A Random Field Model and its Application in Industrial Production.

Julie OGER ${ }^{* \dagger}$, Emmanuel LESIGNE*, Philippe LEDUC ${ }^{\dagger}$
* Université François-Rabelais, CNRS, LMPT UMR7350, Tours, France
\dagger STMicroelectronics, Tours, France

Let X be an abstract set.
We consider a prior random field $Y_{x}=U+V W_{x}$, where U is a real random variable following a uniform distribution on an interval $[-m, m]$, where V is a real and positive random variable following a uniform distribution on an interval $[\epsilon, 1 / \epsilon]$ and where $\left(W_{x}\right)_{x \in X}$ is a centered normalized Gaussian field. Moreover, we suppose that U, V and $\left(W_{x}\right)_{x \in X}$ are independent.

The parameter characterizing the Gaussian field $\left(W_{x}\right)_{x \in X}$ is the correlation function k (recall that the mean is zero and the variance is 1). We suppose here that $n \geq 3$. Let $x_{1}, x_{2}, \ldots, x_{n} \in X$ and $\boldsymbol{y}:=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Denote $\boldsymbol{\Sigma}:=\left(k\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq n}$ the matrix of correlations and $\boldsymbol{k}(\boldsymbol{x}):=\left(k\left(x, x_{j}\right)\right)_{1 \leq j \leq n}$ the correlation vector. We suppose that we are in a generic position so that the matrix $\boldsymbol{\Sigma}$ is invertible.

Theorem 3. The conditional distribution of the random field $\left(Y_{x}\right)_{x \in X}$ knowing that $\left(Y_{x_{i}}=y_{i}\right)_{1 \leq i \leq n}$ is given by explicit formulae of densities of finite dimensional marginals.

When the parameter m goes to infinity and ϵ goes to zero, for $n>2$, this conditional distribution becomes a multivariate Student distribution.

In particular, when $m \rightarrow \infty$ and $\epsilon \rightarrow 0$, for $n>2$, the univariate conditional distribution of the random variable Y_{x} becomes a Student distribution with $n-2$ degrees of freedom, with location parameter

$$
\mu+\boldsymbol{k}(\boldsymbol{x}) \boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\mu \mathbf{1})^{T} \quad \text { with } \quad \mu:=\frac{\boldsymbol{y} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}}{\boldsymbol{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}}
$$

and scale parameter

$$
\sqrt{\frac{1}{n-2}\left((\boldsymbol{y}-\mu \mathbf{1}) \boldsymbol{\Sigma}^{-1} \boldsymbol{y}^{T}\right)\left(1-\boldsymbol{k}(\boldsymbol{x}) \boldsymbol{\Sigma}^{-1} \boldsymbol{k}(\boldsymbol{x})^{T}+\frac{\left(1-\mathbf{1} \boldsymbol{\Sigma}^{-1} \boldsymbol{k}(\boldsymbol{x})^{T}\right)^{2}}{\mathbf{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}}\right)}
$$

where $\mathbf{1}=(1,1, \ldots, 1) \in \mathbb{R}^{n}$.

Proof. Part 1: Multivariate conditional distribution

We look for the distribution of the random field $\left(Y_{x}\right)_{x \in X}$ given $\left(Y_{x_{i}}=y_{i}\right)_{1 \leq i \leq n}$.
Let r be a positive integer and $\left(t_{1}, \ldots, t_{r}\right) \in X^{r}$. We have:

$$
\left(Y_{t_{1}}, \ldots, Y_{t_{r}}, Y_{x_{1}}, \ldots, Y_{x_{n}}\right)=(U, \ldots, U)+V\left(W_{t_{1}}, \ldots, W_{t_{r}}, W_{x_{1}}, \ldots, W_{x_{n}}\right)
$$

where $\left(W_{t_{1}}, \ldots, W_{t_{r}}, W_{x_{1}}, \ldots, W_{x_{n}}\right)$ follows the distribution $\mathcal{N}(0, \boldsymbol{\Delta})$ with:

$$
\Delta:=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{2} & k(t) \\
k(t)^{T} & \boldsymbol{\Sigma}
\end{array}\right)
$$

where $\boldsymbol{k}(\boldsymbol{t}):=\left(k\left(t_{i}, x_{j}\right)\right)_{1 \leq i \leq r, 1 \leq j \leq n}$ and $\boldsymbol{\Sigma}_{\mathbf{2}}:=\left(k\left(t_{i}, t_{j}\right)\right)_{1 \leq i \leq r, 1 \leq j \leq r}$. As before, we suppose that we are in a generic situation, so that the matrix $\boldsymbol{\Delta}$ is positive-definite.

Denote by f the density of the random vector $\left(Y_{t_{1}}, \ldots, Y_{t_{r}}, Y_{x_{1}}, \ldots, Y_{x_{n}}\right)$:

$$
f(\boldsymbol{\zeta})=\frac{1}{2 m} \frac{1}{\frac{1}{\epsilon}-\epsilon} \int_{-m}^{m} \int_{\epsilon}^{\frac{1}{\epsilon}} \frac{1}{(\sqrt{2 \pi})^{n+r} v^{n+r} \sqrt{|\boldsymbol{\Delta}|}} \exp \left(-\frac{1}{2 v^{2}}(\boldsymbol{\zeta}-\boldsymbol{u}) \boldsymbol{\Delta}^{-1}(\boldsymbol{\zeta}-\boldsymbol{u})^{T}\right) \mathrm{d} u \mathrm{~d} v
$$

with $\boldsymbol{\zeta}:=\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{r}}, y_{x_{1}}, y_{x_{2}}, \ldots, y_{x_{n}}\right)$ and $\boldsymbol{u}:=(u, u, \ldots, u) \in \mathbb{R}^{n+r}$.
The conditional density distribution of $\left(Y_{t_{1}}, Y_{t_{2}}, \ldots, Y_{t_{r}}\right)$ given $\left(Y_{x_{i}}=y_{x_{i}}\right)_{1 \leq i \leq n}$ is:

$$
\boldsymbol{z}:=\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{r}}\right) \mapsto \frac{f(\boldsymbol{z}, \boldsymbol{y})}{\int_{\mathbb{R}^{r}} f\left(\boldsymbol{z}^{\prime}, \boldsymbol{y}\right) \mathrm{d} \boldsymbol{z}^{\prime}}=: g(\boldsymbol{z}) .
$$

After simplification, we get:

$$
g(\boldsymbol{z})=\frac{\int_{-m}^{m} \int_{\epsilon}^{\frac{1}{\epsilon}} \frac{1}{v^{n+r}} \exp \left(-\frac{1}{2 v^{2}}\left(\left(\begin{array}{ll}
\boldsymbol{z} & \boldsymbol{y})-\boldsymbol{u}) \boldsymbol{\Delta}^{-1}\left(\left(\begin{array}{ll}
\boldsymbol{z} & \boldsymbol{y})-\boldsymbol{u}
\end{array}\right)^{T}\right) \mathrm{d} u \mathrm{~d} v \\
\int_{\mathbb{R}^{r}} \int_{-m}^{m} \int_{\epsilon}^{\frac{1}{\epsilon}} \frac{1}{v^{n+r}} \exp \left(-\frac{1}{2 v^{2}}\left(\left(\begin{array}{ll}
\boldsymbol{z}^{\prime} & \boldsymbol{y})-\boldsymbol{u}) \boldsymbol{\Delta}^{-1}\left(\left(\begin{array}{ll}
\boldsymbol{z}^{\prime} & \boldsymbol{y})-\boldsymbol{u}
\end{array}\right)^{T}\right) \mathrm{d} \boldsymbol{z}^{\prime} \mathrm{d} u \mathrm{~d} v
\end{array}\right.\right.\right.
\end{array} . . . \begin{array}{ll}
&
\end{array}\right) .\right.\right.}{}
$$

Denote:

$$
\operatorname{NUM}(\boldsymbol{z}):=\int_{-m}^{m} \int_{\epsilon}^{\frac{1}{\epsilon}} \frac{1}{v^{n+r}} \exp \left(-\frac{1}{2 v^{2}}\left(\left(\begin{array}{ll}
\boldsymbol{z} & \boldsymbol{y})-\boldsymbol{u}) \boldsymbol{\Delta}^{-1}\left(\left(\begin{array}{ll}
\boldsymbol{z} & \left.\boldsymbol{y})-\boldsymbol{u})^{T}\right) \mathrm{d} u \mathrm{~d} v . . .
\end{array}{ }^{T} .\right.\right.
\end{array}\right.\right.\right.
$$

Consider the u-variable polynomial:

$$
\left(\left(\begin{array}{ll}
\boldsymbol{z} & \boldsymbol{y})-\boldsymbol{u}) \boldsymbol{\Delta}^{-1}\left(\left(\begin{array}{ll}
\boldsymbol{z} & \boldsymbol{y}
\end{array}\right)-\boldsymbol{u}\right)^{T}=a u^{2}+2 b u+c . . . ~
\end{array}\right.\right.
$$

We recall that, for a, b and c real numbers and $a>0$:

$$
\int_{-m}^{m} \exp \left(-\frac{1}{2 v^{2}}\left(a u^{2}+2 b u+c\right)\right) \mathrm{d} u \underset{m \rightarrow+\infty}{\longrightarrow} \frac{v \sqrt{2 \pi}}{\sqrt{a}} \exp \left(-\frac{1}{2 v^{2}}\left(c-\frac{b^{2}}{a}\right)\right)
$$

which gives, using the monotone convergence theorem:

$$
\operatorname{NUM}(\boldsymbol{z}) \underset{m \rightarrow+\infty}{\longrightarrow} \int_{\epsilon}^{\frac{1}{\epsilon}} \frac{\sqrt{2 \pi}}{v^{n+r-1} \sqrt{a}} \exp \left(-\frac{1}{2 v^{2}}\left(c-\frac{b^{2}}{a}\right)\right) \mathrm{d} v
$$

With the change of variable $q=\frac{1}{2 v^{2}}\left(c-\frac{b^{2}}{a}\right)$ and the definition of Euler function Γ, we get:

$$
\operatorname{NUM}(\boldsymbol{z}) \underset{m \rightarrow+\infty, \epsilon \rightarrow 0}{ } \frac{\sqrt{2 \pi}}{\sqrt{a}} 2^{\frac{n+r-4}{2}}\left(c-\frac{b^{2}}{a}\right)^{-\frac{n+r-2}{2}} \Gamma\left(\frac{n+r-2}{2}\right)
$$

Note that $a u^{2}+2 b u+c$ is always positive since we exclude degenerate situations. Thus, its discriminant is negative, that is $\left(c-b^{2} / a\right)>0$. In addition, the expression $\left(c-b^{2} / a\right)$ is a positive polynomial of degree 2 in the variable \boldsymbol{z}, and we write

$$
c-\frac{b^{2}}{a}=Q(\boldsymbol{z})+L(\boldsymbol{z})+M
$$

where Q is a positive-definite quadratic form, L is a linear form and M is constant.
By monotone convergence, the limit of the denominator in the expression of the density g is what we expect and we obtain:

$$
g(\boldsymbol{z}) \underset{m \rightarrow+\infty, \epsilon \rightarrow 0}{\longrightarrow} \frac{\frac{\sqrt{2 \pi}}{\sqrt{a}} 2^{\frac{n+r-4}{2}}(Q(\boldsymbol{z})+L(\boldsymbol{z})+M)^{-\frac{n+r-2}{2}} \Gamma\left(\frac{n+r-2}{2}\right)}{\int_{\mathbb{R}^{r}} \frac{\sqrt{2 \pi}}{\sqrt{a}} 2^{\frac{n+r-4}{2}}\left(Q\left(\boldsymbol{z}^{\prime}\right)+L\left(\boldsymbol{z}^{\prime}\right)+M\right)^{-\frac{n+r-2}{2}} \Gamma\left(\frac{n+r-2}{2}\right) \mathrm{d} \boldsymbol{z}^{\prime}},
$$

that is:

$$
g(\boldsymbol{z}) \underset{m \rightarrow+\infty, \epsilon \rightarrow 0}{\longrightarrow} \frac{(Q(\boldsymbol{z})+L(\boldsymbol{z})+M)^{-\frac{n+r-2}{2}}}{\int_{\mathbb{R}^{r}}\left(Q\left(\boldsymbol{z}^{\prime}\right)+L\left(\boldsymbol{z}^{\prime}\right)+M\right)^{-\frac{n+r-2}{2}} \mathrm{~d} \boldsymbol{z}^{\prime}} .
$$

As $Q(\boldsymbol{z})+L(\boldsymbol{z})+M$ is a positive polynomial, we get with Lemma 1 proven hereafter, for $n>2$:

$$
\int_{\mathbb{R}^{r}}\left(Q\left(\boldsymbol{z}^{\prime}\right)+L\left(\boldsymbol{z}^{\prime}\right)+M\right)^{-\frac{n+r-2}{2}} \mathrm{~d} \boldsymbol{z}^{\prime}<+\infty
$$

With Lemma 2, we conclude that $g(\boldsymbol{z})$ is a multivariate Student distribution, when m goes to infinity and
ϵ goes to zero.

Part 2: Univariate conditional distribution

We can give more precise formulae for one dimensional marginals. If $r=1$, we have

$$
g(\boldsymbol{z}) \underset{m \rightarrow+\infty, \epsilon \rightarrow 0}{\longrightarrow} \frac{(Q(\boldsymbol{z})+L(\boldsymbol{z})+M)^{-\frac{n-1}{2}}}{\int_{\mathbb{R}}\left(Q\left(\boldsymbol{z}^{\prime}\right)+L\left(\boldsymbol{z}^{\prime}\right)+M\right)^{-\frac{n-1}{2}} \mathrm{~d} \boldsymbol{z}^{\prime}} .
$$

Let us come back to the definitions of a, b and c and compute the expression $\left(c-b^{2} / a\right)$. After straightforward calculations, we get:

$$
\boldsymbol{\Delta}^{-1}=\frac{1}{\lambda}\left(\begin{array}{cc}
1 & -\boldsymbol{k}(\boldsymbol{t}) \boldsymbol{\Sigma}^{-1} \\
-\boldsymbol{\Sigma}^{-1} \boldsymbol{k}(\boldsymbol{t})^{T} & \lambda \boldsymbol{\Sigma}^{-1}+\boldsymbol{\Sigma}^{-1} \boldsymbol{k}(\boldsymbol{t})^{T} \boldsymbol{k}(\boldsymbol{t}) \boldsymbol{\Sigma}^{-1}
\end{array}\right)
$$

with $\lambda:=1-\boldsymbol{k}(\boldsymbol{t}) \boldsymbol{\Sigma}^{-1} \boldsymbol{k}(\boldsymbol{t})^{T}$. Then:

$$
\begin{aligned}
& a=\mathbf{1} \boldsymbol{\Delta}^{-1} \mathbf{1}^{T} \\
& b=\frac{1}{\lambda}\left(z-\boldsymbol{k}(\boldsymbol{t}) \boldsymbol{\Sigma}^{-1} \boldsymbol{y}^{T}\right)\left(1-\boldsymbol{k}(\boldsymbol{t}) \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}\right)+\boldsymbol{y} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T} \\
& c=\frac{1}{\lambda}\left(z-\boldsymbol{k}(\boldsymbol{t}) \boldsymbol{\Sigma}^{-1} \boldsymbol{y}^{T}\right)^{2}+\boldsymbol{y} \boldsymbol{\Sigma}^{-1} \boldsymbol{y}^{T}
\end{aligned}
$$

with $\mathbf{1}=(1,1, \ldots, 1) \in \mathbb{R}^{n}$.
Set $z^{\prime}:=z-\boldsymbol{k}(\boldsymbol{t}) \boldsymbol{\Sigma}^{-1} \boldsymbol{y}^{T}$. This change of variable yields:

$$
c-\frac{b^{2}}{a}=q z^{\prime 2}-2 l z^{\prime}+m
$$

with

$$
\begin{aligned}
& q=\frac{1}{\lambda}\left(1-\frac{1}{\lambda a}\left(1-\boldsymbol{k}(\boldsymbol{t}) \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}\right)^{2}\right) \\
& l=\frac{1}{\lambda a}\left(1-\boldsymbol{k}(\boldsymbol{t}) \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}\right)\left(\boldsymbol{y} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}\right)^{T} \\
& m=\boldsymbol{y} \boldsymbol{\Sigma}^{-1} \boldsymbol{y}^{T}-\frac{1}{a}\left(\boldsymbol{y} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}\right)^{2}
\end{aligned}
$$

In the variable z^{\prime}, we have a Student distribution with $n-2$ degrees of freedom, with location parameter

$$
\frac{l}{q}=\mu\left(1-\boldsymbol{k}(\boldsymbol{x}) \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}\right) \quad \text { with } \quad \mu:=\frac{\boldsymbol{y} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}}{\boldsymbol{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}}
$$

and scale parameter

$$
\sqrt{\frac{1}{n-2}\left(\frac{m}{q}-\left(\frac{l}{q}\right)^{2}\right)}=\sqrt{\frac{1}{n-2}\left((\boldsymbol{y}-\mu \mathbf{1}) \boldsymbol{\Sigma}^{-1} \boldsymbol{y}^{T}\right)\left(1-\boldsymbol{k}(\boldsymbol{x}) \boldsymbol{\Sigma}^{-1} \boldsymbol{k}(\boldsymbol{x})^{T}+\frac{\left(1-\mathbf{1} \boldsymbol{\Sigma}^{-1} \boldsymbol{k}(\boldsymbol{x})^{T}\right)^{2}}{\mathbf{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}}\right)}
$$

Then, the conditional distribution of the random variables Y_{x} is a Student distribution with $n-2$ degrees of freedom, with location parameter:

$$
\mu+\boldsymbol{k}(\boldsymbol{x}) \boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\mu \mathbf{1})^{T} \quad \text { with } \quad \mu:=\frac{\boldsymbol{y} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}}{\boldsymbol{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}}
$$

and scale parameter:

$$
\sqrt{\frac{1}{n-2}\left((\boldsymbol{y}-\mu \mathbf{1}) \boldsymbol{\Sigma}^{-1} \boldsymbol{y}^{T}\right)\left(1-\boldsymbol{k}(x) \boldsymbol{\Sigma}^{-1} \boldsymbol{k}(\boldsymbol{x})^{T}+\frac{\left(1-\mathbf{1} \boldsymbol{\Sigma}^{-1} \boldsymbol{k}(\boldsymbol{x})^{T}\right)^{2}}{\mathbf{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}^{T}}\right)}
$$

with $\mathbf{1}=(1,1, \ldots, 1) \in \mathbb{R}^{n}$.

Lemma 1. Let $p(\boldsymbol{z})$ be a polynomial of degree 2 in r variables. Suppose that:

- for all $\boldsymbol{z} \in \mathbb{R}^{r}, p(\boldsymbol{z})>0$,
- the quadratic part of p is positive definite.

If $n>0$ then

$$
\int_{\mathbb{R}^{r}} p(\boldsymbol{z})^{-\frac{n+r}{2}} d \boldsymbol{z}<\infty .
$$

Proof of Lemma 1. With an appropriate change of orthonormal basis, we can write:

$$
p(\boldsymbol{z})=\sum_{i=1}^{r} d_{i} e_{i}^{2}+\sum_{i=1}^{r} s_{i} e_{i}+M
$$

where $\left(e_{1}, e_{2}, \ldots, e_{r}\right):=\boldsymbol{e}$ are the coordinates of \boldsymbol{z} in the new basis, and where, for all $1 \leq i \leq r, d_{i}>0$.
We consider a ball B in \mathbb{R}^{r}, containing zero, such that for all $z \notin B$, we have:

$$
p(\boldsymbol{z}) \geq \frac{1}{2} \sum_{i=1}^{r} d_{i} e_{i}^{2} \geq \frac{C}{2} \sum_{i=1}^{r} e_{i}^{2}
$$

where $C=\min \left(d_{1}, d_{2}, \ldots, d_{r}\right)$. Denote B^{c} the complementary of B in the space \mathbb{R}^{r}. As $p>0$, the integral over B of the function $p^{-\frac{n+r}{2}}$ is finite. We have:

$$
\int_{B^{c}} p(\boldsymbol{z})^{-\frac{n+r}{2}} \mathrm{~d} \boldsymbol{z} \leq C^{\prime} \int_{B^{c}}\left(\sum_{i=1}^{r} e_{i}^{2}\right)^{-\frac{n+r}{2}} \mathrm{~d} e_{1} \mathrm{~d} e_{2} \ldots \mathrm{~d} e_{r}
$$

with $C^{\prime}:=\left(\frac{C}{2}\right)^{-\frac{n+r}{2}}$.

That means:

$$
\int_{B^{c}} p(\boldsymbol{z})^{-\frac{n+r}{2}} \mathrm{~d} \boldsymbol{z} \leq C^{\prime} \int_{B^{c}}\|\boldsymbol{e}\|^{-(n+r)} \mathrm{d} e_{1} \mathrm{~d} e_{2} \ldots \mathrm{~d} e_{r} .
$$

But,

$$
\int_{B^{c}}\|\boldsymbol{e}\|^{-(n+r)} \mathrm{d} e_{1} \mathrm{~d} e_{2} \ldots \mathrm{~d} e_{r}<\infty \quad \text { if and only if } n>0
$$

so we conclude:

$$
\int_{\mathbb{R}^{r}} p(\boldsymbol{z})^{-\frac{n+r}{2}} \mathrm{~d} \boldsymbol{z}<\infty \quad \text { if } \quad n>0
$$

Lemma 2. Let n and r be two positive integers with $n \geq 3$. Let Q be a positive-definite quadratic form in r variables, L be a linear form in r variables and M be a positive constant. Suppose that for all $\boldsymbol{z} \in \mathbb{R}^{r}$, $Q(\boldsymbol{z})+L(\boldsymbol{z})+M>0$. Define $C:=\left(\int_{\mathbb{R}^{r}}(Q(\boldsymbol{z})+L(\boldsymbol{z})+M)^{-\frac{n+r-2}{2}} d \boldsymbol{z}\right)^{-1}$. The density of probability f on \mathbb{R}^{r} of the form:

$$
f: \boldsymbol{z} \mapsto C(Q(\boldsymbol{z})+L(\boldsymbol{z})+M)^{-\frac{n+r-2}{2}}
$$

is a multivariate Student density with $n-2$ degree of freedom.

Proof of Lemma 2. Denote $\boldsymbol{z}:=\left(z_{1}, z_{2}, \ldots, z_{r}\right), Q(\boldsymbol{z}):=\sum_{i=1}^{r} q_{i i} z_{i}^{2}+2 \sum_{1 \leq i<j \leq r} q_{i j} z_{i} z_{j}$ and $L(\boldsymbol{z}):=$ $\sum_{i=1}^{r} \ell_{i} z_{i}$. Denote also $\boldsymbol{L}=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right)$ and $\boldsymbol{Q}=\left(q_{i j}\right)_{1 \leq i, j \leq r}$.
Then:

$$
L(\boldsymbol{z})=\boldsymbol{L} \boldsymbol{z}^{T} \quad \text { and } \quad Q(\boldsymbol{z})=\boldsymbol{z} \boldsymbol{Q} \boldsymbol{z}^{T}
$$

Diagonalize the positive-definite matrix \boldsymbol{Q}; there exists an orthogonal matrix \boldsymbol{P}, of type (r, r) such that:

$$
\boldsymbol{Q}=\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}=\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{T}
$$

where \boldsymbol{A} is a diagonal matrix with diagonal coefficients $a_{1}, a_{2}, \ldots, a_{r}>0$.
Denote $\boldsymbol{s}=\boldsymbol{z} \boldsymbol{P}$ and $\boldsymbol{s}=\left(s_{1}, s_{2}, \ldots, s_{r}\right)$. We can write:

$$
f(\boldsymbol{z})=C\left(M+\boldsymbol{L} \boldsymbol{P} \boldsymbol{s}^{T}+\boldsymbol{s} \boldsymbol{A} \boldsymbol{s}^{T}\right)^{-\frac{n+r-2}{2}}
$$

With $\boldsymbol{L P}=\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ we deduce:

$$
\boldsymbol{L} \boldsymbol{P} \boldsymbol{s}^{T}+\boldsymbol{s} \boldsymbol{A} \boldsymbol{s}^{T}=\sum_{i=1}^{r} b_{i} s_{i}+a_{i} s_{i}^{2}=\sum_{i=1}^{r} a_{i}\left(s_{i}+\frac{b_{i}}{2 a_{i}}\right)^{2}-\frac{b_{i}^{2}}{4 a_{i}}
$$

Denote \boldsymbol{B} the vector $\left(\frac{b_{i}}{2 a_{i}}\right)_{1 \leq i \leq r}$ and $\boldsymbol{t}:=\boldsymbol{s}+\boldsymbol{B}$. Denote also $d=M-\sum_{i=1}^{r} \frac{b_{i}^{2}}{4 a_{i}}$.
We have:

$$
f(\boldsymbol{z})=C\left(d+\boldsymbol{t} \boldsymbol{A} \boldsymbol{t}^{T}\right)^{-\frac{n+r-2}{2}}
$$

Remark that $d>0$ since $d+\boldsymbol{t} \boldsymbol{A} \boldsymbol{t}^{T}=Q(\boldsymbol{z})+L(\boldsymbol{z})+M$ which is strictly positive for all z, thus for all \boldsymbol{t}. It is therefore possible to factor our d :

$$
\begin{aligned}
& f(\boldsymbol{z})=C d^{-\frac{n+r-2}{2}}\left(1+\frac{1}{d}(\boldsymbol{z P}+\boldsymbol{B}) \boldsymbol{A}(\boldsymbol{z P}+\boldsymbol{B})^{T}\right)^{-\frac{n+r-2}{2}} \\
&=C d^{-\frac{n+r-2}{2}}\left(1+\left(\boldsymbol{z}+\boldsymbol{B} \boldsymbol{P}^{T}\right)\left(\frac{1}{d} \boldsymbol{Q}\right)\left(\boldsymbol{z}+\boldsymbol{B} \boldsymbol{P}^{T}\right)^{T}\right)^{-\frac{n+r-2}{2}}
\end{aligned}
$$

With $C^{\prime}:=C d^{-\frac{n+r-2}{2}}, \boldsymbol{\mu}:=-\boldsymbol{B} \boldsymbol{P}^{T}$ and $\boldsymbol{\Pi}:=\frac{d}{n-2} \boldsymbol{Q}^{-1}$, finally, the following formula is obtained for the density of probability:

$$
f(\boldsymbol{z})=C^{\prime}\left(1+\frac{1}{n-2}(\boldsymbol{z}-\boldsymbol{\mu}) \boldsymbol{\Pi}^{-1}(\boldsymbol{z}-\boldsymbol{\mu})^{T}\right)^{-\frac{n+r-2}{2}}
$$

According to the book of Kotz and Nadarajah (2004), page 1, we recognize the multivariate t-distribution in r dimension, with $n-2$ degrees of freedom, with scale matrix $\boldsymbol{\Pi}$ and location vector $\boldsymbol{\mu}$.

References

Kotz, S. and Nadarajah, S. (2004). Multivariate t-distributions and their applications. Cambridge University Press.

