Kernels based tests with non-asymptotic bootstrap approaches for two-sample problem - Archive ouverte HAL
Communication Dans Un Congrès JMLR: Workshop and Conference Proceedings Année : 2012

Kernels based tests with non-asymptotic bootstrap approaches for two-sample problem

Résumé

Considering either two independent i.i.d. samples, or two independent samples generated from a heteroscedastic regression model, or two independent Poisson processes, we address the question of testing equality of their respective distributions. We first propose single testing procedures based on a general symmetric kernel. The corresponding critical values are chosen from a wild or permutation bootstrap approach, and the obtained tests are exactly (and not just asymptotically) of level . We then introduce an aggregation method, which enables to overcome the difficulty of choosing a kernel and/or the parameters of the kernel. We derive non-asymptotic properties for the aggregated tests, proving that they may be optimal in a classical statistical sense.
Fichier principal
Vignette du fichier
ArticleColt2012.pdf (478.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00913879 , version 1 (04-12-2013)

Identifiants

  • HAL Id : hal-00913879 , version 1

Citer

Magalie Fromont, Béatrice Laurent, Matthieu Lerasle, Patricia Reynaud-Bouret. Kernels based tests with non-asymptotic bootstrap approaches for two-sample problem. 25th Annual Conference on Learning Theory, Jun 2012, Edimbourg, United Kingdom. pp.23.1-23.22. ⟨hal-00913879⟩
649 Consultations
225 Téléchargements

Partager

More