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Let X be an abstract set.

We consider a prior random field Y, = U + VW, where U is a real random variable following
a uniform distribution on an interval [—m,m], where V is a real and positive random variable
following a uniform distribution on an interval [e, 1/€] and where (W) . y is a centered normalized
Gaussian field. Moreover, we suppose that U, V and (W,),.y are independent.

The parameter characterizing the Gaussian field (W), y is the correlation function & (recall
that the mean is zero and the variance is 1). We suppose here that n > 3. Let x1,x2,...,2, € X
and y := (y1,¥2,.-.,Yn) € R". Denote ¥ := (k (xi,xj))1<i’j<n the matrix of correlations and
k(z) := (k(2,7;)), <, the correlation vector. We suppose that we are in a generic position so
that the matrix X is invertible.

Theorem 3. The conditional distribution of the random field (Yy), o x knowing that (Ya, = yi)i<; <,
is given by explicit formulae of densities of finite dimensional marginals.
When the parameter m goes to infinity and € goes to zero, for n > 2, this conditional distribution
becomes a multivariate Student distribution.
In particular, when m — oo and € — 0, for n > 2, the univariate conditional distribution of the
random variable Y, becomes a Student distribution with n — 2 degrees of freedom, with location
parameter .
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where 1 = (1,1,...,1) € R™.

Proof. Part 1: Multivariate conditional distribution
We look for the distribution of the random field (Y),cx given (Ya, = %i)i<;<p-
Let r be a positive integer and (¢1,...,t,) € X". We have: o

Yirseo Yo Yarso o Yo )= (U UV AV (Weys oo W W W)
where (Wy,, ..., Wy , Wy, ..., W, ) follows the distribution N (0, A) with:
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where k (t) == (k (ti,25)) 1 <jcp 1< j<n @0d Bz 1= (k (ti,4)) << 1< j<, As before, we suppose that
we are in a generic situation, so that the matrix A is positive-definite.
Denote by f the density of the random vector (Y,,..., Y%, Yo, ,..., Yz ):

fQ)= 2m T, / / Un+r\/WeXp <211}2 (¢C—u) AT (¢ - u)T) du dv

with C = (yt17yt2ﬂ e Yty Yoy Yooy - - - 7ymn) and u := (u,u, s 7u) € Rn+r‘
The conditional density distribution of (Y, ,Ys,,...,Y:,) given (Ya, = Ya,)1<icy, ISt

z :(ytlayt27"'7yt ff(zy)z,:g(z)
RT

After simplification, we get:

f f vn+r exp( gvz (( ’!J) - U) A ((Z y) - U)T> du dv

Jer 000 f o exp( 2 (2 y)—u) AT (2 y) —u)T) dz’ du dv

g(z) =

Denote:

1 - T
NUM (2 /_/ Lo <_2U2((z ) —w) A (= y)—u) ) du do.
Counsider the u-variable polynomial:
(z y)—uw A ((z y)- u)T = au® + 2bu + c.

We recall that, for a, b and ¢ real numbers and a > 0:

m 1 2 1 b?
/ exp (—21)2 (au2+2bu+c)) du m—>—+>oo U\/aﬂ exp (-202 (C— a))

which gives, using the monotone convergence theorem:
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NUM (z) T oG exp (—21}2 (c— a)) dv.
With the change of variable g = %2 (c — %) and the definition of Euler function I', we get:
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Note that au? + 2bu + ¢ is always positive since we exclude degenerate situations. Thus, its
discriminant is negative, that is (c — b2/a) > 0. In addition, the expression (c — b2/a) is a positive
polynomial of degree 2 in the variable z, and we write
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where @ is a positive-definite quadratic form, L is a linear form and M is constant.
By monotone convergence, the limit of the denominator in the expression of the density g is what
we expect and we obtain:
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that is:
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As Q(z) + L(z) + M is a positive polynomial, we get with Lemma 1 proven hereafter, for n > 2:
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With Lemma 2, we conclude that ¢ (z) is a multivariate Student distribution, when m goes to
infinity and € goes to zero.

Part 2: Univariate conditional distribution
We can give more precise formulae for one dimensional marginals. If r = 1, we have

Q=)+ L(z)+ M)~
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m—+00,e—0 I]R (Q (z/) + L (z/) + M) dz,.

Let us come back to the definitions of a, b and ¢ and compute the expression (c — b2/a). After
straightforward calculations, we get:
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with A\ :=1—k (£)S 'k (t)". Then:
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with 1= (1,1,...,1) € R".
Set 2/ := z — k (£)X'y”. This change of variable yields:
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with )
i=1(1- % 0-k®= 1))
_ _ T
l=+ (1-k()="17) (y22 "17)
m=yX lyT — % (yZ]_llT) .
In the variable 2/, we have a Student distribution with n — 2 degrees of freedom, with location
parameter
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Then, the conditional distribution of the random variables Y, is a Student distribution with n — 2
degrees of freedom, with location parameter:

p+ k(@)D (y—p1)" with pe=

and scale parameter:
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with 1 =(1,1,...,1) € R™. O
Lemma 1. Let p(z) be a polynomial of degree 2 in r variables. Suppose that:

o forallze R" p(z) >0,

e the quadratic part of p is positive definite.

If n > 0 then
/ p(z)fnTJrr dz < 0.

Proof of Lemma 1. With an appropriate change of orthonormal basis, we can write:

p(z) = Zdieiz Jrzsiei +M
i=1 i=1

where (e, ea,...,e,) := e are the coordinates of z in the new basis, and where, for all 1 < i < r,
d; > 0.
We consider a ball B in R", containing zero, such that for all z ¢ B, we have:

p<z>>;§die?>gge?

where C' = min (dy,ds,...,d,). Denote B¢ the complementary of B in the space R". As p > 0,
the integral over B of the function p‘nTJrT is finite. We have:
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Wlth O/ = (5) 2 .
That means:

/ p(z)fn? dz < C// le] ") dey desy ... de,.

But,
/ ||eH_("+T) dey des ... de. < oo if and only if n >0
Be

so we conclude:

/p(z)fngr dz <oo if n>0.



Lemma 2. Let n and r be two positive integers with n > 3. Let Q) be a positive-definite quadratic

form in r variables, L be a linear form in r variables and M be a positive constant. Suppose that
n+r

_ -1
forallz e R", Q(z)+L(z)+ M >0. Define C := (fRT(Q(z)—i—L(z)—i—M)* o dz) . The
density of probability f on R" of the form:

nt+r—2
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is a multivariate Student density with n — 2 degree of freedom.

Proof of Lemma 2. Denote z := (z1,22,...,2), Q(2) = Yi_, @z} + 221<i<j<r gij2iz; and
L(z) = 37;_; tizi. Denote also L = ({1,0,....4;) and Q = (gij);<; j<,-
Then: T
L(z)=Lz" and Q(z)=2Qz".
Diagonalize the positive-definite matrix Q; there exists an orthogonal matrix P, of type (r,r) such
that:
Q=PAP '=pPAPT
where A is a diagonal matrix with diagonal coefficients ay,as,...,a,. > 0.
Denote s = zP and s = (s1, S2,...,$,). We can write:
_ntr—2

f(z)=C(M+LPs" +sAs")
With LP = (b1, bs,...,b,) we deduce:

r T b; 2 b?
T T L 2 ) R —
LPs" +sAs" = ;_1 bisi + aisi = Zaz (Sl + 2ai) 46211'.

i=1

and ¢t := s+ B. Denote alsod = M — >_|_, 4bz_.

Denote B the vector ( by

2ai ) 1<i<r
We have: N
f(z)=C (d+tAtT)_ 2
Remark that d > 0 since d + tAtT = Q (z) + L (z) + M which is positive for all z, thus for all ¢.
It is therefore possible to factor our d:
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With ¢’ :=Cd~" 7, p:= —BPT and I := %Q_l, finally, the following formula is obtained
for the density of probability:
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According to the book of [Kotz and Nadarajah| (2004), page 1, we recognize the multivariate t-
distribution in r dimension, with n —2 degrees of freedom, with scale matrix IT and location vector
. [
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