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Abstract

We propose a new tool of decision support in front of a globally unknown phenomenon
which is modeled by a random field representing simultaneously our knowledge and our lack
of information. This tool is the distribution of a random variable called failure risk probability.
Before giving the precise definition of this object, we describe an industrial context in which
the decision problem occurs and we discuss Bayesian random field model constructions.
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1 Introduction

1.0 Extended abstract
In competitive industries, a reliable yield forecasting is a prime factor to accurately determine
the production costs and therefore ensure profitability. Indeed, quantifying the risks long before
the effective manufacturing process enables fact-based decision-making. From the development
stage, improvement efforts can be early identified and prioritized. In order to measure the impact
of industrial process fluctuations on the product performances, the construction of a failure risk
probability estimator is presented in this article. The complex relationship between the process
technology and the product design (non linearities, multi-modal features...) is handled via ran-
dom process regression (interpolation). A random field encodes, for each product configuration,
the available information regarding the risk of non-compliance. After a brief presentation of the
Gaussian model approach, we describe a Bayesian reasoning avoiding a priori choices of location
and scale parameters. The Gaussian mixture prior, conditioned by measured (or calculated) data,
yields a posterior characterized by a multivariate Student distribution.

In the second part of the article we describe the way from a random model to the failure risk
probability. Our approach is to consider as random all unknown, inaccessible or fluctuating data.
In order to propagate uncertainties, a fuzzy set approach provides an appropriate framework for
the implementation of a Bayesian model mimicking expert elicitation. The underlying leitmotiv
is to insert minimal a priori information in the failure risk model. The relevancy of this concept
is illustrated with theoretical examples. Note that this article comes with supplementary material
available on line (hal-00914192).
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1.1 Settings and motivations
During the fabrication of an industrial product, the manufacturing process cannot be entirely
controlled. There is an intrinsic variability (materials, machinery, environment ...) which can
significantly deteriorate the characteristics of the manufactured pieces, inducing non-functional
parts. Such variations are critical when dealing with complex technical systems, such as for example
integrated circuits developed in the microelectronic industry. Indeed, if this fact is covered up,
the resulting circuits are (in many cases) either consistently out of specifications or unnecessarily
overdesigned.

To investigate the influence of fluctuating parameters, one can perform a corner analysis apply-
ing Design of Experiments principles. However, the conclusions drawn from such measurements
campaigns are, in general, qualitative and consequently incomplete. Besides, time and money
required by physical prototyping are often prohibitive. As an alternative, numerical (determinis-
tic) models implemented in engineering simulation software offer a way to compute the relevant
features (thermal, mechanical, electrical ...) of a device. Thus, nowadays, engineers can virtually
explore various design configurations and get a deep insight of the final product performances.
In this context, statistical studies can be conducted to evaluate the effect of process tolerances
on the manufacturing yield. The most popular is the Monte Carlo (MC) method, which consists
in sampling configurations of the product parameters according to their probability distributions
and to count the failure events. The process is monitored "in line" to roughly assess distributions
of environmental variables. This method is easy to implement but its efficiency depends directly
on the complexity of the deterministic model. When the numerical simulator considered is time
and/or memory demanding, we only get partial information. For instance, the duration of "Finite
Elements" analyses, from several hours to several days, is not compatible with a brute Monte Carlo
approach.

Data are sparse and it is therefore necessary to propagate the information in the factor space
using an analytical representation (emulator). Monte Carlo sampling is then applied to this analyt-
ical representation, a fast surrogate of the computer code (simulator), see Pfingsten et al. (2006).
In their article, outputs are considered as a single outcome of a Gaussian random field. Our work
focuses on a mixture of Gaussian fields, and this choice will be justified in the sequel.

Classical modeling approaches for failure rate (or yield) estimation only keep a small part
of the model available information: mean, quantile... Besides, after the model has passed the
validation tests, these outputs are taken at face values. We believe such a procedure is hazardous
in the specific field of risk assessment. Indeed, it does not measure the impact of the uncertainty
introduced by any modeling stage on the only quantity of interest, namely the risk of failure.
For example, how can the decision-maker relate the model acceptance criteria to the accuracy of
the failure risk estimate? Answering this question in particular is difficult and probably fruitless.
Our work proposes a novel and general solution to address these issues. Once the random model
has been determined, and given the probability distribution of the product parameters, we go
beyond Pfingsten’s approach to define the failure risk probability. The predictive uncertainty is
not deduced from the posterior model, calculating for instance the conditional variance. The failure
risk itself is probabilistic and randomness mirrors the model uncertainty.

Let us be more precise and introduce the basic objects used in the sequel. We consider that the
product (meaning each individual manufactured piece) under study is characterized by a number
D of numerical factors. Each factor can vary in a given interval what allows the definition of the
factor space X ⊆ RD. Each set of factors x (∈ X) determines a numerical value y (x), and the
specifications imposed on the product apply to the value of this response y. We can derive from
these specifications the out of specifications space A ⊆ R: the product characterized by the set of
factors x does not satisfy the specifications if and only if y (x) ∈ A. The factor space X and the
out of specifications space A are considered as known, but regarding the deterministic function
x 7→ y (x), we have only very partial information.
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Besides, a probability distribution P is given on the factor space X. This distribution reflects
the factors variability and is considered as known.

As we said previously, the knowledge of y (x) is rarely available for all x. We only have access
to a restraint number of data. Suppose we know n deterministic response values (yi = y (xi))1≤i≤n
respectively for factor set values (xi)1≤i≤n. With these data, our goal is to define a random variable
named failure risk probability. Its distribution should help for the robust estimation of the product
manufacturability.

We begin with the construction of a random field model (Yx)x∈X of the unknown response
(y (x))x∈X .

1.2 Model construction
Several methods are described in the literature to infer a model (Yx)x∈X from a limited number
of available deterministic data

Yx1
= y1, Yx2

= y2, . . . , Yxn = yn.

Linear regression analysis is the method of choice in the scientific community for estimating rela-
tionships among predictor variables. When the phenomenon studied is complex though, the order
of the model (usually polynomial), necessary to correctly fit the data, leads to numerous unknowns.
This drawback is magnified in a high-dimensional factor space. Indeed, for a p-variable polynomial

of degree d,
(
p+ d
d

)
coefficients should be determined. If the number of data available is less than

this limit, the model is singular. Thus, the player is required to make a "blind bet" to enter the
game... In addition, the assumptions justifying the statistical model are rarely strictly respected
in practice. For example, how should we understand random errors uncorrelated with zero mean
when data are obtained through computer experiments, reproducible in essence?

These difficulties are overcome by the Gaussian Process (GP) model. The original kriging
method was formalized by Matheron (1989) in the geo-sciences. First, a GP indexed by X is
selected and then conditioned by the data. This approach has been widely used for different appli-
cations such as, geostatistics studies (Berger et al. (2000)), optimization (Emmerich et al. (2006)),
wind fields modeling (Cornford et al. (2002)) or design sensitivity analysis (Pfingsten et al. (2006)),
justified by better predictive performances than several other regression methods (Rasmussen and
Williams (2006)). Indeed, GP modeling has several interesting properties. Belonging to the inter-
polation methods family, this model exactly reproduces the observed data set, there is no residual
at the observation points. As a consequence, it is an appropriate tool for the analysis of computer
experiments (Sacks et al. (1989)). GP can be determined (in theory) even for data set of small
size, a key property when information is missing which is a common situation when the number of
factors (D) is large. Moreover, it is a very versatile model, able to describe non-continuous as well
as non-differentiable surface responses. This noteworthy feature is particularly useful to handle
response discontinuities, which may occur due to the numerical solving scheme of computer codes
(especially when meshing algorithms are involved). Finally, the probabilistic nature of the predic-
tions can be interpreted as a model for uncertainty, a confidence interval representing a degree of
belief.

A major and often neglected problem of this method is the a priori choice of parameters (mean,
variance and correlation function), left to the responsibility of the data analyst. In order to reduce
the arbitrary nature of expert elicitation, we propose to replace the Gaussian field by a mixture
of Gaussian fields, therefore avoiding the a priori choice of mean and variance. For this purpose,
with the aim of introducing minimal a priori information into the model, mean and variance
are considered as random variables with uniform probability distributions. We will show that, in
doing so, any posterior random vector follows a multivariate t-distribution (or multivariate Student
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distribution). We note that a similar result has been obtained with a hierarchical Bayesian model
approach described, for example, in Santner et al. (2003).

In the classical approach of yield evaluation based on a random model, the random variable

ω 7→ P ({x ∈ X | Yx (ω) ∈ A})

is considered as the model of the unknown quantity P ({x ∈ X | y (x) ∈ A}) and estimated by
Monte-Carlo methods. These Monte-Carlo methods can be optimized, as it is for example presented
in the recent article by Auffray et al. (2014). Our approach is different, as it is explained below,
and detailed in Section 3.

1.3 Failure risk probability viewed as a random variable
The random field (Yx)x∈X represents the information as well as the uncertainty regarding the
values of the response function y. Once this field is built, we can compute for each factor point
x ∈ X, the failure probability P (Yx ∈ A).

The reader sees here that we denote by P the probability measure associated to the random
field (meaning that the random field is defined on an abstract probability space (Ω,P)). On the
other hand, we recall that we denote by P the probability measure assigned to the factor space X.

We decide that there is a failure risk when the failure probability exceeds a fixed threshold
α ∈ [0, 1]. So, the failure risk probability is defined by R (α) := P (P (Y. ∈ A) > α), that is,
R (α) = P ({x ∈ X | P (Yx ∈ A) > α}).

Setting the correct value for the accident threshold α is a tricky problem. On the one hand,
the decision will significantly impact the risk assessment of the product. On the other hand, this
choice is eminently subjective since it depends heavily on the risk attitude of the individual. That
is why we consider α as a random variable. As a consequence, R (α) is also a random variable and
has the distribution

R :=

∫ 1

0

δR(α) η (dα)

where η is the probability distribution of α and δt denotes the Dirac mass at point t. We will see
hereafter that the uniform distribution is a choice for η which provides an interesting property of
mean value preservation.

In practice, R (α) cannot be computed analytically, it is approximated via a Monte Carlo
simulation. According to standard Bayesian methods for sampling study, R (α) follows a beta
distribution, denoted here by βα. Finally, the distribution of the failure risk probability is defined,
if η has been chosen uniform, by

R :=

∫ 1

0

βα dα.

This reasoning will be described with more details in the sequel.

1.4 Contents
In Section 2, several constructions of random field models are discussed. After a reminder about
Gaussian fields (2.1), we show that a random field prior with unknown mean (2.2) and variance
leads to a conditioned random field following a multivariate t-distribution (2.3), and we discuss
on the model implementation (2.4). In Section 3, the construction of the density of the failure
risk probability is described, beginning with the elicitation model (3.1). We provide arguments in
favor of a risk-neutral attitude, that is a uniform distribution for the accident threshold (3.2). We
continue with practical considerations (3.3) to conclude with the description of our global strategy
(3.4). Each section ends with illustrating examples.
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2 From Gaussian to Student fields
The unknown function x 7→ y (x) is modeled as a random function. In the absolute sense, if we
disregard the variability that is sometimes introduced by numerical solving schemes, the function
is deterministic. However, as the numerical solution to a hard problem (described, for instance, by
partial differential equations), y does not have in general a closed-form expression. Consequently,
the data analyst looking for a behavioral representation, can legitimately think of y as a "black-box"
function: it is unknown for any particular configuration until the computer code is actually run. It
hence makes sense to postulate a prior model for y, expressing our initial belief regarding y features.
Bayesian updating then combines the evidences acquired, the data output (yi = y (xi))1≤i≤n , and
the prior distribution to yield the posterior distribution.

Contrary to what is often implicitly stated in the literature, we believe that it is far from obvious
to get a relevant prior representation for y. Standard priors reflect more of their mathematical
tractability than a real understanding of the phenomenon under study. Incorporating doubtful
prior information into the model may yield erroneous and overly confident forecasts, a dangerous
cocktail in risk assessment. For that reason, we focus in the following on a prior based on quite few
assumptions about how the model output relates to its inputs; it is deliberately weakly informative.

2.1 Gaussian field
In this first sub-section, we point out that the conditioning of a Gaussian field generates a new
Gaussian field and we recall classical formulae giving the conditional densities.

A Gaussian field (Yx)x∈X is characterized by the fact that all finite dimensional marginal
distributions are Gaussian and by the following data:

• mean values: µ (x) := E (Yx)

• covariances: ρ (x, x′) := cov (Yx, Yx′).

Theorem 1. Let x1, x2, . . . , xn ∈ X and y1, y2, . . . , yn ∈ R.
The conditional distribution of the Gaussian field (Yx)x∈X given (Yxi = yi)1≤i≤n is still Gaussian
with

• mean values:

E
(
Yx | (Yxi = yi)1≤i≤n

)
= µ (x) + ρ (x, (xi))Σ

−1 (y − µ ((xi)))
T

• covariances:

cov
(
Yx, Yx′ | (Yxi = yi)1≤i≤n

)
= ρ (x, x′)− ρ (x, (xi))Σ

−1ρ (x′, (xi))
T

where ρ (x, (xi)) := (ρ (x, x1) , ρ (x, x2) , . . . , ρ (x, xn)), Σ := (ρ (xi, xj))1≤i,j≤n is a positive-
definite matrix, y := (y1, y2, . . . , yn) and µ ((xi)) := (µ (x1) , µ (x2) , . . . , µ (xn)).

This is a classical result in Probability Theory.
A standard solution to our initial problem is to use this theorem with a given a priori Gaussian

field (Yx)x∈X where neither the mean value µ = µ (x) nor the variance σ2 = ρ (x, x) depend on
x. In this case, we will denote k (x, x′) = ρ (x, x′) /σ2, the correlation coefficient between Yx and
Yx′ . If the covariance depends only on the difference between x and x′, the Gaussian field is said
stationary or homogeneous (Abrahamsen (1997)). Moreover, if the covariance only depends on the
Euclidean distance between x and x′, the Gaussian field is said isotropic.

5



In practice, the mean µ, the variance σ2 and the correlation function k are usually a priori
defined by the expert or estimated by means of calibration methods. The most commonly used is
the maximum likelihood method which will be discussed in Section 2.4.2.

Note that here and in the sequel, we avoid particular choices of the correlation k, vectors
x1, x2, . . . , xn and numbers y1, y2, . . . , yn which could lead to degenerate distributions.

2.2 Gaussian mixture with random mean
In this sub-section, the prior model is a mixture of Gaussian processes, which differ by translation.
This way, it is not required to set a priori the mean value. The posterior distribution of this
parameter is deduced from the data via Bayesian inference. We will see that a (non informative)
improper prior for the mean parameter can be defined as the limit of a (weakly informative)
proper uniform distribution. The limiting step is totally justified here since, on the one hand, it
leads to proper posteriors and, on the other hand, inferences have a positive miscalibration (see
Gelman (2006) for details), that is an overestimate (on average) of the variance. The conditioned
random field is Gaussian and we give formulae for the mean and variance. Doing so, we recognize
expressions initially established by Sacks et al. (1989) and also derived by Santner et al. (2003).

We propose to consider a prior random field Yx = U + Wx where U is a real random variable
following a uniform distribution on an interval [−m,m] and where (Wx)x∈X is a centered Gaussian
field with constant variance. Moreover, we suppose that U and (Wx)x∈X are independent.

The parameters characterizing the Gaussian field (Wx)x∈X are the variance σ2 and the corre-
lation function k (recall that the mean is zero). So, for all x, x′ ∈ X, cov (Wx,Wx′) = σ2k (x, x′)
and, for all x ∈ X, k (x, x) = 1.

Let x1, x2, . . . , xn ∈ X and y := (y1, y2, . . . , yn) ∈ Rn. Denote Σ := (k (xi, xj))1≤i,j≤n the
positive-definite matrix of correlations and k (x) := (k (x, xj))1≤j≤n the correlation vector.

Theorem 2. The conditional distribution of the random field (Yx)x∈X knowing that (Yxi = yi)1≤i≤n
is given by explicit formulae for the densities of finite dimensional marginals.
When the parameter m goes to infinity, this conditional distribution becomes Gaussian. In par-
ticular, when m → ∞, the univariate conditional distribution of the random variable Yx becomes
Gaussian with mean

µ+ k (x)Σ−1 (y − µ1)
T with µ :=

yΣ−11T

1Σ−11T
(1)

and variance

σ2

1− k (x)Σ−1k (x)
T

+

(
1− 1Σ−1k (x)

T
)2

1Σ−11T

 (2)

where 1 = (1, 1, . . . , 1) ∈ Rn.

Remark. The mean µ+ k (x)Σ−1 (y − µ1)
T can also be written(

1Σ−1

1Σ−11T

(
1− k (x)Σ−11T

)
+ k (x)Σ−1

)
yT .

Note that an expression similar to (1) is obtained in Section 2.5.

Proof of Theorem 2. We look for the distribution of the random field (Yx)x∈X given (Yxi = yi)1≤i≤n.
Let r be a positive integer and (t1, . . . , tr) ∈ Xr. We have:

(Yt1 , . . . , Ytr , Yx1 , . . . , Yxn) = (U, . . . , U) + (Wt1 , . . . ,Wtr ,Wx1 , . . . ,Wxn)
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and (Wt1 , . . . ,Wtr ,Wx1
, . . . ,Wxn) follows the distribution N (0,∆) with

∆ := σ2

(
Σ2 k (t)

k (t)
T

Σ

)
, a positive-definite matrix

where k (t) := (k (ti, xj))1≤i≤r,1≤j≤n and Σ2 := (k (ti, tj))1≤i≤r,1≤j≤r.
Denote by f the density of the random vector (Yt1 , . . . , Ytr , Yx1

, . . . , Yxn):

f (ζ) =
1

2m

∫ m

−m

1(√
2π
)n+r√|∆| exp

(
−1

2
(ζ − u) ∆−1 (ζ − u)

T

)
du

where ζ := (yt1 , yt2 , . . . , ytr , yx1
, yx2

, . . . , yxn) and u := (u, u, . . . , u) ∈ Rn+r.
The conditional density of (Yt1 , Yt2 , . . . , Ytr ) given (Yxi = yxi)1≤i≤n is

z := (yt1 , yt2 , . . . , ytr ) 7→
f (z,y)∫

Rr f (z′,y) dz′
=: g (z) .

After simplification, we get:

g (z) =

∫m
−m exp

(
− 1

2

((
z y

)
− u

)
∆−1

((
z y

)
− u

)T) du∫
Rr
∫m
−m exp

(
− 1

2

((
z′ y

)
− u

)
∆−1

((
z′ y

)
− u

)T) dz′ du
.

By monotone convergence, some calculations show that:

g (z) −→
m→+∞

exp

− 1
2

(z y
)
∆−1

(
z y

)T −
(

1∆−1
(
z y

)T)2

1∆−11T


∫
Rr exp

− 1
2

(z′ y
)
∆−1

(
z′ y

)T −
(

1∆−1
(
z′ y

)T)2

1∆−11T

 dz′

.

Within the exponential in the numerator of this expression we identify a non-negative second
degree polynomial of the variable z. We recognize a Gaussian distribution (of dimension r).
In the limit situation m→∞, we note that the distribution of the conditioned random field is well-
defined and is Gaussian. Some calculations show that, at the point x ∈ X, the one-dimensional
marginal Gaussian distribution of the field has mean

µ+ k (x)Σ−1 (y − µ1)
T with µ :=

yΣ−11T

1Σ−11T

and variance

σ2

1− k (x)Σ−1k (x)
T

+

(
1− 1Σ−1k (x)

T
)2

1Σ−11T

 .

2.3 Gaussian mixture with random mean and variance
We go one step further, avoiding the choice of the mean and variance. The prior model is a
mixture of Gaussian processes, which differ by affine transformation. Once again, the conditioned
random field is well-defined selecting (weakly informative) proper uniform priors for the unknown
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mean and standard deviation. When the distributions supports respectively tend to the entire
and positive real lines, the multivariate Student distribution arises as the random field posterior
distribution. We give explicit formulae for the location and scale parameters. Santner et al. (2003)
and Kato (2009) describe similar models with different priors. For example, with Jeffreys priors
for the mean and standard deviation (scale-invariance property), Santner and al. come to the
same posterior except for the number of degrees of freedom. We justify our choice arguing that a
positive miscalibration is always preferred by the risk-averse individual.

2.3.1 Multivariate Student distribution

First, recall the definition of a multivariate Student distribution. We refer to the book of Kotz and
Nadarajah (2004). A p-variate Student distribution (or a multivariate t-distribution) has density:

t 7→ 1

(
√
πν)

p√|Σ| Γ
(
ν+p

2

)
Γ
(
ν
2

) (
1 +

1

ν
(t− µ) Σ−1 (t− µ)

T

)− ν+p2

(t ∈ Rp)

where the positive integer ν is the number of degrees of freedom, Σ is the p × p positive-definite
matrix of scale parameters and µ is the 1× p vector of location parameters.

For ν > 1, the mean vector of the Student distribution is well-defined and equals to µ. For
ν > 2, the covariance matrix of the Student distribution is well-defined and equals to ν

ν−2Σ.
This is a multi-dimensional generalization of the Student distribution. When ν = 1, the

distribution is a multivariate Cauchy distribution. When ν goes to infinity, the distribution tends
to a multivariate Gaussian distribution.

2.3.2 Student field posterior

Now, we propose to consider a prior random field Yx = U+VWx, where U is a real random variable
following a uniform distribution on an interval [−m,m], where V is a real and positive random
variable following a uniform distribution on an interval [ε, 1/ε] and where (Wx)x∈X is a centered
normalized Gaussian field. Moreover, we suppose that U , V and (Wx)x∈X are independent.

The parameter characterizing the Gaussian field (Wx)x∈X is the correlation function k (recall
that the mean is zero and the variance is 1). We suppose here that n ≥ 3. Let x1, x2, . . . , xn ∈ X
and y := (y1, y2, . . . , yn) ∈ Rn. Denote Σ := (k (xi, xj))1≤i,j≤n the positive-definite matrix of
correlations and k (x) := (k (x, xj))1≤j≤n the correlation vector.

Theorem 3. The conditional distribution of the random field (Yx)x∈X knowing that (Yxi = yi)1≤i≤n
is given by explicit formulae of densities of finite dimensional marginals.
When the parameter m goes to infinity and ε goes to zero, for n > 2, this conditional distribution
becomes a multivariate Student distribution.
In particular, when m → ∞, ε → 0 and n > 2, the univariate conditional distribution of the
random variable Yx becomes a Student distribution with n − 2 degrees of freedom, with location
parameter

µ+ k (x)Σ−1 (y − µ1)
T with µ :=

yΣ−11T

1Σ−11T

and scale parameter√√√√√√ 1

n− 2

(
(y − µ1) Σ−1yT

)1− k (x)Σ−1k (x)
T

+

(
1− 1Σ−1k (x)

T
)2

1Σ−11T


where 1 = (1, 1, . . . , 1) ∈ Rn.
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The proof of Theorem 3 results from the same reasoning than the proof of Theorem 2 with
more complex formal calculations. It is developed in the supplementary materials available on line
(hal-00914192).

Remark. The expression (y − µ1) Σ−1yT can also be written (y − µ1) Σ−1 (y − µ1)
T . Note that

a similar expression is obtained in Section 2.5.

2.4 Model implementation
2.4.1 Discussion on correlation functions

The a priori choice of the correlation function is one of the major difficulties in random field
modeling (Sacks et al. (1989)) and the discussion is unfortunately often avoided. It is sometimes
justified by expert knowledge (Cornford et al. (2002)) in particular applied cases. Rasmussen
and Williams (2006) give a complete list of correlation functions, classified according to practical
considerations. The most popular correlation families are isotropic: Exponential, Matern and
Rational Quadratic classes (Abrahamsen (1997)). Indeed, an isotropic random field does not
suffer the curse of dimensionality since the number of parameters in the model does not depend
on the factor space dimension (D).

Determining appropriate values for the parameters of the correlation function is the purpose
of calibration methods. The most popular of them is the maximum likelihood estimation (MLE)
described in the next sub-section. Rasmussen and Williams (2006), Stein (1999) and Robert (2007)
describe this method and discuss about its capabilities and limitations such as numerical issues
for too big samples, multiple optima for too small samples and over-fitting problems for which the
sample is well learned but the unknown function values are poorly predicted everywhere else in
the factor space.

In order to overtake these different limitations, a good way seems to try different choices of
correlation function; each alternative is then evaluated by checking if known values of the responses
are compatible with the confidence intervals predicted by the random field. The literature describes
several types of cross-validation methods measuring the predictive capability of a model (Currin
et al. (1988)). It is of course necessary to use a set of data which is not involved in the construction
of the a posteriori model. Because we cannot, when information is scarce, afford not to include
all the gathered data in the final model, the partition into training and validation sets is only
temporary, for the purpose of the cross-validation stage. In that case, the test is therefore performed
on an "incomplete" posterior model version.

Rasmussen and Williams (2006) describe an alternative method which consists in choosing a
parameterized family of correlation function and a prior distribution on its parameters, to construct
a hierarchical model. This method involves analytical approximations of integrals. Markov chain
Monte Carlo (MCMC) methods are popular solutions to make these computations, see Robert
(2007) for detailed description of these methods. A major drawback is here the cost of such
calculations.

2.4.2 Maximum Likelihood Estimation

The classical maximum likelihood estimation (MLE) method defines an estimator of the unknown
parameter vector θ of a probability distribution fθ. This estimator is the value θmax which
maximizes the density distribution of a random sample calculated at the observed value of this
sample.

Under the same name, this method has been adapted to the identification of the parameters
of an unknown random field (Yx)x∈X when considering a family of values Yx1

, Yx2
, . . . , Yxn . It is

important to have in mind that the observation set is a single outcome of the random field so that
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the validity of the MLE method, in this context, is not obvious. However, this topic is outside the
scope of this article.

Considering now the probabilistic modeling of a deterministic phenomenon, the MLE provides
a practical procedure to set the parameters of the a priori random field (Yx)x∈X knowing Yxi = yi,
1 ≤ i ≤ n. This is a classical approach in Gaussian field modeling, see Rasmussen and Williams
(2006), Stein (1999) and Robert (2007).

Even if our justifications are incomplete, let us describe the MLE for the random model de-
scribed in Section 2.3.

First, set a parametric family of correlation functions kθ depending on the parameter vector θ,
which defines also the parametric correlation matrix Σθ = (kθ (xi, xj))1≤i,j≤n. The MLE consists
in choosing θ which maximizes the density of the random vector (Yx1

, Yx2
, . . . , Yxn) according to

m and ε:

fm,ε (θ) =
1

2m

1
1
ε − ε

∫ m

−m

∫ 1
ε

ε

1(√
2π
)n
vn
√
|Σθ|

exp

(
− 1

2v2
(y − u) Σθ

−1 (y − u)
T

)
du dv

with y := (yx1
, yx2

, . . . , yxn) and u := (u, u, . . . , u) ∈ Rn.
The maximum likelihood estimator θmax (m, ε) maximizes fm,ε (θ). It maximizes also:

f̃m,ε (θ) =

∫ m

−m

∫ 1
ε

ε

1

vn
√
|Σθ|

exp

(
− 1

2v2
(y − u) Σθ

−1 (y − u)
T

)
du dv.

We don’t know any analytic expression of f̃m,ε (θ) and a fortiori of θmax (m, ε) but since we are
interested in large values of m and little values of ε, we consider the limit value f̃∞,0 (θ). So we
propose to study:

f̃∞,0 (θ) =

∫ +∞

−∞

∫ +∞

0

1

vn
√
|Σθ|

exp

(
− 1

2v2
(y − u) Σθ

−1 (y − u)
T

)
du dv.

A short calculation gives

f̃∞,0 (θ) =

√
π2

n−3
2

(
nσ2
θ

) 2−n
2 Γ

(
n−2

2

)√
|Σθ|

(
1Σθ

−11T
)

with

σ2
θ :=

1

n
(y − µθ1) Σθ

−1 (y − µθ1)
T and µθ :=

1Σθ
−1yT

1Σθ
−11T

.

Maximizing f̃∞,0 (θ) is equivalent to minimize − ln
(
f̃∞,0 (θ)

)
and after simplifications, we get:

θmax (∞, 0) minimizes n ln
(
σ2
θ

)
+ ln (|Σθ|) + 2 ln

(
1Σθ

−11T

σ2
θ

)
.

Observe the difference with the Gaussian case in which the MLE method proposes analytical
expressions for the mean and the variance of the field and where the parameter vector θ of the
correlation function is estimated by minimizing:

n ln
(
σ2
θ

)
+ ln (|Σθ|) .
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2.5 Comparison between Student and Gaussian fields
Let us come back for a while to the Gaussian field model described in Section 2.1, choosing constant
mean and variance. If the mean µ and variance σ2 are determined by the MLE method considering
the data set (y (xi) = yi)1≤i≤n, then the following formulae are obtained:

µ =
yΣ−11T

1Σ−11T
and σ2 =

1

n
(y − µ1) Σ−1 (y − µ1)

T
.

This is a classical result in this area. See for example Currin et al. (1988) or Stein (1999).
Following Theorem 1, the a posteriori mean and variance of the Gaussian random variable Yx

are respectively

µ+ k (x)Σ−1 (y − µ1)
T and σ2

(
1− k (x)Σ−1k (x)

T
)
.

It is interesting to compare these values with those given in Theorem 3. Note that, for the same
correlation function, the mean remains the same and the variance is greater. We can illustrate this
difference on a simple example in one dimension.

Let X = [−5, 5]. Let a sample of 5 points (x1 = −4, x2 = −3, x3 = −1, x4 = 0, x5 = 2) with the
associated response values (y1 = −2, y2 = 0, y3 = 1, y4 = 2, y5 = −1). We build for an arbitrary
fixed correlation function, ρ (x, x′) := exp

(
−100 |x− x′|2

)
, a Gaussian field and a Student field

given the knowledge of the previous sample.

Figure 1: Univariate illustration. Gaussian and Student field posteriors derived from five evalua-
tions of the unknown function y (x).

Figure 1 shows, for each field after conditioning, the mean and the boundaries of an interval
computed with a confidence of 0.90. As expected, the confidence intervals are both null at the 5
sampled points since the distributions at these points degenerate in Dirac distributions. The confi-
dence interval of the Student posterior is larger than the Gaussian posterior equivalent, suggesting
a lower degree of belief in the prediction. The Student field seems more reliable, since we take into
account all the possible values of the mean µ and the variance σ2, that were arbitrarily fixed in
the case of the Gaussian field.
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3 Decision support
We present here a new approach in order to define a failure risk probability. As it is briefly
explained in Introduction, it applies to any deterministic phenomena on which we have only partial
information, when this information and our uncertainty are described by a random field model.

3.1 Failure risk probability
We use here notations introduced at the end of Sub-section 1.1. The real failure risk is the
measure of the real failure set {x ∈ X | y (x) ∈ A} where X ⊆ RD is the factor space provided
with a probability distribution P . In a lot of practical cases, the function x 7→ y (x) is not
available though; it can only be sampled at a few x locations. According to Section 2, a random
field (Yx)x∈X defined on a probability space (Ω,P) is derived from a set of observations in order
to approximate the function y.

This modeling stage is not without consequences on the approach retained to calculate the
failure risk probability. Since the knowledge on the function y is low, it seems reasonable to
provide the failure risk prediction with a confidence measure. Thus a decision-maker could easily
evaluate the model quality and rule on the manufactured product robustness more safely. This
problem can be formulated as follows: how can we propagate the uncertainty inherent to any
prediction based on a random field to the failure risk estimation?

If the phenomenon under study was really a random field (Yx)x∈X , we could consider the
random variable

Z := ω 7→ P ({x ∈ X | Yx (ω) ∈ A}) on (Ω,P)

as the failure risk and its distribution as the failure risk probability. This is the definition usually
retained in risk assessment studies. See for example the work of Auffray et al. (2014).

Strictly speaking, the model (Yx)x∈X cannot describe the reality, which is perfectly determined
(but unknown). It correctly represents our knowledge at the observation points. Besides, we
have to give an interpretation to the process randomness. If we retain the subjective conception
of probability theory, randomness results from the incomplete knowledge of the quantity y (x).
Indeed, several realizations of the conditioned random field meets the requirements of the modeling
problem, that is interpolates the observations. Within this framework, the measure P quantifies a
degree of belief regarding the model forecasts. Randomness becomes a way to assess the quality,
i.e. the predictive capability of the model. The expression P (Yx ∈ A) = 0.5 does not mean that
the point x has a one-in-two chance of belonging to the real failure set; it means that, regarding
the available information, one random field realization out of two states that x belongs to the real
failure set. The model is therefore inadequate at point x.

Even if the previous definition of the failure risk by the random variable Z is absolutely cor-
rect mathematically, we claim that it cannot be used, in this particular case, to model incomplete
knowledge. Indeed, the distribution of Z can be a Dirac mass even in the case of a bad model.
An example is necessary here to clarify our point. According to the Lemma demonstrated in Ap-
pendix A.1, if the measure P is continuous and if the random variables Yx are pairwise independent
and satisfy P (Yx ∈ A) = ε, then the distribution of Z is a Dirac mass in ε. As a consequence,
the particular case where ε is near 1/2, which is the sign of a poor model, is not incompatible
with the fact that the distribution of the random variable Z is a Dirac mass1. However, a Dirac
mass distribution, or a distribution close to a Dirac mass, represents a phenomenon for which the
information is sure, or close to sure. This does not reflect the degree of insecurity associated to
an inadequate model. Consequently, we conclude that the distribution of the random variable
Z = P (Y. (ω) ∈ A) does not provide relevant information regarding the model quality.

1See Appendix A.2 for a detailed description and discussion of this toy example.
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The random field alone is not a knowledge representation; it cannot encode the mental pro-
cedures involved in belief assessments. An additional analysis is hence necessary. We certainly
do not have at our disposal a strict condition of membership to the real failure set. Nevertheless,
we can easily compute the following failure probability, a random variable seen as a membership
functionM: {

(X,P )→ [0, 1]
x 7→ M (x) := P (Yx ∈ A) .

The quantityM (x) is the proportion of the random field outcomes concluding that x belongs to
the failure set. Such a function, only involves marginal distributions, and can be straightforwardly
evaluated. It associates to each point x ∈ X a real number in the interval [0, 1] measuring a grade
of membership of x to the failure set. Thus, the crisp failure set, unknown, can be only imprecisely
characterized by the membership functionM. Due to incomplete knowledge, we can only access
to the fuzzy version of the failure set. According to Zadeh (1965), "such a framework provides a
natural way of dealing with problems in which the sources of imprecision is the absence of sharply
defined criteria of class membership rather than the presence of random variables."

By definition, the notion of "belonging" is not well-defined for a fuzzy set. For a given grade
of membership M (x), a decision-maker may consider that x belongs to the failure set whereas
another may not, depending on its own risk tolerance. In order to account for the subjective nature
of the decision, we introduce the level α, 0 ≤ α ≤ 1, and agree to say that "x belong the failure
set" ifM (x) > α. The threshold α determines the status to give to uncertain predictions. These
data are therefore aggregated in two classes: "good" and "poor". Let us define the α-level failure
set:

{x ∈ X | M (x) > α} .

It is a crisp subset of X and can be consequently measured:

R (α) := P ({x ∈ X | M (x) > α}) .

It is the failure risk probability estimation by a decision-maker whose risk tolerance is α. We
implicitly define here a causal model: the risk probability is conditional on the risk tolerance
α (Pearl (1988)). The decision-maker risk tolerance being unknown, we choose to consider the
threshold α as random. It takes its values in [0, 1] and we denote by η its distribution. In this
framework, the failure risk probability is finally defined as a random variable whose distribution is
the image of the measure η by the function R. In other words, this distribution is

R :=

∫ 1

0

δR(α) η (dα) .

3.2 Uniform distribution for the tolerance threshold
In this sub-section, we discuss the choice of the distribution η of the threshold α.

A natural output in risk assessment is the average failure probability, E (P (Y. ∈ A)) in our
case. It is an estimator of the P -measure of the real failure set, based on knowledge of the values
(yi = y (xi))1≤i≤n. As we will see in the sequel, the causal model introduced in Section 3.1 can be
interpreted as an operator acting on the space of probability measures on [0, 1], which links the
distributions of the random variables R (failure risk probability) and M (failure probability). It
seems clever to keep the first moment of the latter when the transform is applied. In that way,
the mean value of the failure risk probability remains an estimator of the failure set measure. This
remark leads us to the first proposition.

If the distribution of the failure probability is uniform, we cannot conclude about the model
relevance, defined as its ability to discriminate the factor space (i.e. identify the failure set). In
such situation, the distribution of the failure risk probability should also be uniform, meaning that
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the state of uncertainty has been preserved. Based on this desired invariance property, we state
the second proposition.

First of all, we introduce some definitions and notations, useful for the subsequent demonstra-
tions. As above, for each α ∈ [0, 1], we set:

R (α) := P (M (x) > α) .

The function R is the complementary cumulative distribution function (or tail distribution) of the
random variableM (x), defined on the probability space (X,P ). Now, we can also look at R as a
random variable defined on the probability space ([0, 1] , η), and we define, for all t ∈ [0, 1]:

G (t) := η ({α ∈ [0, 1] | R (α) > t}) = η (R > t) .

So G is the tail distribution of the random variable R.
Moreover, we denote by K the cumulative distribution function of η: K (u) = η ([0, u]) for all

u ∈ [0, 1]. Finally, let us recall the definition of the generalized inverse of the decreasing function
R.

Definition (Generalized inverse). Let S a decreasing right continuous function on the interval
[0, 1] with S (0) ≤ 1 and S (1) = 0. For all t ∈ [0, 1], we set:

S−1 (t) = sup {α ∈ [0, 1] : S (α) > t} .

At this stage, it is not difficult to check that G = K ◦R−1. Let us define in a general setting the
operator which maps G onto R. The probability measure η is assumed fixed. To any probability
measure m on the interval [0, 1], we can associate another probability measure m′ on [0, 1] in the
following way:

• firstly denote by Fm the function Fm (α) = m ((α, 1]),

• secondly define Fm′ = K ◦ F−1
m .

Denote by Lη the operator, acting on the space of probability measures on [0, 1], which associates
m′ to m.

Proposition 1.

1. The operator Lη preserves the first moment of the probability (i.e.
∫ 1

0
t m (dt) =

∫ 1

0
t m′ (dt)

for all m) if and only if the probability η is uniform on [0, 1].

2. If the probability η is uniform, then the operator Lη is its own inverse, meaning that (m′)
′

=
m.

Proof of Proposition 1. The first moment of the probability measurem associated with Fm is equal
to: ∫ 1

0

Fm (α) dα.

The following neat identity can be proved:∫ 1

0

Fm (α) dα =

∫ 1

0

F−1
m (α) dα.

Thus, the first moment of m is equal to the first moment of m′ if and only if:∫ 1

0

K
(
F−1
m (α)

)
dα =

∫ 1

0

F−1
m (α) dα.

It can be easily verified that the identity map is the unique function K which satisfies this equality
for all choice of m. This means that η has to be a uniform distribution. It is not difficult to check
point 2.
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Proposition 2. The uniform distribution η is the unique distribution for which the operator Lη
applied to a uniform distribution gives a uniform distribution.

The proof does not present any difficulty.
In the sequel, η is chosen as the uniform distribution. It results from proposition 1 that

Eη (R) = E (P (Y. ∈ A)), where E (P (Y. ∈ A)) is an estimator of the real failure risk P (y ∈ A).
At this stage of our presentation, the distribution of the failure risk probability is defined as

follow. The relevance of this formula is illustrated in Appendix A.2, on the toy example introduced
in Section 3.1.

R :=

∫ 1

0

δR(α) dα.

3.3 Monte Carlo approach
We describe in this sub-section why we have to add a new layer of Bayesian randomness, due to
our practical approach of the calculation of the risk probability R(α).

In practice, we use a MC method to get a numerical approximation of R (α). More precisely, an
importance sampling is performed: independent samples (xm)1≤m≤M , in the factor space X, are
generated from the distribution P . For more details on the related preferential MC method, see
4.5 p. 19 of Caflish (1998). For each point xm, the failure probabilityM (xm) = P(Yxm ∈ A) can
be computed numerically since the Student distribution is tabulated. Denote by n (α) the number
of MC draws xm such thatM (xm) > α. The MC estimator of R (α) is the quotient n (α) /M .

Note that a classical Bayesian reasoning is used to model the uncertainty due to finite sampling.
In this approach, the MC sampling is considered as a binomial experiment. This assumption is
thoroughly justified for a good quality pseudo random number generator. As a consequence,
R (α) is a random variable whose distribution is the beta distribution βα with shape parameters
(n (α) + 1,M − n (α) + 1), assuming a uniform prior. Adding this additional probabilistic stratum
in the model, we may appear a little bit pernickety. Nevertheless, it guards us against the basic
(but widespread) fallacy which consists in presuming that a system is perfectly safe as long as no
accident has been observed.

In conclusion, taking into account the numerical aspects of the problem, we define the distri-
bution of the failure risk probability as

R :=

∫ 1

0

βα dα.

3.4 Global strategy
In this sub-section, we gather together Sections 2 and 3, and we describe the global strategy that
has been implemented in the practical application of our present work. From a set of virtual
experiments, the computer code emulator (Student field) is derived. A stochastic simulation is
then performed (uncertainty analysis) to extract the distribution of the failure risk probability.
Standard statistical quantities such as the mean, the standard deviation and a confidence interval
are available to the decision-maker for risk assessment. The confidence interval indicates the
reliability of the estimate, the sources of uncertainty being the partial knowledge of the original
function y and the finite MC sampling.

If the prediction quality is too low, new data points from the space X have to be added to
the observations set {x1, x2, . . . , xn}. Let us describe succinctly a process of choice for the new
data points. Note first that the MC simulation only requires model evaluations. Consequently, we
have full scope to complete the observations set; it is in no way linked to the factors distribution
P . We could sample data uniformly in X but, as each datum "costs the earth", it is strongly
recommended to structure the data collection process. This issue is addressed by experimental
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design techniques, which intend to optimize the information gathering. We retain the differential
entropy h (Yx) := E (− log f (Yx)), where f is the density function of the random variable Yx, as
a measure of the lack of information (Cover and Thomas (2006)). The information provided to
the probabilistic model is increased if observations are made at locations in X where the entropy
is maximum. We face a multimodal optimization problem : the objective is to find a set of
local maxima for h (Yx). It can be solved by conventional methods such as gradient descent or
metaheuristics as evolutionary algorithms. We refer to Talbi (2009) for a complete presentation
of metaheuristics. Once the new observation points are identified, we are back to step one... The
iterative procedure is repeated until the precision requirements regarding the failure risk probability
are met or the due date for the risk analysis is reached.

3.5 Example and results
In order to illustrate the interest of the risk assessment scheme presented in this article, three
theoretical examples described in Appendix B are considered. Using test functions with closed-
form expressions, the failure probability can be calculated exactly. Therefore, estimates can be
compared to the true value.

The Gaussian mixture prior defined in Section 2.3 is kitted out with the anisotropic γ-exponential
correlation function (see Appendix C) and trained using the MLE method described in Sec-
tion 2.4.2. The resulting model has D + 1 parameters, a reasonable level of complexity. The
factor distribution P is assumed uniform.

As an alternative to our model-based Monte Carlo (MMC) method, we consider the brute-force
Monte Carlo (BMC) method plus the Bayesian model for finite sampling, recalled in Section 3.3.
Let k the number of defectives samples, i.e. such that y (x) ∈ A, fromM trials. The inferred failure
risk probability follows the beta distribution with shape parameters (k + 1,M − k + 1). Note that
this trivial model implicitly assumes a sampling of the factor space according to the distribution
P (uniform). We used a quasi-random rather a pseudo-random source: (xm)1≤m≤M are chosen
as elements of the Sobol low discrepancy sequence. Such sampling covers the factor space more
evenly, a desirable property to obtain a relevant statistical population. For the MMC and the BMC
methods, the mean value and the boundaries of the smallest confidence interval, stated at the 90%
confidence level, are plotted as a function of the number M of evaluations, 10 ≤M ≤ 1000.

Before going further, it is important to have in mind that a confidence interval only provides
a statistical estimation of the error on the result. It obviously does not imply a strict condition of
membership to the interval. Indeed, whatever the sampling method used, this one may not catch
the essential features of the function y. As a result, uncertainty can be underestimated, a dangerous
situation in risk assessment. This is particularly true for BMC, which does not take into account
the spatial distribution of the data (geometrical structure of the space X). The third example well
illustrates this point. This is the key difference with the MMC method we propose. Besides, and
this is the cornerstone of this article, we aim at taking into account the uncertainty introduced by
the interpolation stage. As a consequence, the comparison of the convergence properties of MMC
and BMC should not only focus on confidence intervals. The uncertainty model is more relevant
in the second case.

3.5.1 Quadric example

The characteristic of the MMC method is to warn the user if the emulator is poor. It is justified
in practice, though, if it can outperform the BMC method at least in some cases.

So, let us start with the quadric example, considering a space X of dimension D = 5 and a
true failure risk rt = 1.008 × 10−1 (the theoretical expression is available in the supplementary
materials). See Figure 2 for a comparison of the convergence rates of the model-based and brute-
force Monte Carlo. It turns out that, in this case, MMC definitely outperforms BMC since it
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estimates the real failure risk as accurate as BMC on 600 samples, requiring a third of the function
evaluations.

Although MMC has an extra source of uncertainty, its confidence interval is smaller. At least
60 samples are necessary to get a confidence interval size inferior to 0.05. This lower bound soars
to 400 data points using BMC. Besides, the MMC confidence interval always includes the failure
risk true value. All this suggests that the prior assumptions of the model are appropriate and
significantly impact the prediction accuracy, which is not surprising, the function under study
being quite simple.
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Figure 2: Quadric example: convergence plots for MMC method (left) and BMC method (right)

3.5.2 Sine example

The sine example (D = 3) is a trickier problem since the function to be modeled is oscillating.
However, we expect the BMC method to perform correctly since the true failure risk is set to
rt = 2.048× 10−1, a relatively high value.

Both methods give quite similar results, plotted in Figure 3. The relative error on the mean
failure risk predicted by MMC is less than 5% beyond 300 samples, to be compared to 400 samples
for BMC. The MMC and BMC confidence intervals size is less than 0.05 respectively beyond 600
and 800 samples.

We note that, below 200 samples, the MMC confidence interval is large, which indicates that
the conditioning of the prior model does not restrict much the set of interpolating functions. The
propagation of information is therefore weak and we conclude that the γ-exponential correlation
function does not really suit. In addition, a spurious pinch of the confidence interval shows up for
30 samples, due to strong variations of the correlation function parameters. The maximization of
the marginal likelihood yields an overly confident estimate of the correlation function parameters
posterior that would be obtained by classical Bayesian analysis. Thus, MLE reaches its limits when
information is scarce, firstly because it becomes very sensitive to the training set and secondly
because the Bayesian posterior can be hardly approximated by its mode.

3.5.3 Bell-shaped example

Consider the bell-shaped example (D = 5). The benchmark function, as a mixture of 10 multi-
dimensional Gaussian functions, is hilly. The failure set is disconnected: it is the union of 10 small
hyperspheres of different radii. The real failure risk is rt = 4.341× 10−3.
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Figure 3: Sine example: convergence plots for MMC method (left) and BMC method (right)

Below 700 draws, the statistical mean decreases as O
(
n−1

)
, which is typical of an under-

sampling of the failure set. Indeed, the first defective part has been observed beyond 800 draws.
At the end of the sampling process (M = 1000), the relative error on the mean failure risk is still
23% for MMC and 31% for BMC. BMC is here obviously overconfident: the upper boundary of the
90% confidence interval comes close to touching the risk true value. MMC prediction is much more
robust: the confidence interval safely flanks rt and the ratio of the mean value to the confidence
interval size unambiguously indicates that additional data are required.

The raw analysis of the prediction error of y gives no evidence to conclude that information
is lacking. Indeed, the average relative error, introduced by the approximation E (Yx) of y, is
about 1.7%, which is not exactly the signature of a poor model. In contrast with global sensitiv-
ity analysis, discussed in Oackley and O’Hagan (2004), goodness-of-fit requirements do not only
depend upon the visiting probability distribution P : good accuracy is also required in this case
at the failure set boundaries. Thus, the decision regarding the model adequacy should not rest
on a global criterion. In addition, focusing on the model performances to validate the failure risk
prediction may lead to over-quality: the accident set A should also be taken into account. The
probabilistic risk assessment scheme we propose naturally overcome these difficulties.
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Figure 4: Bell-shaped example: convergence plots for MMCmethod (left) and BMC method (right)
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4 Conclusion
We introduce in this article a data sparing scheme in order to measure the robustness of a design to
fabrication fluctuations. It was evolved in order to offset the lack of information, either because of
the complexity of the data acquisition process or due to the dimensionality of the state space. The
method is therefore particularly adapted to virtual experimentation, in which physically realistic
computer experiments replace test runs to foresee product performances. Indeed, simulations
duration are often prohibitive; the numerical simulator is considered as a "black-box" function and
approximated by an analytical emulator. In this work, the regression is based on a Student process
derived from low-informative priors (uniform) on the location and scale parameters of a Gaussian
process.

Risk evaluation can be viewed as a binary classification problem, the product specifications
defining the class membership. Thus, we use the behavioral model as a probabilistic classifier, by
interpreting predictive probabilities as degrees of belief. In this scope, the failure risk probability
naturally comes up as a random variable, randomness modeling the attitude of the decision-maker
while exposed to uncertainty. As a result, the distribution of the failure risk probability is a
straightforward measure of the impact of the manufacturing process variability on the product
performances, in a way that reflects the various sources of uncertainty: incomplete knowledge of
the "black-box" function, values of the model variables, numerical approximations...

The relevance of the proposed methodology has been demonstrated on theoretical examples.
This study shows that, for risk assessment, model-based Monte Carlo provides a more reliable
estimator of the failure rate than brute-force Monte Carlo. Although it is not a crucial point in our
argument, we noticed that introducing an intermediary analytical representation (i.e. incorporating
prior knowledge) may come with a higher convergence rate of the MC sampling, thus reducing the
computational effort for a given accuracy.

This work opens up new perspectives for the application of random field regression to engineer-
ing risk analysis and we can already give further lines of research:

• A natural extension of this work is the generalization of the approach in order to address
the multi-responses problem. A solution is to build a random field over a mixed state space
including the factors as well as the responses. The main drawback here is that the space
dimension may be increased drastically. In addition, it may be difficult to find an appro-
priate a priori correlation function. A possibly clever alternative is to model each response
independently and to compute the upper bound of the failure probability of the union event.
The "worst case" risk probability is then easily derived, applying the procedure prescribed
in this article.

• We can study a more sophisticated regression model of the type

k∑
j=1

Ujfj (x) + VW

(where fj are deterministic known functions). It is the Student extension of some classical
Gaussian models extensively described in the literature (see Santner et al. (2003)).

• The following ternary classification problem can be investigated. If the MC samples are sepa-
rated into three groups:"good", "bad" and "undecidable", it is possible to define a deficiency
risk. Such random variable is a quantitative measure of the random model inability to detect
defective parts. It is intended to notify explicitly the decision-maker that the model is not
informed enough to draw reliable conclusions.
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• In practice, we also have to control carefully numerical calculations and approximations. A
particularly resistant problem is the definite-positive matrix inversion when the matrix is
closed to singular.
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A Lemma

A.1 Lemma
Lemma. If the probability P on the set X is continuous, the random variables Yx are pairwise
independent and satisfy P (Yx ∈ A) = ε for all x, then P (Y.(ω) ∈ A) = ε for almost all ω.

Proof of the lemma.

E
[
(P (Y. ∈ A))

2
]

=

∫
Ω

[∫
X

1A (Yx(ω)) dP (x) ·
∫
X

1A (Yx′(ω)) dP (x′)

]
dP(ω)

=

∫
X

∫
X

[∫
Ω

1A (Yx(ω)) · 1A (Yx′(ω)) dP(ω)

]
dP (x)dP (x′)

From the fact that P is continuous, we deduce that for P ⊗ P almost all (x, x′), we have x 6= x′,
hence Yx and Yx′ are independent random variables. We obtain

E
[
(P (Y. ∈ A))

2
]

=

∫
X

∫
X

[∫
Ω

1A (Yx(ω))P(ω) ·
∫

Ω

1A (Yx′(ω)) dP(ω)

]
dP (x)dP (x′)

=

∫
X

∫
Ω

1A (Yx(ω)) dP (x)dP(ω) ·
∫
X

∫
Ω

1A (Yx′(ω)) dP (x′)dP(ω),

which gives
E
[
(P (Y. ∈ A))

2
]

= [E (P (Y. ∈ A))]
2
.

As a consequence the random variable P (Y. ∈ A) is deterministic, its distribution is a Dirac mass.
Since we have

E [P (Y. ∈ A)] = E [P(Y. ∈ A)] = ε,

we conclude that the distribution of the random variable P (Y. ∈ A) is the Dirac mass at ε.

A.2 A persuasive test case
The toy example, introduced in the section 3.1, is now detailed and discussed in order to answer
these two frequently asked questions :
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1. Why the distribution of the random variable Z := ω 7→ P ({x ∈ X | Yx(ω) ∈ A}) is not the
object that contains the information we need ?

In order to show that the desirable information is not contained in the distribution of Z,
let us give an example. Let ε be any number between 0 and 1. We want to describe two
extreme situations (somewhat caricatural, but it is possible to approximate them by realistic
situations). In these two radically different situations, the distribution of Z will be a Dirac
mass at ε.

(i) First is the case where the random field (Yx) gives an exact (or excellent) description
of the function x 7→ y(x), and where P (y ∈ A) = ε. In this case, we have a perfect
(excellent) model and, for all x ∈ X, P(Yx ∈ A) = 0 or 1.

(ii) Second is an example of bad model. Consider the case where the probability P on
the set X is continuous, the random variables Yx are pairwise independent and satisfy
P (Yx ∈ A) = ε for all x. Under these conditions, we have P (Y.(ω) ∈ A) = ε for almost
all ω. (In Appendix A.1, we give the proof of this claim.)

2. What is the information given by the random variable called failure risk probability and de-
noted by R ?

A necessary condition for a good model is the fact that the distribution of R is concentrated.
Coming back to our example above, we see that in case (i) the distribution of R is a Dirac
mass at ε, whereas in case (ii) the distribution of R is (1− ε)δ0 + εδ1. (We denote here by δa
the Dirac mass at the point a).

B Examples
Discussions in the Section 3.5 are based on three arbitrary chosen benchmark functions that we
describe briefly here and more precisely in supplementary material (hal-00914192) available on
line. In each of these examples, the out of specification space is of the form A := [m,+∞) for some
m ∈ R.

B.1 Quadric example

Fix m > 0, a1, a2, . . . , aD > m2, X := [−1, 1]
D and for x := (x1, x2, . . . , xD) ∈ X:

y (x) :=

√√√√ D∑
i=1

aix2
i .

B.2 Sine example

Fix a1, a2, . . . , aD non zero integers, X := [0, 1]
D and for x := (x1, x2, . . . , xD) ∈ X:

y (x) := sin

(
2π

D∑
i=1

aixi

)
.
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B.3 Bell-shaped example

Let R be a positive integer, X = [0, 1]
D and for x ∈ X :

y (x) := max
1≤i≤R

fi (x,µi, σi)

where for all 1 ≤ i ≤ R, µi ∈ RD, σi ∈ R, σi > 0 and

fi (x,µi, σi) =
1(√

2πσi
)D exp

(
− 1

2σ2
i

‖x− µi‖
2

)
such that for the fixed threshold m, the failure areas associated to each of the fi do not overlap
each other.

C Correlation Function
The correlation function chosen in the Section 3.5 belongs to γ-exponential family:

ρ (x, x′) := exp

−( D∑
i=1

(
xi − x′i
li

)2
) γ

2

 for x, x′ ∈ X.

It is stationary and anisotropic. Roughly speaking, the exponent γ ∈ (0, 2] controls the smoothness
of the random process (it is mean square differentiable only when γ = 2) and the positive real
numbers l1, l2, . . . , lD are characteristic length-scales, defining the influence hyper-ellipsoid of an
observation point.
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