bacterial inputs) and allochthonous (ter-
restrial vegetation, mainly higher plant waxes) sources, with
the terrestrial fingerprint being the predominant one, prob-
ably due to the ultra-oligotrophic character of the east-
ern Mediterranean and the labile character of the marine-
derived short-chain hydrocarbons. Anthropogenic inputs are
reflected by PAHs of pyrolytic origin, related mainly to at-
mospheric inputs, and by fossil compounds both atmospher-
ically derived and from intense maritime activities in the
EMS, with the latter resulting in chronic oil pollution of sur-
face sediments, as evidenced by the persistence of unresolved
hydrocarbon mixture in all sampling sites.

Determined aliphatic and polycyclic aromatic hydrocar-
bons in the study area occur at levels comparable to those
reported for open marine sites of the western Mediterranean
Sea and worldwide, receiving low anthropogenic inputs.
Amongst the deep EMS basins, the central Ionian Sea dis-
plays elevated levels of both anthropogenic and natural in-
puts, followed by deep basins of the northwestern Levan-
tine and Cretan seas. Concentrations of both aliphatic and
polycyclic aromatic hydrocarbons exhibit significant corre-
lation with OC contents, indicating that the latter exerts a
main control on their transport, fate and ultimate accumu-
lation in deep EMS basins. However, the composition of
hydrocarbon mixtures display significant regional variabil-
ity, reflecting the relative importance of sources and differ-
ences in transport pathways and/or phase associations of bio-
genic terrestrial hydrocarbons and anthropogenic fossil and
pyrolysis/combustion-derived hydrocarbons, which impact
on their overall distribution and fate. Circulation patterns also
seem to influence hydrocarbons’ regional features and dis-
tribution patterns, likely comprising an important advective
source for fossil-related PAHs from the central Aegean Sea
to the southern Aegean Sea and, subsequently, to the western
Cretan–Antikythera Straits.

Major findings of this study highlight the role of deep EMS
basins as repositories of both natural and anthropogenic hy-
drocarbons, while fine-grained and OC-rich sediment trans-
fer likely exerts an important control on the enhanced accu-
mulation of aliphatic and polycyclic aromatic hydrocarbons
in the western Cretan Straits’ canyons and the southern Crete
deep basins.
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