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NUMERICAL SIMULATION OF A SOLITONIC GAS IN SOME

INTEGRABLE AND NON-INTEGRABLE MODELS

DENYS DUTYKH AND EFIM PELINOVSKY∗

Abstract. The collective behaviour of soliton ensembles (i.e. the solitonic gas) is studied

using the methods of the direct numerical simulation. Traditionally this problem was

addressed in the context of integrable models such as the celebrated KdV equation. We

extend this analysis to non-integrable KdV–BBM type models. Some high resolution

numerical results are presented in both integrable and nonintegrable cases. Moreover, the

free surface elevation probability distribution is shown to be quasi-stationary. Finally,

we employ the asymptotic methods along with the Monte–Carlo simulations in order to

study quantitatively the dependence of some important statistical characteristics (such

as the kurtosis and skewness) on the Stokes–Ursell number (which measures the relative

importance of nonlinear effects compared to the dispersion) and also on the magnitude of

the BBM term.
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1. Introduction

Solitary wave solutions play the central rôle in various nonlinear sciences ranging from
hydrodynamics to solid and plasma physics [39, 29, 26]. These solutions can propagate
without changing its shape. However, the most intriguing part consists in how these
solutions interact with each other. The binary interactions of solitary waves have been
studied in the context of various nonlinear wave equations [39, 20, 34, 22, 8, 5]. It is well
known that in integrable models the collision of two solitons is elastic, i.e. they interact
without changing the shape. In non-integrable models usually the interactions are nearly
elastic. Hence, solitary waves illustrate the wave/particle duality in the modern physics.

The collective behaviour of soliton ensembles is much less understood nowadays. When a
large number of solitary waves are considered simultaneously the researchers usually speak
about the so-called solitonic turbulence or a solitonic gas. The literature on this topic is
abundant. Some recent studies on solitonic gas turbulence in the KdV framework include
[27, 30, 28]. The solitonic turbulence in nonintegrable NLS-type equations was studied in
[42, 11] and the authors showed that in conservative nonintegrable systems the solitonic gas
is a statistical attractor whose dimension decreases with time. Recently it was shown both
numerically and experimentally that solitonic ensembles appear in the laminar–turbulent
transition in a fibre laser [36], modeled by a non-integrable nonlinear Schrödinger-type
equation. However, the dominant number of studies is based on integrable models. This
apparent contradiction motivated mainly our investigation to quantify the non-integrable
effects onto the collective behaviour of solitons.

An approximate theoretical description of solitonic gases was proposed by V. Zakharov
(1971) [40] using the kinetic theory. Later this research direction has been successfully pur-
sued by G. El and his co-authors [13] who used the Inverse Scattering Technique (IST) [1]
limited only to the integrable models. In this study the problem of solitonic gases will be
investigated using the methods of direct numerical simulation. The evolution of random
wave fields including solitonic gases was simulated numerically in [27, 30, 9] using sym-
plectic, multi-symplectic and pseudo-spectral methods. However, previous investigators
considered only a limited number of solitons (a few dozens) to simulate a solitonic gas. In
this study we will adopt the pseudo-spectral method since it provides the high accuracy
and computational efficiency necessary to handle large computational domains. Our goal
will consist in:

• investigate the influence of soliton interactions on statistical characteristics of the
wave field,
• construct the Probability Density Function (PDF) and compute the first four sta-
tistical moments of the solitonic turbulence,
• study the rôle of non-integrable terms on the characteristics of soliton ensembles.

The present manuscript is organized as follows. In Section 2 we derive the governing
equation used in this study and in Section 3 numerical results on a solitonic gas dynamics
are presented. Finally, the main conclusions of this study are outlined in Section 4.
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2. Mathematical model

As the starting point we choose the celebrated Korteweg–de Vries equation [19, 21, 17,
27] (in dimensional variables) which models the undirectional propagation (here in the
rightwards direction) of weakly nonlinear and weakly dispersive waves:

ηt + c
(

1 +
3h

2
η
)

ηx +
ch2

6
ηxxx = 0, (2.1)

where η(x, t) is the vertical excursion of the free surface above the still water level, h is
the uniform undisturbed water depth and c =

√
gh is the speed of linear gravity waves (g

being the gravity acceleration).
The KdV equation (2.2) is known to be integrable [24]. However, the full water wave

problem is known to be a non-integrable system, since the interaction of solitary waves is
inelastic [6, 14, 7, 8]. In order to approach the reality, we will modify the original equation
(2.2) in order to include an additional dispersive term of the BBM-type [2]. Thus, the
resulting KdV–BBM equation will not be integrable [15, 10, 18].

Consider the following unscaled dependent and independent variables:

η ← η

a0
, x← x

l
, t← ct

l
,

where a0 is the characteristic wave amplitude and l is the characteristic wavelength. In
dimensionless variables KdV equation (2.2) reads:

ηt +
(

1 +
3ε

2
η
)

ηx +
µ2

6
ηxxx = 0,

where parameter ε := a0/h measures the nonlinearity and µ2 :=
(

h/l
)2

is the dispersion
parameter. The relative importance of these two effects is measured by the so-called
Stokes–Ursell number [37] (sometime denoted as Ur):

S :=
ε

µ2
≡ a0l

2

h3
.

The last equation can be further simplified if we perform an additional change of variables:

η ← 3µ2

2
η, x←

√
6

µ
(x− t), t←

√
6

µ
t,

which yields the following simple equation including explicitly the Stokes–Ursell number
S:

ηt + Sηηx + ηxxx = 0. (2.2)

The last unscaled KdV equation can be further generalized by using the low-order asymp-
totic relations in order to alternate higher-order terms as it was proposed by Bona &
Smith (1976) [4] and Nwogu (1993) [25]. This step is rather standard and we do not
provide here the details of the derivation:

ηt + Sηηx + ηxxx − δηxxt = 0, (2.3)

where δ ∈ R is a free parameter. The solitary wave collisions in this equation were studied
earlier by Francius et al. (2001) [15] and Kalisch et al. (2013) [18]. Below we will study
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the solitonic gas behaviour1 under the dynamics of the KdV (2.2) (δ = 0) and KdV–BBM
(2.3) (δ 6= 0) equations.

Remark 1. We note that for a particular value of the Stokes–Ursell number S ≡ 1 another
simpler scaling is possible when all the lengthes (x and η) are unscaled by the mean water
depth h. However, we do not adopt it in this study since below in Section 3.1 the dependence
of some statistical characteristics on the Stokes–Ursell number S is investigated.

2.1. Properties

2.1.1. Linear well-posedness

In order to ensure the linear well-posedness of equation (2.3), the free parameter δ has
to satisfy the following constraint δ ≥ 0. In the following we will consider only nonnegative
values of this parameter. Recall that for δ = 0 we recover an uscaled version of the classical
KdV equation (2.2).

2.1.2. Ivariants

Assuming that the solution η(x, t) has either the compact support or decays sufficiently
fast at the infinity along with its first derivative (η → 0, ηx → 0 as x → ±∞), one can
easily show that the following quantities are conserved [10]:

I1(t) =

ˆ

R

η(x, t) dx, I2(t) =

ˆ

R

(

η2(x, t) + δη2x(x, t)
)

dx.

In other words, I1(t) ≡ I1(0) and I2(t) ≡ I2(0), ∀t > 0. The invariant I1(t) is related to the
mass conservation property, while the integral I2(t) can be assimilated to the generalized
kinetic energy. The conservation of these quantities has not only the theoretical importance,
but also the practical one. For example, it will allow us to check the global accuracy of
the employed numerical scheme. We note also that the same invariants hold also in finite,
but periodic domains (below we use periodic boundary conditions).

2.1.3. Solitary wave solutions

Equation (2.3) admits an exact localized (solitary) travelling wave solution which can
be found analytically:

η(x, t) = a sech2
(

1

2
κ(x− cst)

)

, κ :=

√

aS

3 + aSδ
, cs :=

1

3
aS. (2.4)

The dependence of the solitary wave shape on parameters a, S and δ is shown on Figure 1.
For instance, one can see that solitary waves become thiner when the amplitude a (and
hence the speed) and/or the Stokes–Ursell number S are increased (see Figure 1(a,b)). On
the other hand, the increase of the BBM coefficient δ leads to the growth of the tail (see
Figure 1(c)). If both parameters S and δ are increased simultaneously, the ‘thinning’ effect
of the Stokes–Ursell number dominates (see Figure 1(d)).

1Sometimes it is also called the solitonic turbulence, e.g. in [42, 11].
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Figure 1. Solitary wave shape dependence on various parameters: (a) amplitude

a = 1.0, 1.2, 1.5 for S = 1.0, δ = 0 (b) δ = 0.0, 1.0, 2.0 for a = 1.0,
S = 1.0 (c) S = 1.0, 2.0, 3.0 for a = 1.0, S = 1.0 (d) simultaneous
change of (δ,S) = (0.0, 1.0), (1.0, 2.0), (2.0, 3.0) for a = 1.0.

The solitary waves interact elastically only in the integrable KdV case (δ ≡ 0) [23],
while some dispersive tails are generated after the interaction in the general KdV–BBM
model. We note that some authors came to the wrong conclusion about the elasticity of
solitary wave interactions in the BBM equation [12] on the basis of low accuracy numerical
simulations.

3. Numerical results

In order to solve numerically equation (2.3) we use a Fourier-type pseudo-spectral
method with 3/2-antialiasing rule [35]. For the time discretization we use the Verner’s
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Stokes–Ursell number: S 1.0
BBM term coefficient: δ 0.0 (2.0)
Number of Fourier modes: N 217 = 131072
Half-length of the domain [−ℓ, ℓ]: ℓ 4558.0 (5580.0)
Final simulation time: T 30000 (35000)
Average time step: ∆t 0.02 (0.0194)
Number of solitons in the gas: Ns 200
Average distance between solitons: 〈∆xs〉 45.0 (55.0)
Average amplitude of a soliton: a 1.0
Variance of soliton amplitude: σ 0.2
Variance of the soliton position: σ2 4.0
Number of Monte–Carlo realizations: M 100

Table 1. Physical and numerical parameters used for simulations of the solitonic
gas in the KdV and KdV–BBM (in parentheses) dynamics.
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Figure 2. Conservation of the invariant I1(t) during the KdV (a) and KdV–
BBM (b) simulations.

embedded adaptive 9(8) Runge–Kutta scheme [38]. The time step is chosen adaptively
using the so-called H211b digital filter [32, 33] to meet some prescribed error tolerance
(generally of the order of machine precision ∼ 10−15). The number of Fourier modes,
the length of the computational domain and other numerical parameters are specified in
Table 1.

In long time simulations presented below the invariants I1,2 were conserved within the
numerical accuracy 10−11 and 10−9 correspondingly. For the sake of illustration the error of
the invariant I1(t) conservation in KdV and KdV–BBM simulations is shown on Figure 2.
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This accuracy is satisfactory to draw some robust conclusions on a solitonic gas statistical
behaviour.

The initial condition for the KdV equation is composed of a finite number Ns of solitons
with random ampmlitudes ai ∼ N(a, σ), i = 1, . . . , Ns separated by quasi-uniform distance
∆xs which is randomized to improve the ergodocity of the initial state:

∆xs := 〈∆xs〉+N(0, σ2),

where 〈∆xs〉 denotes the mean value reported in Table 1 and N(µ, σ) is the normal distri-
bution with the mean µ and the variance σ. The solitonic gas initial state generated in
this way is depicted on Figure 3(a). We use the same parameters for the initial solitonic
gas state for the simulation with the KdV–BBM equation except for the domain size and
the spacing between two solitons (see Table 1). They are larger in the KdV–BBM case
since the soliton width increases with the parameter δ ≥ 0 (see Figure 1). Consequently,
we can say that two initial conditions are approximatively isomorphic up to the horizontal
coordinate stretching transformation. The simulation times T1 (KdV) and T2 (Kdv–BBM)
are chosen so that an average soliton has enough time to go around the whole computa-
tional domain. The final states of the simulations are shown on Figures 3(b,c). One can
notice how the initially quasi-uniform distribution of solitons is mixed by forming instan-
taneous soliton clusters as long as some void spaces due to the mass conservation property.
The complete space-time dynamics simulated using the KdV and KdV–BBM equations
is depicted on Figures 4(a,b). Individual lines correspond to solitons trajectories. The
convergence of these lines corresponds to solitons collisions. It might appear on Figure 4
that collisions involve multiple solitons, however it is not the case. A zoom on a portion
of the space-time domain is shown on Figure 5. One can see that interactions are only
binary in agreement with [40]. Since the initial conditions are approximatively self-similar,
after an appropriate rescaling of the spatial and time variables, the space-time dynamics
is similar in both simulations (see Figures 4(a,b)). The difference between two simulations
can be noticed if one makes a zoom on solitons background in order to see small radiating
oscillations due to the inelasticity of collisions in the KdV–BBM case. This zoom on a
portion of the computational domain is shown on Figure 6. In contrast, Figure 6(a) shows
the absence of phonon modes in the KdV simulation.

It is custom to use the statistical methods to describe random wave fields [3, 16]. The
probability distribution of the normalized free surface elevation η0(x, t) :=

(

η(x, t) −
〈η〉

)

/〈η2〉1/2 at times t = 0 and t = T1 is shown on Figure 7 (under the KdV dynam-
ics). One can see that this distribution is quasi-stationary which is a direct consequence of
the fact that solitons preserve perfectly their shape during the interactions. We note that
the KdV–BBM numerical result shows the same invariance property since the inelasticity
is too weak to modify significantly the probability distribution. Moreover, for comparison
we plot also on the same Figure the standard normal (Gaussian) distribution. One can see
that numerical results show much heavier tails than the standard distribution depicted on
the same plot.

The probability distribution can be characterized by several parameters. Perhaps two
most important characteristics are listed hereinbelow:
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Figure 3. The initial condition (a) and the final state (b) of a random solitonic
gas simulated using the KdV equation (δ = 0). The final state of the
KdV–BBM simulation is shown on panel (c). Please, note that the

final simulation times T1 6= T2 (see Table 1 for the values of T1,2).
Parameter τ0 denotes the time needed for an average soltion to go
over the whole computational domain.
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(a) KdV

(b) KdV–BBM

Figure 4. Space-time plot of a random solitonic gas under the KdV (a) and
KdV–BBM (b) dynamics. The time arrow is directed upwards (the

initial state corresponds to the bottom line).



D. Dutykh & E. Pelinovsky 10 / 18

Figure 5. Zoom on space-time domain (x, t/τ0) ∈ [−2600,−2000] × [0.22, 0.32]
simulated under the KdV equation dynamics. See Figure 4 for the
whole picture.

• Kurtosis κ :=
µ4

µ2
2

, which measures the heaviness of the spectrum tail.

• Skewness ς :=
µ3

µ
3/2
2

, which measures the asymmetry of the spectrum with respect

to the mean.

These quantities are defined in terms of the normalized free surface elevation moments
µn := 〈ηn0 〉. We note that κ = 3 and ς = 0 for the normal (Gaussian) distribution N(0, 1).
The evolution of these quantities is shown on Figure 8. The kurtosis κ is shown on top
panels (a,b) and the skewness ς on the bottom (c,d). The KdV simulation results are
represented on the left images (a,d) and the KdV–BBM on the right (b,d). One can see
that the qualitative behaviour of these quantities is similar in integrable and nonintegrable
cases. After a rapid initial transient period both quantities κ and ς enter in a quasi-
stationary regime which consists of fast small amplitude (±1.6%) oscillations around the
mean value. Initial values of the moments are higher, but then it drops down quickly due
to soliton interactions. We note also that corresponding values of κ and ς are slightly lower
in the KdV–BBM case due to the differences in solitary wave shapes.

3.1. Estimation of statistical moments

In order to estimate efficiently kurtosis and skewness for various values of parameters
S and δ without performing a series of direct numerical simulations we will adopt an
approximate analytical method of statistical moments estimation employed also in [31].
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Figure 6. Zoom on a portion of the computational domain at the final time of
the KdV and KdV–BBM simulations. (b) Tiny oscillations between
the solitary waves correspond to the radiation created by inelastic col-

lisions in the KdV–BBM equation.

Let us introduce the average density of a solitonic gas:

ρ :=
Ns

2ℓ
,

where NS is the number of solitons and ℓ is the half-length of the computational domain
(see also Table 1). We will assume that the solitonic gas is rarefied, i.e. ρ ≪ 1. Under
this assumption we can represent approximatively the instantaneous free surface elevation
η(x, t) as a linear superposition of distinct solitary waves (the interacting part is neglected):

η(x, t) ≈
Ns
∑

i=1

ηi(x, t) =
Ns
∑

i=1

ai sech
2
(

1

2
κiξ

)

, ξ := x− csit− xi,

where {ai}, {csi} and {xi} are respectively the amplitudes, speeds and phase shifts of
individual solitary waves. By assuming that the supports of solitons do not overlap, we
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Figure 7. Probability distributions of the squared normalized free surface elevation.

can estimate the statistical moments of any order. For the sake of simplicity let us consider
the first order µ1, i.e. the mean:

µ1 = 〈η(x, t)〉 =
1

2ℓ

Ns
∑

i=1

ˆ ℓ/2

−ℓ/2

ηi(ξ) dξ ≈
1

2ℓ

Ns
∑

i=1

ai

ˆ

+∞

−∞

sech2
(

1

2
κiξ

)

dξ = 4ρ〈ai
κi
〉,

where we took the limit ℓ → +∞ in order to compute analytically the integrals. Note
also that the solitary wave parameter κi is a function of the amplitude ai according to the
relations given in (2.4).

Higher order moments µn = 〈ηn〉, n > 1 can be computed in a similar way. In this study
we will need the moments up to the fourth order:

µ2 =
8

3
ρ〈a

2
i

κi
〉, µ3 =

32

15
ρ〈a

3
i

κi
〉, µ4 =

64

35
ρ〈a

4
i

κi
〉.

Using these moments we can estimate the skewness ς and kurtosis κ in the rarefied gas
limit ρ→ 0:

ς =
〈(η − µ1)

3〉
〈(η − µ1)2〉3/2

=
µ3

µ
3/2
2

+ O(ρ1/2) ≈ 2
√
3

5
√
2
ρ−1/2 〈a3i /κi〉

〈a2i /κi〉3/2
, (3.1)

κ =
〈(η − µ1)

4〉
〈(η − µ1)2〉2

=
µ4

µ2
2

+ O(1) ≈ 9

35
ρ−1
〈a4i /κi〉
〈a2i /κi〉2

. (3.2)



Numerical simulation of a solitonic gas 13 / 18

0 0.5 1 1.097

7.4578

7.5402

7.6226

t/τ0

K
u
rt
o
si
s

(a) Kurtosis — KdV

0 0.5 11.0454

7.0985

7.1759

7.2532

t/τ0

K
u
rt
o
si
s

(b) Kurtosis — KdV–BBM

0 0.5 1 1.097

2.5994

2.6111

2.6229

t/τ0

S
k
ew

n
es
s

(c) Skewness — KdV

0 0.5 11.0454

2.5372

2.5482

2.5592

t/τ0

S
k
ew

n
es
s

(d) Skewness — KdV–BBM

Figure 8. Evolution of the kurtosis and skewness in numerical simulations of
the KdV and KdV–BBM equations.

In order to validate these asymptotic expressions we compare their predictions for the
solitonic gas described in Section 3. The skewness ς and kurtosis κ are computed from
numerical simulations and the time average is then taken. The results of the comparison
are provided in Table 2. One can see that the simple analytical model presented in this
Section is clearly able to describe rarefied solitonic gases. Moreover, one can infer from
(3.1), (3.2) the behaviour of the skewness and kurtosis as the density of the gas decreases
ρ→ 0. However, as ρ→ 0, the jump from the initial value of ς(0) or κ(0) to the stationary
one will diminish, since the interactions between solitons become sparser.

The asymptotic formulas (3.1), (3.2) can be used to estimate the skewness ς and kurtosis
κ for various values of model parameters δ and S in initial stages of the solitonic gas
evolution. However, these formulas contain the statistical averages. using the Monte–
Carlo approach. Namely, we generate M random independent realizations of a solitonic
gas which consists of Ns solitons. The numerical values of parameters M and Ns used
in simulations are given in Table 1. The numerical results are presented on Figures 9 –
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Skewness, ς Kurtosis, κ

KdV (δ = 0) 2.6111/2.6365 7.5402/7.7047

KdV–BBM (δ = 2) 2.5482/2.5732 7.1759/7.3359

Table 2. Comparison of the numerical (nominator) to the approximate ana-
lytical (denominator) estimations for the skewness (3.1) and kurtosis

(3.2) on the data analysed in the previous section.
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Figure 9. Initial kurtosis (left) and skewness (right) dependence on the Stokes–
Ursell number S.

11 where the shadowed areas show the statistical error of Monte–Carlo simulations (±σ,
±1.96σ, where σ is the estimated variance). From these results one can clearly see that for
the fixed density ρ an increase in the Stokes–Ursell number S leads to an increase in ς and
κ (see Figure 9). The BBM coefficient δ has the antagonistic effect as it is illustrated on
Figure 10. When both parameters S and δ are increased simultaneously2, the dependence
of statistical quantities is not monotonic anymore (see Figure 11).

2It means that we introduce an auxiliary homotopy parameter λ ∈ [0, 1] which parametrizes the simul-

taneous change of parameters S and δ in the following way:

S = Smin(1− λ) + Smaxλ, δ = δmin(1 − λ) + δmaxλ.

In the computations presented below we took the values: Smin = 0.1, Smax = 6.0, δmin = 0.0 and δmax = 4.0.
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4. Conclusions and perspectives

In this study we presented several numerical experiments on the solitonic gas turbulence
in the framework of an integrable KdV and a nonintegrable regularized KdV–BBM equa-
tion. The numerical results reported above generalize previous investigations [27, 9] where
only a limited number (a few dozens) of solitons were used to represent a solitonic gas.
Consequently, we reduce the statistical error according to the law of large numbers.

First of all, we showed that the probability distribution for the solitonic gas remains
quasi-invariant during the system evolution for both KdV and KdV–BBM cases. The
special attention was payed to the statistical characteristics such as kurtosis and skewness
which measure the ‘heaviness ’ of tails and the asymmetry of the free surface elevation
distribution. In particular, using the asymptotic methods and Monte–Carlo simulations
we showed that both skewness and kurtosis increase with the Stokes–Ursell number S and
decrease when the BBM term coefficient δ. When both parameters S and δ are increased
gradually and simultaneously, these effects are in competition: first we observe the increase
of these statistical characteristics, but then, this tendency is inversed and they decrease
after reaching their respective maximal values (see Figure 11). We would like to underline
that the proposed Monte–Carlo methodology is much less computationally expensive than
direct numerical simulations. Despite the small number of Monte–Carlo runs (M = 100)
the estimated statistical error is sufficiently small for the purposes of this study. On
the other hand, this approach is restricted, strictly speaking, to the situations where the
solitons are well separated.

The present study opens a number of perspectives for future investigations. More general
nonlinearities could be included into the model along with some weak dissipative and
forcing effects. This could allow us to observe Kolmogorov spectra of a solitonic gas [41].
The nonintegrable effects need some time to be accumulated. Consequently, even longer
simulation times are needed. The interaction of a solitonic gas with a random radiation
field has to be studied as well.
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[32] G. Söderlind. Digital filters in adaptive time-stepping. ACM Trans. Math. Software, 29:1–26, 2003. 6
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