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Algebraic Characterization of Observability in Distance-Regular
Consensus Networks

Alain Y. Kibangou and Christian Commault

Abstract— In this paper, we study the observability issue
in consensus networks modeled with strongly regular graphs
or distance regular graphs. We derive a Kalman-like simple
algebraic criterion for observability in distance regular graphs.
This criterion consists in evaluating the rank of a matrix built
with the components of the Bose-Mesner algebra associated
with the considered graph. Then, we state a simple necessary
condition of observability based on parameters of the graph,
namely the diameter, the degree, and the number of vertices of
the graph.

I. INTRODUCTION

During the last years, networked dynamical systems have
received great attention; examples include sensor networks,
robotic networks, and biological networks to cite few. As a
first step, pioneering works were devoted to study agreement
protocols, such as average consensus, over networks. A huge
amount of algorithms considering various scenarios can be
found in the literature (see [1] and references therein for in-
stance). As a second step, analyzing and characterizing prop-
erties of networks viewed as dynamical systems arose. One
considered issues such as controllability and observability
over consensus networks, i.e. a network running a consensus
algorithm. Studying the observability of a networked system
consists in answering the question: is it possible, for a given
node, to reconstruct the entire network state just from its
own measurements and those of its neighbors?

Observability plays an important role in distributed estima-
tion and intrusion detection problems [2], [3], [4]. Indeed, in
estimating the network state, one can decide if the function-
ing of the network is normal or not and decide an action to
preserve the system functionalities. In consensus networks,
observability properties can serve for designing finite-time
average consensus protocols such as in [5]. Studying the
observability properties of a given network can also help
for characterizing the resilience of the network to external
attacks such as spying. Therefore, one can constrain the net-
work topology to exhibit some desirable resilience properties.
Such a problem is related to the problem of sensor placement
and classification in standard systems, [6].

By viewing a consensus network as a linear dynamical
system, one can resort to standard matrix theoretic tools
for studying observability such as rank test on the Kalman
matrix. Such rank test can be cumbersome for large scale
networks for instance. By taking the underlying graph struc-
ture of network into account, graph theoretic based tools
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have been investigated in the literature, mainly for the dual
problem of controllability. Thus, for a single observer case
(resp. single leader case for the controllability issue), it has
been pointed out that symmetries are obstructions to observ-
ability (resp. controllability) [7], [8], [9]. Then, resorting
to the notion of equitable partitions of a graph necessary
conditions have been stated in [10] for observability over
arbitrary graphs and in [7], [8], [11], [12] for controllability.
Unfortunately, these conditions are not sufficient except for
certain classes of systems (chain and multichain graphs with
a single leader at the extremity of the chain [12]). By
following a completely different perspective of study, the
authors of [13] derive necessary and sufficient conditions
for path and ring graphs. Their method, based on rules of
number theory, was also applied to simple grid and torus
graphs since these graphs can be obtained through Cartesian
products of paths and ring graphs respectively [14], [15].
Extension to arbitrary graphs of such approaches seems to
be a tough task.

One of the main observations from the literature concerns
the difficulty to state graph-theoretic based necessary and
sufficient conditions for arbitrary graphs. Therefore, in this
paper, our study is focused on families of graphs larger than
path or ring graphs, namely strongly regular graphs and
distance regular graphs. The regularity properties of these
kinds of graphs can particularly be useful for robustifying
the network as for cryptographic systems [17]. The main
goal of this paper is to re-visit matrix theoretic, or algebraic,
tools for characterizing observability in consensus networks.
The approach considered herein is based on the Bose-Mesner
algebra [18] and the consensus network is not necessarily a
Laplacian based one, precisely we consider Max-weights or
a Metropolis-Hastings policy.

The paper is organized as follows: in Section II, we
first recall some basic properties of graphs and define the
class of graphs under study. Then in Section III, we study
the observability conditions following an algebraic point of
view. The obtained results are illustrated for some particular
families of graphs before concluding the paper.

II. PRELIMINARIES

At a high level of abstraction, a network can be represented
as a graph. We denote by X (V ;E ) a graph with vertex set
V = {v1,v2, · · · ,vN}, of cardinality |V | = N, and edge set
E ⊂ V ×V , where an edge is an unordered pair of distinct
vertices of X . Usually, the vertex set stands for the set of
nodes in the network whereas the edge set allows taking
interactions (communications) between nodes into account.



A. Basic definitions

For two vertices vi and v j of X (V ;E ), if (vi,v j)∈ E then
vi and v j are said to be adjacent or neighbors.

Definition 1: A graph X (V ;E ) with N vertices is said
to be:
• empty if it is constituted with N isolated vertices with

no edge.
• complete if every pair of distinct vertices is connected

by an edge.
• regular of degree (or valency) K, when every vertex is

precisely adjacent to K vertices.
Since an undirected graph is completely determined by
specifying its adjacency structure, it is standard practice to
capture such a structure by means of the adjacency matrix
A, a binary matrix with entries Ai j defined as: Ai j = 1 if
(vi,v j) ∈ E and zero elsewhere. For regular graphs, we can
note that rows and columns of the corresponding adjacency
matrix sum exactly to the valency K of the graph:

AJN = KJN , JNA = KJN , (1)

where JN stands for the N×N all ones matrix.
Now, let us recall some additional basic definitions on

graphs:
Definition 2: For a graph X (V ;E ):
• A path is a sequence of distinct vertices such that

consecutive vertices in the sequence are adjacent. Its
length is the number of edges involved.

• A graph is connected if for each pair of distinct vertices
there exists a path containing them.

• The distance dist(vi,v j) between two vertices vi and v j
is the length of the shortest path starting from vi and
ending to v j.

• The diameter, D, of a graph is the maximum distance
between any two vertices in V .

After recalling these basic definitions on graphs, now, we
define the family of graphs studied in this paper.

B. Distance regular graphs, strongly regular graphs, and the
Bose-Mesner algebra

For a graph X (V ;E ), we denote by Ni(v j) the ith
neighborhood of v j; i.e. Ni(v j) =

{
vk ∈ V : dist(v j,vk) = i

}
.

Definition 3: A distance regular graph is a graph
X (V ;E ) with diameter D such that there exists bi, i =
0,1, · · · ,D−1, and ci, i = 1,2, · · · ,D, such that for vertices
v j and vk with dist(v j,vk) = i,

bi =
∣∣N1(v j)∩Ni+1(vk)

∣∣ and ci =
∣∣N1(v j)∩Ni−1(vk)

∣∣ .
The array {b0, · · · ,bD−1;c1, · · · ,cD} is called intersection
array of X , with b0 ≥ b1 ≥ ·· · ≥ bD−1 ≥ 0 and 0 < c1 ≤
c2 ≤ ·· · ≤ cD.
We can note that X must be regular with valency b0 =
K and c1 = 1, since N0(vk) = {vk}. We can interpret the
above definition as follows: given two vertices v j and vk
such that d(v j,vk) = i, among the neighbors of v j there are
ci at distance i−1 from vk, ai at distance i, and bi at distance
i+1, with ai +bi + ci = K.

Example 1: A ring graph with N vertices is a dis-
tance regular graph with valency 2. Its intersection ar-
ray is given by {2,1, · · · ,1;1,1, · · · ,1,1} if N is odd and
{2,1, · · · ,1;1,1, · · · ,1,2} if N is even.

Definition 4: A graph X (V ;E ) is said to be strongly
regular if it is neither complete nor empty and there are
integers K, a, and c such that:

1) X (V ;E ) is regular with valency K.
2) Any two adjacent vertices have exactly a common

neighbors.
3) Any two distinct non-adjacent vertices have exactly c

common neighbors.
A strongly regular graph with N vertices, degree K, and
parameters a and c is denoted as SRG(N,K,a,c).
Moreover a connected strongly regular graph SRG(N,K,a,c)
is a distance regular graph of diameter 2 and has intersection
array {K,K−a−1;1,c} [16].
Let Xi(V ;Ei), i = 0, · · · ,D, be the graph, with adjacency
matrices Ai, where two vertices are adjacent if their dis-
tance in X (V ;E ) equals i. The algebra generated by
A = {A0, · · · ,AD} is called the Bose-Mesner algebra of
the distance regular graph X [18]. It fulfills the following
properties:

1) A0 = IN , where IN stands for the N×N identity matrix,

2)
D
∑

i=0
Ai = JN ,

3) AT
i ∈A for each i,

4) AiA j = A jAi ∈ span{A }
5) Ai ◦A j = 0 for i 6= j, where ◦ denotes the Hadamard

product.
A nice property of distance regular graphs that will be

useful in our derivations is given as follows, [16]:

AAi = bi−1Ai−1 +aiAi + ci+1Ai+1. (2)

We can therefore deduce the following lemma:
Lemma 1: The powers Am of the adjacency matrix of

a distance regular graph with valency K, diameter D and
intersection array {b0, · · · ,bD−1;c1, · · · ,cD} can be expanded
in the Bose-Mesner algebra {A0,A1, · · · ,AD} as follows:

Am =
D

∑
j=0

βm, jA j (3)

where the coefficients βm, j depend uniquely on the intersec-
tion parameters:

βm, j = βm−1, j−1c j +βm−1, ja j +βm−1, j+1b j,

with βm,m > 0, βm, j = 0 if m < j, and a j +b j + c j = K.
Proof: : We can easily verify this property for m = 0

and m = 1, we get indeed β0,0 = 1, β1,0 = 0, and β1,1 = 1. For
m = 2, applying (2), we get A2 = AA1 = b0A0 +a1A1 +c2A2.
Therefore β2,0 = b0, β2,1 = a1, β2,2 = c2 > 0. Now let
us assume that the property (3) is fulfilled for Am−1 and
let us check the property for Am. Since Am = AAm−1,

we get Am =
D
∑
j=0

βm−1, jAA j. Applying (2), we can note



that Am =
D
∑
j=0

βm−1, j
(
b j−1A j−1 +a jA j + c j+1A j+1

)
. As a

consequence, Am =
D
∑
j=0

βm, jA j with βm, j = βm−1, j−1c j +

βm−1, ja j +βm−1, j+1b j and βm,m = βm−1,m−1cm > 0.

III. OBSERVABILITY IN CONSENSUS NETWORKS
MODELED WITH A DISTANCE REGULAR GRAPH.

A. Problem formulation

Let us consider a consensus network with N nodes whose
interactions are modeled with a connected regular graph
X (V ;E ) of valency K, with adjacency matrix A. The
agreement protocol is carried out through a Max-weights
policy, which is equivalent to the Metropolis-Hastings one
in the case of regular graphs. The dynamics of the network
are given by

x(k +1) = Wx(k), W =
1

K +1
(IN +A) , (4)

where x(k) ∈ ℜN contains the local values and defines the
state of the network.

We assume that each node can directly observe its own
value and those of its neighbors. Therefore, for vertex vi,
the (K + 1)×N observation matrix Ci results from a row
selection matrix, i.e. a binary matrix (0-1) having only one
nonzero element per row. The observation vector is then
given by

yi(k) = Cix(k). (5)

Our aim is to study the observability of a pair (W,Ci) for
an arbitrary node vi. The focus will be given to connected
graphs since non-observability for unconnected graphs is
obvious.

Let C be the set of the N possible observation matrices
Ci, i = 1,2, · · · ,N. In the sequel, we will assume that the
first row of Ci allows selecting the state of the vertex of
interest, i.e. vi. It is well known that observability of the
pair (W,C), with C ∈ C is guaranteed if and only if the so-

called Kalman matrix OW,C =


C

CW
...

CWN−1

 ∈ ℜN(K+1)×N

is full column rank. As observed by [10], we can always
check the rank condition to determine the observability of the
network. However, it becomes infeasible when the number
of nodes becomes very large. Instead we want to be able
to guarantee observability when the network is built. That
is why it is interesting to investigate how the observability
property is related to the topology of the network. Our aim is
to show that owing to the Bose-Mesner algebra, observability
of distance regular graphs can be characterized by means of
simpler matrices.

B. An algebraic observability condition based on the Bose-
Mesner algebra

In order to carry out our study, we will rewrite OW,C
according to the matrices Ai defining the Bose-Mesner

algebra. First of all, we can note that powers of the state
matrix can be written as:

Wm =
m

∑
j=0

αm, jA j, with αm, j =
(

m
j

)
1

(1+K)m . (6)

Combining this result with Lemma 3, we can show that rather
studying observability through the Kalman matrix, we can
instead study a simpler matrix depending on matrices of the
Bose-Mesner algebra.

Lemma 2: Consider a network with N nodes modeled
with a distance regular graph X of diameter D, valency K,
and Bose-Mesner algebra generated by A = {A0, · · · ,AD}.
Assuming that the dynamics of the network are modeled with
equations (4) and (5), the pair (W,C), C ∈ C , is observable

if and only if the matrix ÔC =


CA0
CA1

...
CAD

 ∈ℜ(D+1)(K+1)×N

is full column rank.
Proof: : From (6), let ΦΦΦ be the N × N nonsingular

triangular matrix of entries αm, j. We get:
W0

W
...

WN−1

= (ΦΦΦ⊗ IN)


A0

A
...

AN−1

 ,

where ⊗ stands for the Kronecker matrix product. Now,
using Lemma 1, we get:

A0

A
...

AN−1

= (ΨΨΨ⊗ IN)


A0
A1
...

AD

 ,

where ΨΨΨ denotes the N× (D + 1) lower trapezoidal matrix
with βm, j as entries. Since the diagonal entries βm,m of ΨΨΨ

are strictly positive and since N ≥ D + 1, ΨΨΨ is full column
rank, i.e. rank(ΨΨΨ) = D+1.
Now, the observability matrix OW,Ci can be rewritten as

OW,C = (IN⊗C)(ΦΦΦ⊗ IN)(ΨΨΨ⊗ IN)

 A0
...

AD

 .

Defining ΓΓΓ = ΦΦΦΨΨΨ ∈ ℜN×(D+1), then using properties of the
Kronecker product we can note that

(IN⊗C)(ΦΦΦ⊗ IN)(ΨΨΨ⊗ IN) = (IN⊗C)(ΓΓΓ⊗ IN)
= (ΓΓΓ⊗ IK+1)(ID+1⊗C).

Therefore

OW,C = (ΓΓΓ⊗ IK+1)

 CA0
...

CAD

= (ΓΓΓ⊗ IK+1)ÔC.

ΦΦΦ being a nonsingular matrix, rank(ΓΓΓ) = rank(ΨΨΨ) = D +
1. Moreover, from properties of the rank of a Kronecker



product, rank(ΓΓΓ⊗ IK+1) = (D + 1)(K + 1), meaning that
ΓΓΓ⊗ IK+1 ∈ℜN(K+1)×(D+1)(K+1) is full column rank. Finally,
we conclude that rank(OW,C) = rank(ÔC). Hence, the pair
(W,C) is observable iff ÔC is full column rank.
The matrix ÔC is simpler than the Kalman matrix. Indeed,
it is smaller and it does not resort to powers of the network
matrix. The matrices CAl involved in ÔC have also some
nice properties. For instance the following result will be
particularly useful in the sequel.

Lemma 3: The first row wT
1,l of the matrix CAl , C ∈ C

can be written as a linear combination of rows of CA j, j =
0,1, · · · , l−1.

Proof: : Let e j be the j-th vector of the canonical
basis of ℜN . For an arbitrary matrix M, the scalar 1T Me j,
where 1 stands for an all ones column-vector with com-
patible dimension, results from the sum of the entries of
the j-th column of M. Let C be the observation matrix
associated with an arbitrary vertex vk. From properties of
distance regular graphs, we know that if dist(vk,v j) = i then
ci neighbors of vertex vk are at distance i− 1 of j, i.e.
1T CAi−1e j = ci. In addition, we know that bi (resp. ai )
neighbors of vk are at distance i+1 (resp. i) of v j. Therefore,
1T CAi+1e j = bi and 1T CAie j = ai +1 since dist(vk,v j) = i.
We also note that the entries of wT

1,l can be written as wT
1,le j,

j = 1, · · · ,N. They are equal to zero or one, with wT
1,le j = 1

meaning that dist(vk,v j) = l. Since from parameters of the
intersection array we get aggregate informations on rows
of CA j, we assume that wT

1,l can be written as wT
1,l =

µ0,lwT
1,0 +

l−1
∑

m=0
µm+1,l1T CAm. Several cases are to be taken

into account:
For j 6= k, let wT

1,le j be a nonzero entry of wT
1,l , meaning that

dist(vk,v j) = l. We get:

1 = wT
1,le j =

l−1

∑
m=0

µm+1,l1T CAme j.

Since dist(vk,v j) = l, only 1T CAme j, m = l−1, l, l + 1, are
nonzero. Hence:

1 = wT
1,le j = µl,l1T CAl−1e j = µl,lcl .

Now, for a zero entry of wT
1,l , i.e. wT

1,le j = 0, we know
that dist(vk,v j) 6= l. As a consequence, there exists q 6= l
such that dist(vk,v j) = q, meaning that wT

1,qe j = 1. As a
consequence, we get 1T CAq−1e j = cq, 1T CAqe j = aq + 1,
and 1T CAq+1e j = bq. For q > l, the involved sum is zero.
For q < l−1, we get:

0 = wT
1,le j = µq,l1T CAq−1e j + µq+1,l1T CAqe j

+µq+2,l1T CAq+1e j

= µq,lcq + µq+1,l(aq +1)+ µq+2,lbq

while for q = l−1:

0 = wT
1,le j = µl−1,l1T CAl−2e j + µl,l1T CAl−1e j

= µl−1,lcl−1 + µl,l(al−1 +1)

For j = k, we get 0 = wT
1,lek = µ0,l + µ1,l(a0 + 1)+ b0µ2,l .

Since vk has at least one vertex v j at distance m, m =

0,1, · · · , l, then, combining the l + 1 independent equations
obtained above we get: Pµµµ l =

(
0 0 . . . 1

)T with

P =



1 a0 +1 b0 0 · · · · · · 0
0 c1 a1 +1 b1 0 · · · 0

0 0 c2 a2 +1 b2
...

0 0 0 c3
. . . . . . 0

...
...

...
. . . . . . bl−2

. . . al−1 +1
0 0 · · · · · · · · · 0 cl


and µµµT

l =
(

µ0,l µ1,l . . . µl,l
)
. Since ci > 0, i =

1, · · · ,D, the system of equations above admits a unique
solution. Therefore for any l, wT

1,l can be written as a
linear combination of the rows associated with CkA j, j =
0,1, · · · , l−1.

Example 2: To illustrate the result of Lemma 3, let us
consider the case of a ring graph with 6 nodes. The corre-
sponding equivalent observability matrix Ô1, associated with
the vertex v1, is given by:

Ô1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

0 1 0 0 0 1
1 0 1 0 0 0
1 0 0 0 1 0

0 0 1 0 1 0
0 0 0 1 0 1
0 1 0 1 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0


The intersection array associated with this graph is
{2,1,1;1,1,2}. According to Lemma 3, by solving

1 1 2 0
0 1 1 1
0 0 1 1
0 0 0 2




µ0,3
µ1,3
µ2,3
µ3,3

 =


0
0
0
1


we get the coefficients µ0,3 = 1, µ1,3 = 0, µ2,3 =−1/2, and
µ3,3 = 1/2. Therefore the 10th row of Ô1, denoted wT

1,3 can
be written as:

wT
1,3 = µ0,3wT

1,0 + µ2,3(wT
1,1 +wT

2,1 +wT
3,1)

+µ3,3(wT
1,2 +wT

2,2 +wT
3,2).

Now, equivalently to the Kalman matrix, we define a Bose-
Mesner observability matrix that completely characterizes
observability in distance regular graphs.

Theorem 1: Consider a network with N nodes modeled
with a distance regular graph X of diameter D and va-
lency K, whose Bose-Mesner algebra is given by A =
{A0, · · · ,AD}. Let C∈C be an observation matrix consistent



with the dynamics of the network modeled with equations
(4) and (5). The pair (W,C) is observable if and only if

the Bose-Mesner observability matrix Ō =

 CA0
...

CAD−1

 ∈
ℜD(K+1)×N is full column rank.

Proof: : From properties of the Bose-Mesner algebra we

know that
D
∑
j=0

A j = JN , which yields
D
∑
j=0

CA j = J(K+1)×N ,

where J(K+1)×N = CJN stands for a (K + 1)×N all ones
matrix. We can conclude that a row of CAD can be written
as a linear combination of the all ones row vector 1T and
those of matrices CA j, j = 0,1, · · · ,D− 1. More precisely
if wT

j,l denotes the j-th row of the matrix CAl , then we

have wT
j,D = 1T −

D−1
∑

l=0
wT

j,l . We can then conclude that wT
j,D =

D
∑

l=0
wT

1,l −
D−1
∑

l=0
wT

j,l , j = 2, · · · ,K + 1. As a consequence the

K last rows of CAD do not increase the rank of Ô. Thus

rank(Ô) = rank(


CA0

...
CAD−1

wT
1,D

). Now, using Lemma 3, we

know that wT
1,D is a linear combination of rows of CA j,

j = 0,1, · · · ,D− 1. We can therefore state that rank(Ô) =

rank(

 CA0
...

CAD−1

),which concludes the proof.

The Bose-Mesner observability matrix is much simpler than
the Kalman matrix. Given, the adjacency matrix the com-
putation of Al has the same complexity than that of Al .
Since in general the diameter D is much lower than N, the
computational cost of the Bose-Mesner observability matrix
is then much lower than that of Kalman matrix. Furthermore,
we can also make use of the result of Lemma 3 for excluding
the first rows of CAd , d = 1,2, · · · ,D−1, in the evaluation
of the rank of the Bose-Mesner observability matrix. Indeed,
let C̄ be the matrix obtained by excluding the first row of

C ∈ C . The matrices Õ =


CA0
C̄A1

...
C̄AD−1

 ∈ ℜ(DK+1)×N and

the Bose-Mesner observability matrix have the same rank.
We define a reduced Bose-Mesner observability matrix as
follows:

Õ =

 C̄A1S
...

C̄AD−1S

 ∈ℜ
(D−1)K×(N−K−1) (7)

where S denotes a column selection matrix such that C̄S =
0K×(NK−1). We can therefore state the following theorem:

Theorem 2: Consider a network with N nodes modeled
with a distance regular graph X of diameter D and va-
lency K whose Bose-Mesner algebra is given by A =
{A0, · · · ,AD}. The pair (W,C) is observable if and only

if the reduced Bose-Mesner observability matrix (7) is full
column rank.

Proof: As said previously observability is ensured if and
only if Õ is full column rank. Let ΠΠΠ be a permutation matrix
so that

ÕΠΠΠ =

(
IK+1 0(K+1)×(N−K−1)

Z Õ

)
.

We can easily show that rank(Õ) = rank(ÕΠΠΠ) = K + 1 +
rank(Õ), [19]. This rank equals N if and only if the reduced
Bose-Mesner observability matrix has rank N−K−1.
As a consequence we get the following necessary condition
similar to that obtained for controllability in Laplacian based
consensus in multi-agents systems [11].

Corollary 1: Consider a network with N nodes modeled
with a distance regular graph X of diameter D and va-
lency K whose Bose-Mesner algebra is given by A =
{A0, · · · ,AD}. Let C∈C be an observation matrix consistent
with the dynamics of the network modeled with equations (4)
and (5). The pair (W,C) is observable only if DK ≥ N−1.

This result allows stating on non-observability of any pair
(W,C) just by considering the diameter, the valency, and the
number of nodes of the graph.

Example 3: The Petersen graph (see Fig. 1) is a
well known strongly regular graphs with parameters
SRG(10,3,0,1). Using Corollary 1, we can directly con-

Fig. 1. Petersen graph.

clude that any pair (W,C) is not observable when the
underlying network topology is modeled with a Pe-
tersen graph. Indeed the valency is lower than the re-
quired lower bound. Similarly, we can deduce that non-
observability is faced by the following strongly regular
graphs (see [20] and [16] for complete description of
these graphs): Brouwer-Haemers (SRG(81,20,1,6)), Higman-
Sims (SRG(100,22,0,6)), M22 (SRG(77,16,0,4)), Hoffman-
Singleton (SRG(50,7,0,1)), Sims-Gewirtz (SRG(56,10,0,2)).
One can note that the condition stated in Corollary 1 is just
necessary as illustrated by the following example:

Example 4: The Hamming graph H(d,q) has vertex set the
set of ordered d-tuples of elements of S , or sequences of
length d from S , where S stands for a set of q elements.
Two vertices are adjacent if they differ in precisely one
coordinate. A Hamming graph H(d,q) can also be viewed as
the result of a cartesian product of d complete graphs with
q vertices. It is distance regular with a number of vertices



N = qd , diameter d, and degree d(q− 1). According to the
necessary condition derived in Corollary 1, we know that
observability is ensured only if d(q− 1) ≥ qd−1

d ; meaning
that the bi-variate function f (d,q) = qd − d2(q − 1) − 1
should be non positive. For d = 4 and q = 2, f (d,q) is non
positive, meaning that the necessary condition is fulfilled.
According to Theorem 2, the corresponding reduced Bose-
Mesner observability matrix should be a rank 11 matrix.
However, actually the rank of this matrix is equal to 9. As a
consequence, H(4,2) is not observable even though it fulfills
the condition in Corollary 1.

Fig. 2. H(4,2)-Hamming graph

Example 5: A n×n Rook’s graph is a SRG with param-
eters (n2,2n− 2,n− 2,2), n ≥ 2. It represents the moves
of a rook on an n× n chessboard. Its vertices may be
given coordinates (x1,x2), where 1 ≤ xi ≤ n, i = 1,2. Two
vertices are adjacent if and only if they have one common
coordinate. They can be viewed as H(2,n)-Hamming graphs.
From Corollary 1, we can deduce that a n×n Rook’s graph
is observable only for the values of n giving rise to non
positive values for the polynomial f (n) = n2−4n+3. Only
two values of n fulfill this condition: n = 2 and n = 3. For
n = 2 the reduced Bose-Mesner observability matrix is a
nonzero vector. Observability is then guaranteed. However
for n = 3, the reduced Bose-Mesner observability matrix

Õ =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


is rank deficient that implies non-observability. Note that the
Rook’s graph with n = 2 is a cycle graph with 4 vertices.

IV. CONCLUSION

In this paper, we have studied the observability issue in
a consensus network described with a connected undirected
graph with a topology constrained to be strongly regular or
distance regular. We have derived an algebraic condition for
observability based on the Bose-Mesner algebra. In particu-
lar, we have introduced two new matrices for characterizing
observability in such graphs. From these matrices, we have

deduced a necessary condition: observability is ensured in
such graphs only if DK ≥ N−1 where D is diameter of the
graph, N the number of vertices, and K the valency of the
graph, i.e. the cardinality of the neighborhood. Instead of a
real matrix, the rank test in the proposed method concerns
binary matrices. Therefore, in our current works, We are
investigating a graph characterization of observability based
on the structure of the reduced Bose-Mesner observability
matrix.
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