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Introduction

We study in this paper some classical problems of testing the null hypothesis that two independent sets of random variables are equally distributed, problems which are usually referred to as twosample problems. Three different frameworks are considered: either the sets of random variables are i.i.d. samples from a density model, or samples from a heteroscedastic regression model, or non-homogeneous Poisson processes. Many papers deal with the i.i.d. two-sample problem, from the historical tests of Kolmogorov-Smirnov and Cramer von Mises and their extensions, to the more recent tests of [START_REF] Li | Nonparametric testing the similarity of two unknown density functions: local power and bootstrap analysis[END_REF], [START_REF] Gretton | A kernel method for the two-sample problem[END_REF] and [START_REF] Gretton | A fast, consistent kernel twosample test[END_REF], which are the closest ones to the present study. As for the two-sample problem of testing the equality of signals in non-parametric regression, we can cite among many others the papers by [START_REF] Hall | Bootstrap test for difference between means in nonparametric regression[END_REF], [START_REF] King | Testing the equality of two regression curves using linear smoothers[END_REF], or the more recent one by [START_REF] Franke | Wild bootstrap tests. Signal proc. mag[END_REF]. When non-homogeneous Poisson processes are considered, [START_REF] Bovett | On comparing two Poisson intensity functions[END_REF] and [START_REF] Deshpande | Testing of two sample proportional intensity assumption for non-homogeneous Poisson processes[END_REF] respectively propose conditional and unconditional tests for the two-sample problem, but for a restrictive alternative hypothesis.

In these frameworks, non-parametric tests usually consist in rejecting the null hypothesis when an estimator of a distance between the distributions, chosen as testing statistic, is larger than a certain critical value. The question of the choice of a critical value ensuring that the test is, exactly or at least asymptotically, of the desired level α is a frequent major question. Indeed, the exact or asymptotic distributions of many testing statistics are not free from the common unknown distribution under the null hypothesis. In such cases, general bootstrap methods are often used to build data driven critical values. Except when the permutation bootstrap method is used, authors generally prove that the obtained tests are (only) asymptotically of level α. We here construct testing procedures which satisfy specific non-asymptotic statistical performances properties, thus justifying their use for moderate or even small sample sizes.

The testing statistics that we first introduce can be viewed as extensions of the ones proposed by [START_REF] Li | Nonparametric testing the similarity of two unknown density functions: local power and bootstrap analysis[END_REF], or [START_REF] Gretton | A kernel method for the two-sample problem[END_REF] and [START_REF] Gretton | A fast, consistent kernel twosample test[END_REF] in the density model, when the sample sizes are equal. [START_REF] Li | Nonparametric testing the similarity of two unknown density functions: local power and bootstrap analysis[END_REF]'s statistics are based on approximation kernels from the classical nonparametric kernel estimation approach, whereas [START_REF] Gretton | A kernel method for the two-sample problem[END_REF] and [START_REF] Gretton | A fast, consistent kernel twosample test[END_REF]'s ones consist in unbiased estimators of the Maximum Mean Discrepancy 1 , based on so-called characteristic kernels (see [START_REF] Fukumizu | Characteristic kernels on groups and semigroups[END_REF]). Here, we consider very general kernels, including projection kernels that are related to model selection and thresholding estimation approaches, approximation kernels and Mercer kernels. This will enable us to recover general well-known statistical properties. [START_REF] Li | Nonparametric testing the similarity of two unknown density functions: local power and bootstrap analysis[END_REF] and [START_REF] Gretton | A kernel method for the two-sample problem[END_REF], among other rough bounds, choose the corresponding critical values from an asymptotic Efron's bootstrap method, that may have a high computational cost. On the contrary, [START_REF] Gretton | A fast, consistent kernel twosample test[END_REF] choose them from asymptotic estimates for the null distribution of the testing statistic, which have a smaller computational cost, and good performances in practice when the sample sizes are large. In all cases, the resulting tests are proved to be asymptotically of level α. Though these tests are investigated via a Monte Carlo simulation study for moderate or small sample sizes by [START_REF] Li | Nonparametric testing the similarity of two unknown density functions: local power and bootstrap analysis[END_REF], they are not theoretically justified for finite sample sizes, neither by [START_REF] Li | Nonparametric testing the similarity of two unknown density functions: local power and bootstrap analysis[END_REF], nor by [START_REF] Gretton | A kernel method for the two-sample problem[END_REF] and [START_REF] Gretton | A fast, consistent kernel twosample test[END_REF].

The first main contribution of our work at this stage consists in proposing a new choice for the critical values, based on wild or permutation bootstrap approaches, thus following the original ideas of [START_REF] Mammen | Bootstrap, wild bootstrap, and asymptotic normality[END_REF] and [START_REF] Bickel | A distribution free version of the Smirnov two sample test in the p-variate case[END_REF], but applied to U -statistics as in [START_REF] Arcones | On the bootstrap of U and V statistics[END_REF]. This choice may lead to high computational costs, but it ensures that our tests are exactly (and not only asymptotically) of level α.

The second main contribution consists in deriving, for Poisson processes and in the particular cases of projection and approximation kernels, optimal non-asymptotic conditions on the alternatives, which guarantee that the probability of second kind error is at most equal to a prescribed level β.

The testing procedures that we introduce hereafter are also intended to overcome the question of calibrating the choice of the kernel and/or the parameters of the kernel, which is crucial when using such kernel methods, and which remains unresolved by [START_REF] Gretton | A kernel method for the two-sample problem[END_REF]. They are based on an aggregation approach, that is now well-known in adaptive testing (see [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF] for instance), but not used in statistical learning theory yet to our knowledge. Instead of considering a particular single kernel, we consider a whole collection of kernels, and the corresponding collection of tests, each with an adapted level of significance. We then reject the null hypothesis when it is rejected by one of the tests in the collection. The aggregated tests are constructed to be of level α, and in the particular Poisson framework, the loss in second kind error due to the aggregation, when unavoidable, is as small as possible. The last results are expressed in the form of non-asymptotic oracle type inequalities, that may also lead to optimal results from the adaptive minimax point of view. This is the third, and probably most important, main contribution of this work.

The paper is organized as follows. We describe in Section 2 the three considered two-sample problems, ending with the Poisson process framework, which will be the most convenient to obtain interesting and strong results. We then introduce in Section 3 our testing procedures based on single kernel functions. Section 4 is devoted to the study of the probabilities of first kind error for the three frameworks, and the study of the probability of second kind error for Poisson processes. We present in Section 5 our aggregation approach and the oracle type inequalities satisfied by the aggregated tests in the Poisson process model.

Two-sample problems

Let Z (1) and Z (2) be two independent sets of random variables observed in a measurable space Z, whose -possibly random -cardinalities are respectively denoted by N 1 and N 2 , and whose distributions respectively depend on unknown functions s 1 and s 2 . Let Z (1) = {Z

(1) 1 , . . . , Z

(1)

N 1 } and Z (2) = {Z (2) 1 , . . . , Z (2) N 2 }. From the observation of {Z (1) 1 , . . . , Z (1) N 1 } and {Z (2) 1 , . . . , Z (2) 
N 2 }, we consider the general two-sample problem which consists in testing

(H 0 ) "s 1 = s 2 " against (H 1 ) "s 1 = s 2 ".
Let us introduce a few notations. As usual, P s 1 ,s 2 denotes the joint distribution of (Z (1) , Z (2) ), and E s 1 ,s 2 the corresponding expectation. We set for any event A based on (Z (1) , Z (2) ), P (H 0 ) (A) = sup (s 1 ,s 2 ),s 1 =s 2 P s 1 ,s 2 (A). Furthermore, we will need to consider the pooled set Z = Z (1) ∪ Z (2) , with cardinality N = N 1 + N 2 , whose elements are denoted by {Z 1 , . . . , Z N }.

A density model.

Here N 1 = n 1 and N 2 = n 2 are fixed integers. We assume that (Z (1) 1 , . . . , Z

(1)

n 1 ) and (Z (2) 1 , . . . , Z (2) 
n 2 ) are two independent samples of i.i.d. random variables, observed in a measurable space Z, with respective densities s 1 and s 2 with respect to some non-atomic σ-finite measure ν on Z. Let us also assume that s 1 , s 2 ∈ L 2 (Z, dν). The two-sample problem corresponding to this density model is the most classical one in statistics, but it is also well-known by the learning community. Indeed, many papers of learning theory now deal with it, such as [START_REF] Gretton | A kernel method for the two-sample problem[END_REF] or [START_REF] Gretton | A fast, consistent kernel twosample test[END_REF] for instance.

A heteroscedastic regression model. Here N 1 = n 1 and N 2 = n 2 are also fixed integers. We assume that (Z

(1) 1 , . . . , Z (1) n 1 ) and (Z (2) 1 , . . . , Z (2) 
n 2 ) are two independent samples of i.i.d. random variables such that for every i ∈ {1, . . . , n 1 }, Z

(1) i = (X (1) i , Y (1) i ), with Y (1) i = s 1 (X (1) i ) + σ(X (1) i )ξ
(1) i , and for every i ∈ {1, . . . , n 2 }, Z

(2) i = (X (2) i , Y (2) i ), with Y (2) i = s 2 (X (2) i ) + σ(X (2) i )ξ (2)
i . Here X

(1) i and X

(2) i are observed in a measurable space X , and Y

(1) i and Y

(2) i take their values in a measurable subset Y of R. We set Z = X × Y. The couples (X

(1) i , ξ (1) i ) and (X (2) i , ξ (2) 
i ) are assumed to be identically distributed, and E[ξ

(1) i |X (1) i ] = 0, E[(ξ (1) i ) 2 |X (1) i ] = 1.
Here, s 1 , s 2 , and σ are assumed to be in L 2 (X , P X ) where P X denotes the known common distribution of the X

(1) i 's and X

(2) i 's. Note that since the variance function σ 2 is the same for both signals, the corresponding two-sample problem amounts to the problem of testing the equality of densities for the samples (Z (1) 1 , . . . , Z

(1)

n 1 ) and (Z (2) 1 , . . . , Z (2) 
n 2 ). This problem is also quite classical in statistics, at least in signal detection issues.

23.3

A Poisson process model. Let Z (1) = {Z

(1) 1 , . . . , Z

(1)

N 1 } and Z (2) = {Z (2) 1 , . . . , Z (2) 
N 2 } be the points of two independent Poisson processes observed in Z, with respective intensities s 1 and s 2 with respect to a non-atomic σ-finite measure µ on Z. Notice that here N 1 and N 2 are Poisson distributed random variables.

This framework may seem really unusual at least in learning theory. Nevertheless, it is particularly adapted to some specific applications, in reliability or traffic studies for instance. It can also be merely viewed as a density model, but with a Poissonization of the numbers N 1 and N 2 , that is N 1 and N 2 are assumed to be Poisson distributed random variables. This Poissonization trick allows us, among others, to introduce a rather simple testing procedure satisfying sharp properties, that can not be exactly transposed in the other models. This is the reason why we start with this framework in the next sections.

In order to emphasize the link with the density model, we assume that the measure µ on Z satisfies dµ = ndν, where ν is a fixed non-atomic σ-finite measure which may typically be the Lebesgue measure when Z is a measurable subset of R d . This amounts to considering the Poisson processes Z (1) and Z (2) as n pooled i.i.d. Poisson processes with respective intensities s 1 and s 2 w.r.t. ν. We assume furthermore that s 1 and s 2 belong to L 1 (Z, dν) ∩ L ∞ (Z) ⊂ L 2 (Z, dν).

Single tests based on single kernels

For any measurable function h w.r.t. the measure ν on Z in the density and Poisson process models, or the measure P X on X in the regression model, we define for k = 1, 2,

||h|| k = ( Z |h| k dν) 1/k , or ||h|| k = ( X |h| k dP X ) 1/k
when they exist, and we denote by ., . the scalar product associated with ||.|| 2 . Moreover, for any real valued function h, ||h|| ∞ = sup z∈Z |h(z)|.

Single tests for Poisson processes

Let us take a symmetric kernel function K : Z × Z → R, which will be chosen as in one of the three following examples, and which satisfies

Z 2 K 2 (z, z )(s 1 + s 2 )(z)(s 1 + s 2 )(z )dν z dν z < +∞.
(1)

We introduce the testing statistic T K which is defined by

T K = i,j∈{1,...,N },i =j K(Z i , Z j )ε 0 i ε 0 j ,
where the ε 0 i 's are some marks on Z. More precisely, for every i in {1, . . . , N }, 2) . We have chosen to study and discuss three particular examples of kernel functions. For each example, we explain why T K may be a relevant statistic for the problem of testing (H 0 ) "s 1 = s 2 " against (H 1 ) "s 1 = s 2 ".

ε 0 i = 1 if Z i belongs to Z (1) , ε 0 i = -1 if Z i belongs to Z (
Example 1. Our first choice for K is a kernel function based on a finite orthonormal family {ϕ λ , λ ∈ Λ} for ., . :

K(z, z ) = λ∈Λ ϕ λ (z)ϕ λ (z ). 23.4
This kernel is known as a projection kernel. Indeed, for every function f in L 2 (Z, dν),

Z K(z, z )f (z )dν z = Π S (f )(z),
where S is the subspace of L 2 (Z, dν) generated by {ϕ λ , λ ∈ Λ}, and Π S is the orthogonal projection onto S for ., . . By straightforward calculations, one can see that T K is actually an unbiased estimator of n 2 Π S (s 1 -s 2 ) 2 . Hence, when {ϕ λ , λ ∈ Λ} is well-chosen, T K can also be viewed as a relevant estimator of n 2 s 1 -s 2 2 . Let us give some typical examples of such kernels obtained from the Fourier basis and from the Haar basis in the case where Z = [0, 1] and ν is the Lebesgue measure. We first introduce the Fourier basis (ϕ j ) j≥0 of L 2 ([0, 1], dν) defined by

ϕ 0 (x) = 1 [0,1] (x), ∀j ≥ 1, ϕ 2j (x) = √ 2 cos(2πjx), ϕ 2j-1 (x) = √ 2 sin(2πjx).
Setting Λ = {0, 1, . . . , 2D}, the corresponding kernel is the Dirichlet kernel defined by:

K(z, z ) = 1 + 2 D j=1 cos(2πj(z -z )). Let now {ϕ 0 , ϕ (j,k) , j ∈ N, k ∈ {0, . . . , 2 j -1}} be the Haar basis of L 2 ([0, 1], dν) with ϕ 0 (x) = 1 [0,1] (x) and ϕ (j,k) (x) = 2 j/2 ψ(2 j x -k),
where

ψ(x) = 1 [0,1/2[ (x) -1 [1/2,1[ (x). If Λ = {0} ∪ (j, k), 0 ≤ j ≤ J, k ∈ {0, .
. . , 2 j -1} , the corresponding kernel K corresponds to a projection kernel onto the space generated by all the functions of the Haar basis up to the level J.

Example 2. When Z = R d and ν is the Lebesgue measure, our second choice for K is a kernel function based on an approximation kernel k in L 2 (R d ), and such that k(

-z) = k(z): for z = (z 1 , . . . , z d ), z = (z 1 , . . . , z d ) in Z, K(z, z ) = 1 d i=1 h i k z 1 -z 1 h 1 , . . . , z d -z d h d , where h = (h 1 , . . . , h d ) is a vector of d positive bandwidths. In this case, E s 1 ,s 2 [T K ] = n 2 k h * (s 1 -s 2 ), s 1 -s 2 , where k h (u 1 , . . . , u d ) = 1 d i=1 h i k u 1 h 1 , . . . , u d h d and * is the usual convolution operator w.r.t. ν.
Example 3. Our third choice corresponds to a general Mercer or learning kernel (see [START_REF] Schölkopf | Learning with kernels[END_REF]) such that

K(z, z ) = θ(z), θ(z ) H K ,
where θ and H K are a representation function and a RKHS associated with K. Here, ., . H K denotes the scalar product of H K . Recall that K also has to satisfy (1). This choice of general Mercer kernels leads to a testing statistic close to the one of [START_REF] Gretton | A kernel method for the two-sample problem[END_REF] for the classical i.i.d. two-sample problem when the sizes of the i.i.d. samples are equal. In this case,

E s 1 ,s 2 [T K ] = n 2 Z θ(z)(s 1 -s 2 )(z)dν z 2 H K
, where ||.|| H K is the norm associated with ., . H K . From Lemma 23.5

4 in [START_REF] Gretton | A kernel method for the two-sample problem[END_REF], we know that this quantity corresponds to n 2 times the squared Maximum Mean Discrepancy on the unit ball in the RKHS H K . Moreover, when K is a universal kernel, such as the Gaussian and the Laplacian kernels,

E s 1 ,s 2 [T K ] = 0 if and only if s 1 = s 2 . If Z s 1 dν = Z s 2 dν = 1
, this is sufficient to say that the kernel is characteristic in the sense of [START_REF] Fukumizu | Characteristic kernels on groups and semigroups[END_REF].

Notice that the projection kernels of Example 1 and the kernels based on some particular approximation kernels such as in Example 2 are also Mercer kernels. These kernels (the Dirichlet or Gaussian ones for instance) are thus often used in learning theory, though they are not always normalized in the same way. This difference in normalization may pose some problems in the statistical interpretation of some results (see Comment 4 of Theorem 4), and we will take care of it. However, even when the Mercer kernels lead to some results that remain difficult to interpret from a statistical point of view, their introduction is helpful when the space Z is unusual or pretty large with respect to the (mean) number of observations and/or when the measure ν is not well specified or easy to deal with. In such situations, the use of Mercer kernels may be the only possible way to compute a meaningful test (see [START_REF] Gretton | A kernel method for the two-sample problem[END_REF] where such kernels are used for microarrays data and graphs).

If we denote by the following operator:

K p(z) = K(., z), p , (2) 
by the Cauchy-Schwarz inequality, (1) ensures that K (s 1 -s 2 ), s 1 -s 2 is well-defined. Then, in the three above examples, T K is an unbiased estimator of n 2 K (s 1 -s 2 ), s 1 -s 2 (see Appendix B for more details). It is therefore appropriate to take it as testing statistic, and reject (H 0 ) when T K is larger than a critical value to be defined.

Since the distribution of T K under (H 0 ) is unknown, we turn to a wild bootstrap approach, which comes from the original idea of [START_REF] Mammen | Bootstrap, wild bootstrap, and asymptotic normality[END_REF] applied to U -statistics as in [START_REF] Arcones | On the bootstrap of U and V statistics[END_REF], but which is here proved to be exactly justified.

We introduce a sequence (ε i ) i∈N of i.i.d. Rademacher variables independent of Z. Following [START_REF] Mammen | Bootstrap, wild bootstrap, and asymptotic normality[END_REF] and [START_REF] Arcones | On the bootstrap of U and V statistics[END_REF], the wild bootstrapped version of T K would be given by i,j∈{1,...,N },i =j K(Z i , Z j )ε 0 i ε 0 j ε i ε j . It is easy to see that under (H 0 ), this wild bootstrapped version of T K has the same distribution as

T ε K = i,j∈{1,...,N },i =j K(Z i , Z j )ε i ε j .
Furthermore, from a corollary of a more general result of [START_REF] Daley | An introduction to the theory of point processes[END_REF], whose statement and proof are given in Appendix C for sake of understanding, we prove that under (H 0 ), since s 1 and s 2 are assumed to belong to L 1 (Z, dν), T K and T ε K exactly have the same distribution conditioned on Z (see also Proposition 2). Hence, we consider the (1 -α) quantile of T ε K conditioned on Z denoted by q (Z) K,1-α . We finally introduce the test that rejects (H 0 ) when T K > q

(Z) K,1-α , whose test function is defined by Φ K,α = 1 T K >q (Z) K,1-α . ( 3 
)
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Single tests in the density and heteroscedastic regression models

To shorten the following mathematical expressions, let us define

a n 1 ,n 2 = 1 n 1 (n 1 -1) -c n 1 ,n 2 1/2 b n 1 ,n 2 = -a n 2 ,n 1 = - 1 n 2 (n 2 -1) -c n 1 ,n 2 1/2 , where c n 1 ,n 2 = 1 n 1 n 2 (n 1 + n 2 -2)
.

We consider a symmetric kernel function K chosen as in Example 1, Example 2, or Example 3, replacing Z by X and ν by P X in the regression model, and we introduce the testing statistic defined by

ṪK = i,j∈{1,...,N },i =j K(Z i , Z j ) ε 0 i ε 0 j + c n 1 ,n 2 ,
in the density model, or

TK = i,j∈{1,...,N },i =j Y i Y j K(X i , X j ) ε 0 i ε 0 j + c n 1 ,n 2 ,
in the regression model. The marks ε 0 i 's are here defined by 2) . We can prove by straightforward calculations (see Appendix B for a proof) the following result.

ε 0 i = a n 1 ,n 2 if Z i ∈ Z (1) and ε 0 i = b n 1 ,n 2 if Z i ∈ Z (
Proposition 1 The statistics ṪK and TK are unbiased estimators of K (s 1 -s 2 ), s 1 -s 2 .

Let us now explain how we choose the corresponding critical values. Let R = (R 1 , . . . , R N ) be a random vector uniformly distributed on the set of all permutations of {1, . . . , N } and independent of Z, and let

ε i = a n 1 ,n 2 if i ∈ {R 1 , . . . , R n 1 }, and ε i = b n 1 ,n 2 if i ∈ {R n 1 +1 , . . . , R N }.
We then define in the density model:

Ṫ ε K = i,j∈{1,...,N },i =j K(Z i , Z j ) (ε i ε j + c n 1 ,n 2 ) ,
and denote by q(Z) K,1-α the (1 -α) quantile of Ṫ ε K conditioned on Z. In the same way, we define in the regression model:

T ε K = i,j∈{1,...,N },i =j Y i Y j K(X i , X j ) (ε i ε j + c n 1 ,n 2 ) ,
and denote by q(Z) K,1-α the (1 -α) quantile of T ε K conditioned on Z. We finally consider the tests that reject (H 0 ) when ṪK > q(Z) K,1-α and TK > q(Z) K,1-α , whose test functions are respectively denoted by ΦK,α and ΦK,α .

Notice that rejecting (H 0 ) when ṪK > q(Z) K,1-α is equivalent to rejecting (H 0 ) when i,j∈{1,...,N },i =j K(Z i , Z j )ε 0 i ε 0 j is larger than the (1 -α) quantile of the conditional distribution of i,j∈{1,...,N },i =j K(Z i , Z j )ε i ε j given Z, which simplifies the implementation of ΦK,α . The implementation of ΦK,α can of course be simplified in the same way.

23.7

4. Probabilities of first and second kind errors of the single tests

Let T K , T ε K , q (Z) K,1-α and Φ K,α be either T K , T ε K , q (Z)
K,1-α and Φ K,α respectively in the Poisson process model, or ṪK , Ṫ ε K , q(Z) K,1-α and ΦK,α respectively in the density model, or TK , T ε K , q(Z)

K,1-α
and ΦK,α respectively in the regression model.

Probabilities of first kind error

We here state a result which is at the origin of our choice of the various bootstrap methods involved in the construction of the critical values q

(Z) K,1-α .
Proposition 2 Under (H 0 ), T K and T ε K have the same distribution conditioned on Z.

As a consequence, given α in (0, 1), under (H 0 ),

P s 1 ,s 2 T K > q (Z) K,1-α Z ≤ α. (4) 
By taking the expectation over Z, we thus obtain that

P (H 0 ) (Φ K,α = 1) ≤ α, (5) 
that is Φ K,α is exactly of level α.

Notice that the property (4) is in fact stronger than the usual control of the probability of first kind error (without any conditioning) of the test, such as in (5).

Probability of second kind error for Poisson processes

In this section, we exclusively consider the Poisson process model.

Given β in (0, 1), we here bring out a sufficient condition on the alternative (s 1 , s 2 ) which guarantees that

P s 1 ,s 2 (Φ K,α = 0) ≤ β.
Proposition 3 Let α, β ∈ (0, 1). For any symmetric kernel K satisfying (1), let

A K = n 2 Z (K (s 1 -s 2 )) 2 (s 1 + s 2 )dν, and B K = n 2 Z 2 K 2 (z, z )(s 1 + s 2 )(z)(s 1 + s 2 )(z )dν z dν z .
There exists some absolute constant κ > 0 such that if

E s 1 ,s 2 [T K ] > 2 2A K + B K β + κ ln(2/α) 2B K β , then P s 1 ,s 2 (Φ K,α = 0) ≤ β.
We are now in a position to deduce from Proposition 3 recognizable properties in terms of uniform separation rates. Considering each of our three possible choices for the kernel K, and evaluating A K and B K in these cases, we actually obtain the following theorem.

23.8

Theorem 4 Let α, β ∈ (0, 1), and κ > 0 be the constant of Proposition 3. Let Φ K,α be the test function defined by (3), where K may be chosen as in Section 3.1.

1. When K is constructed as in Example 1 from an orthonormal basis {ϕ λ , λ ∈ Λ} of a Ddimensional linear subspace S of L 2 (Z, dν), we introduce the following condition:

||s 1 -s 2 || 2 2 ≥ ||(s 1 -s 2 )-Π S (s 1 -s 2 )|| 2 2 + (4 + 2 √ 2κ ln(2/α))||s 1 + s 2 || ∞ √ D n √ β + 8||s 1 + s 2 || ∞ βn . (6) 
2. When Z = R d , ν is the Lebesgue measure on Z, and K is constructed as in Example 2 from an approximation kernel k in L 2 (R d ), such that k(x) = k(-x), and h = (h 1 , . . . , h d ) with h i > 0, we introduce the following condition:

||s 1 -s 2 || 2 2 ≥ ||(s 1 -s 2 ) -k h * (s 1 -s 2 )|| 2 2 + 4 + 2 √ 2κ ln(2/α) n √ β ||s 1 + s 2 || ∞ ||s 1 + s 2 || 1 ||k|| 2 2 d i=1 h i + 8||s 1 + s 2 || ∞ βn . (7) 
3. When K is a Mercer kernel associated with a representation function θ and a RKHS H K such that (1) holds as in Example 3, we introduce the following condition:

||s 1 -s 2 || 2 2 ≥ inf r>0 (s 1 -s 2 ) -r -1 K (s 1 -s 2 ) 2 2 + 4 + 2 √ 2κ ln(2/α) nr √ β C K + 8||s 1 + s 2 || ∞ βn , (8) where 
C K = B K /n 2 = Z 2 K 2 (z, z )(s 1 + s 2 )(z)(s 1 + s 2 )(z )dν z dν z .
If K is chosen as in one of these three cases, and if the condition (6), ( 7) or (8) on (s 1 , s 2 ) is satisfied respectively, then P s 1 ,s 2 (Φ K,α = 0) ≤ β.

Comments.

1. The proof of this result relies on two fundamental points. The first one is the fact that T K is an unbiased estimator of n 2 K (s 1 -s 2 ), s 1 -s 2 . The second one is the fact that the bootstrapped testing statistic T ε K , from which the critical value of the test is obtained, is a Rademacher chaos, which can be precisely controlled. When we consider the density and regression models, though the first point can be directly transposed (see Proposition 1), it is not the case for the second point, at this stage of our research.

2. In the first case, we see that the right hand side of ( 6) reproduces a bias-variance decomposition close to the bias-variance decomposition for projection estimators, with a variance term of order √ D/n instead of D/n. This is quite usual in statistical testing theory (see [START_REF] Baraud | Non-asymptotic minimax rates of testing in signal detection[END_REF] for instance), and we know that this leads to sharp upper bounds for the uniform separation rates of the test. Let us explain this point in the case where the kernel K is the projection kernel onto the space generated by the functions of the Haar basis up to the level J. We assume that (s 1 -s 2 ) belongs to some Besov body of index δ > 0 and radius R > 0. Let us recall that this implies that

||(s 1 -s 2 ) -Π S (s 1 -s 2 )|| 2 2 ≤ R 2 D -2δ
, which gives an upper bound for the right hand side of (6). If we choose the value of D (depending on R and δ) minimizing this upper bound, we obtain that 1+4δ) , where C is a constant depending on α, β, R, δ and ||s 1 + s 2 || ∞ . It was proved in [START_REF] Fromont | Adaptive tests of homogeneity for a Poisson process[END_REF] that the uniform separation rate 23.9 over a Besov body of index δ and radius R for testing homogeneity of a Poisson process is precisely bounded from below by n -2δ/(1+4δ) . By simple arguments, this lower bound can be extended to the present two-sample problem. In this sense, the results obtained in Theorem 4 are sharp.

P s 1 ,s 2 (Φ K,α = 0) ≤ β if ||s 1 -s 2 || 2 ≥ Cn -2δ/(
3. The second case also reproduces a bias-variance decomposition when k ∈ L 1 (R d ) and

R d k(z)dν z = 1: the bias is here ||(s 1 -s 2 ) -k h * (s 1 -s 2 )|| 2 . When h 1 = . . . = h d , the variance term is of order h -d/2 1
/n. As usual in the approximation kernel estimation theory, this coincide with what is found in the first case through the equivalence h -d 1 ∼ D (see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] for instance for more details).

4. The third case is however unusual, since the term ||(s 1 -s 2 ) -r -1 K (s 1 -s 2 )|| 2 can not always be viewed as a bias term. Indeed, when Mercer kernels K are used in learning theory, their approximation capacity is not always considered. Even when the Mercer kernel is based on a projection kernel or an approximation kernel (such as the classical Gaussian kernel for instance), its usual normalization does not necessarily lead to sharp results from the point of view of approximation or statistical theory. This is the reason why we wanted to keep the possibility of replacing the usual normalization by a possibly more adequate one, through the factor r -1 .

Multiple or aggregated tests based on collections of kernels

In the previous section, we have considered testing procedures based on a single kernel function K. Using such single tests however leads to the natural question of the choice of the kernel, and/or its parameters: the orthonormal family in Example 1, the approximation kernel and the bandwidth h in Example 2, the Mercer kernel and/or its parameters in Example 3. Authors often choose particular parameters regarding the performance properties that they target for their tests, or use a data driven method to choose these parameters which is not always justified. For instance, [START_REF] Gretton | A kernel method for the two-sample problem[END_REF] and [START_REF] Gretton | A fast, consistent kernel twosample test[END_REF] choose the parameter of the kernel from a heuristic method.

In order to overcome these issues, we propose in this section to consider some collections of kernel functions instead of single ones, and to define multiple testing procedures by aggregating the corresponding single tests, with an adapted choice of the critical values.

The aggregation of single tests

Let us introduce a finite collection {K m , m ∈ M} of symmetric kernels: Z × Z → R that satisfy (1) in the Poisson process and density models, or symmetric kernels: X × X → R such that

X 2 K 2 m (x, x )(s 1 + s 2 )(x)(s 1 + s 2 )(x )dP X (x)dP X (x )
< +∞ in the regression model. Let {w m , m ∈ M} be a collection of positive numbers such that m∈M e -wm ≤ 1. For all m in M, let T Km and T ε Km be defined as in Section 4, just taking K = K m . For u ∈ (0, 1), we denote by q

(Z) m,1-u the (1 -u) quantile of T ε
Km conditioned on the pooled process Z, and we introduce for α ∈ (0, 1):

u (Z) α = sup u > 0, P sup m∈M T ε Km -q (Z) m,1-ue -wm > 0 Z ≤ α .
We now consider the test which rejects (H 0 ) when there exists at least one m in M such that

T Km > q (Z) m,1-u (Z)
α e -wm , whose test function is given by

Φ α = 1 sup m∈M T Km -q (Z) m,1-u (Z) α e -wm >0 . ( 9 
)
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Note that given the observation of the pooled process Z, u (Z)

α and q

(Z) m,1-u (Z)
α e -wm can be estimated by a classical Monte Carlo procedure.

It is quite straightforward to see that this test is of level α and that one can guarantee a probability of second kind error at most equal to β ∈ (0, 1) if one can guarantee it for one of the single tests rejecting (H 0 ) when T Km > q

(Z) m,1-u (Z) α e -wm .
We thus obtain from Theorem 4 an interesting result for Poisson processes.

Oracle type inequalities for Poisson processes

In this section, as in Section 4.2, we exclusively consider the Poisson process model.

Theorem 5 Let α, β ∈ (0, 1). Let {K m , m ∈ M} be a collection of kernels, chosen as in one of the two following cases, and {w m , m ∈ M} be a collection of positive numbers such that m∈M e -wm ≤ 1. Case 1. Let {S m , m ∈ M} be a finite collection of D m -dimensional linear subspaces of L 2 (Z, dν), spanned by orthonormal bases denoted by {ϕ λ , λ ∈ Λ m } respectively. We set, for all m in M, K m (z, z ) = λ∈Λm ϕ λ (z)ϕ λ (z ), and we introduce the condition:

||s 1 -s 2 || 2 2 ≥ inf m∈M ||(s 1 -s 2 ) -Π Sm (s 1 -s 2 )|| 2 2 + 4 + 2 √ 2κ (ln(2/α) + w m ) n √ β ||s 1 + s 2 || ∞ D m + 8||s 1 + s 2 || ∞ βn . (10) Case 2. If Z = R d and ν is the Lebesgue measure on R d , let {k m 1 , m 1 ∈ M 1 } be a collection of approximation kernels such that Z k 2 m 1 (z)dν z < ∞, k m 1 (z) = k m 1 (-z), and a collection {h m 2 , m 2 ∈ M 2 } of vectors h m 2 = (h m 2 ,1 , . . . , h m 2 ,d ) of d positive numbers. We set M = M 1 × M 2 , and for all m = (m 1 , m 2 ) in M, z = (z 1 , . . . , z d ), z = (z 1 , . . . , z d ) in R d , K m (z, z ) = k m 1 ,hm 2 (z -z ) = 1 d i=1 h m 2 ,i k m 1 z 1 -z 1 h m 2 ,1 , . . . , z d -z d h m 2 ,d .
We introduce the following condition:

||s 1 -s 2 || 2 2 ≥ inf (m 1 ,m 2 )∈M ||(s 1 -s 2 ) -k m 1 ,hm 2 * (s 1 -s 2 )|| 2 2 + 4 + 2 √ 2κ(ln(2/α) + w m ) n √ β ||s 1 + s 2 || ∞ ||s 1 + s 2 || 1 ||k m 1 || 2 2 d i=1 h m 2 ,i + 8||s 1 + s 2 || ∞ βn , (11) 
Let Φ α be the test defined by (9). Φ α is a level α test, and if either (10) in Case 1 or (11) in Case 2 is satisfied, then P s 1 ,s 2 (Φ α = 0) ≤ β.

Comparing these results with the ones obtained in Theorem 4, one can see that considering the aggregated tests allows to obtain the infimum over all m in M in the right hand side of ( 10) and ( 11) at the price of the only additional term w m . This result can be viewed as an oracle type inequality: indeed, without knowing (s 1 -s 2 ), we know that the uniform separation rate of the aggregated 23.11

test is of the same order as the smallest uniform separation rate in the collection of single tests, up to the factor w m . By choosing a collection of kernels based on nested or more complicated linear subspaces generated by subsets of the Haar basis of L 2 (Z, dν), when Z = [0, 1] and ν is the Lebesgue measure on [0, 1], as in the paper by [START_REF] Fromont | Adaptive tests of homogeneity for a Poisson process[END_REF], this can be used to prove that our test is adaptive in the minimax sense over classes of alternatives (s 1 , s 2 ) such that (s 1 -s 2 ) belongs to Besov or weak Besov bodies with various parameters (see [START_REF] Fromont | Adaptive tests of homogeneity for a Poisson process[END_REF] for more details).

K m (z, z ) = 1 hm k z-z hm for all m in M.
The tests G and E then correspond to the multiple testing procedure Φ α defined by ( 9), with the collection of kernels {K m , m ∈ M} and {w m , m ∈ M} = {1/6, . . . , 1/6}.

As we noticed in Section 2, the present Poisson process model merely corresponds to a Poissonization of the density model. Hence, conditionally on the number of points of Z (1) and Z (2) , any test for the classical i.i.d. two-sample problem can be used here. We compare our tests with the Kolmogorov-Smirnov test and the test proposed by [START_REF] Gretton | A kernel method for the two-sample problem[END_REF], based on a Gaussian kernel with a heuristic choice for the parameter of the kernel, and a critical value obtained from an Efron's bootstrap method. These two tests are respectively denoted by KS and M (for MMD abbreviation). The probabilities of first kind error of the five tests Ne, G, E, KS and M are estimated from 5000 simulations, and the probabilities of second kind error from 1000 simulations.

We focus on several intensities s 1 and s 2 , taken among:

f 1 (x) = 1 [0,1] (x), f 2,a,ε (x) = (1 + ε)1 [0,a) (x) + (1 -ε)1 [a,2a) (x) + 1 [2a,1) (x), f 3,η (x) =   1 + η j h j 2 (1 + sgn(x -p j ))   1 [0,1] (x) C 2 (η) , f 4,ε (x) = (1 -ε)1 [0,1] (x) + ε   j g j 1 + |x -p j | w j -4   1 [0,1] (x) 0.284 , f 5,λ (x) = λ 2 e -λ|x-1/2| , f 6,µ,σ = 1 √ 2πσ e -|x-µ| 2 /σ 2 ,
where p, h, g, w, ε are defined as in [START_REF] Fromont | Adaptive tests of homogeneity for a Poisson process[END_REF] 

2 , 0 < ε ≤ 1, 0 < a < 1/2, η > 0 and C 2 (η) is such that 1 0 g 2,η (x)dx = 1.
The obtained estimated levels of the tests fluctuate between: 0.042 and 0.053 for KS, 0.048 and 0.052 for M, 0.047 and 0.049 for Ne, 0.051 and 0.054 for G, 0.05 and 0.55 for E.

The obtained estimated powers of the tests are represented in the two following figures. The dots represent the estimated powers, and the triangles represent the upper and lower bounds of asymptotic confidence intervals with confidence level 99%, with variance estimation.

The main point that we can notice here is that when the alternative intensities are very irregular, our tests perform better, even sometimes much better, than the two other ones, and that it is particularly true for the test E. (s 1 , s 2 ) = (f 5,λ , f 6,1/2,1/4 ). The two columns resp. correspond to λ = 7 and λ = 10.

our problem are irregular or not. A good compromise would be in such cases to aggregate several of the studied tests, for instance Ne, M and E.

Since, for every z in Z, E[ε 0 z |Z] = (s 1 -s 2 )(z) (s 1 +s 2 )(z) (see [START_REF] Fukumizu | Characteristic kernels on groups and semigroups[END_REF] for a proof),

E s 1 ,s 2 [T K ] = E s 1 ,s 2 E Z [2] K(z, z )ε 0 z ε 0 z dZ z dZ z Z = E s 1 ,s 2 Z [2] K(z, z ) (s 1 -s 2 )(z) (s 1 + s 2 )(z) (s 1 -s 2 )(z ) (s 1 + s 2 )(z ) dZ z dZ z = n 2 Z 2 K(z, z )(s 1 -s 2 )(z)(s 1 -s 2 )(z )dν z dν z . = n 2 K (s 1 -s 2 ), s 1 -s 2 .
The density model. Let us introduce

c n 1 = 1 n 1 (n 1 -1)
and

c n 2 = 1 n 2 (n 2 -1)
.

Now remark that ṪK = i,j∈{1,...,N },i =j K(Z i , Z j ) ε 0 i ε 0 j + c n 1
,n 2 can be rewritten as

ṪK = i,j∈{1,...,n 1 },i =j K(Z (1) 
i , Z

(1)

j )c n 1 + i,j∈{1,...,n 2 },i =j K(Z (2) 
i , Z

(2)

j )c n 2 -2 n 1 i=1 n 2 j=1 K(Z (1) 
i , Z

(2)

j ) (c n 1 -c n 1 ,n 2 )(c n 2 -c n 1 ,n 2 ) -c n 1 ,n 2 .
Noticing that

(c n 1 -c n 1 ,n 2 )(c n 2 -c n 1 ,n 2 ) = (n 1 n 2 ) -1 + c n 1 ,n 2 2 ,
we obtain by straightforward calculations that

E s 1 ,s 2 ṪK = Z 2 K(z, z )s 1 (z)s 1 (z )dν z dν z + Z 2 K(z, z )s 2 (z)s 2 (z )dν z dν z -2 Z 2 K(z, z )s 1 (z)s 2 (z )dν z dν z = Z 2 K(z, z )(s 1 -s 2 )(z)(s 1 -s 2 )(z )dν z dν z . = K (s 1 -s 2 ), s 1 -s 2 .
ṪK is thus an unbiased estimator of K (s 1 -s 2 ), s 1 -s 2 .

The regression model. We keep the same notations as above for c n 1 and c n 2 . Now remark that TK can be rewritten as

TK = i,j∈{1,...,n 1 },i =j Y (1) i Y (1) j i , X (1) 
j )c n + i,j∈{1,...,n 2 },i =j Y (2) i Y (2) j K(X (2) 
i , X

(2)

j )c n 2 -2 n 1 i=1 n 2 j=1 Y (1) i Y (2) j K(X (1) 
i , X

(2)

j ) (c n 1 -c n 1 ,n 2 )(c n 2 -c n 1 ,n 2 ) -c n 1 ,n 2 .
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To prove the first point of the result, this key argument makes sufficient to compute E exp hdZ for a bounded measurable function h on Z. Since Z (1) and Z (2) are independent, 2) .

E exp hdZ = E exp hdZ (1) E exp hdZ ( 
Since the Laplace functional of Z (1) is given by E exp hdZ (1) = exp e h -1 s 1 dµ , and the Laplace functional of Z (2) has the same form, replacing s 1 by s 2 ,

E exp hdZ = exp e h -1 (s 1 + s 2 ) dµ ,
which is the Laplace functional of a Poisson process with intensity (s 1 + s 2 ) w.r.t. µ.

Let us now prove [START_REF] Fukumizu | Characteristic kernels on groups and semigroups[END_REF]. The distribution of (ε 0 z ) z∈Z conditioned on Z is characterized by the function:

t = (t z ) z∈Z → Φ(t, Z) = E exp z∈Z t z ε 0 z Z .
Let λ be a bounded measurable function defined on Z, and define

E λ = E exp λdZ exp z∈Z t z ε 0 z .
By independency of Z (1) and Z (2) again,

E λ = E exp (λ(z) + t z )dZ (1) z exp (λ(z) -t z )dZ (2) z = E exp (λ(z) + t z )dZ (1) z E exp (λ(z) -t z )dZ (2) z . Then E λ = exp (e (λ(z)+tz) -1)s 1 (z) + (e (λ(z)-tz) -1)s 2 (z) dµ z = exp (e h(z) -1)(s 1 + s 2 )(z)dµ z = E exp hdZ , where 
h(z) = λ(z) + ln e tz s 1 (z) + e -tz s 2 (z) (s 1 + s 2 )(z) . 
Hence, for every bounded measurable function λ defined on Z,

E exp λdZ exp z∈Z t z ε 0 z = E exp λdZ z∈Z e tz s 1 (z) (s 1 + s 2 )(z) + e -tz s 2 (z) (s 1 + s 2 )(z)
.
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Recalling that the marked point processes are characterized by their Laplace functional, this implies that

Φ(t, Z) = E exp z∈Z t z ε 0 z Z = z∈Z e tz s 1 (z) (s 1 + s 2 )(z) + e -tz s 2 (z) (s 1 + s 2 )(z) ,
which concludes the proof of [START_REF] Fukumizu | Characteristic kernels on groups and semigroups[END_REF].

To prove the second point of the result, let h 1 and h 2 be two bounded measurable functions on Z.

E exp h 1 dZ (1) + h 2 dZ (2) = E E exp h 1 dZ (1) + h 2 dZ (2) Z = E E z∈Z exp (h 1 (z) 1 εz=1 + h 2 (z) 1 εz=-1 ) Z .
Remark that there is almost surely a finite number of points in Z and that if z belongs to Z, then

s 1 (z) + s 2 (z) > 0. Moreover E [exp (h 1 (z) 1 εz=1 + h 2 (z) 1 εz=-1 )] = e h 1 (z) s 1 (z) s 1 (z) + s 2 (z) + e h 2 (z) s 2 (z) s 1 (z) + s 2 (z)
.

Then using the expression of the Laplace functional of Z with the function

h = ln e h 1 (z) s 1 (z) s 1 (z) + s 2 (z) + e h 2 (z) s 2 (z) s 1 (z) + s 2 (z) , leads to E exp h 1 dZ (1) + h 2 dZ (2) = exp e h 1 (z) s 1 (z) s 1 (z) + s 2 (z) + e h 2 (z) s 2 (z) s 1 (z) + s 2 (z) -1 (s 1 + s 2 )(z)dµ z .
Finally we have that

E exp h 1 dZ (1) + h 2 dZ (2) = exp e h 1 -1 s 1 dµ exp e h 2 -1 s 2 dµ .
We here recognize the product of the Laplace functionals of two Poisson processes with respective intensities s 1 and s 2 w.r.t. µ. This gives the independence and concludes the result.

Let us introduce the (1 -β/2) quantile of the conditional quantile q (Z)

K,1-α that we denote by q α 1-β/2 . Then for any (s 1 , s 2 ),

P s 1 ,s 2 (Φ K,α = 0) ≤ P s 1 ,s 2 (T K ≤ q α 1-β/2 ) + β/2,
and a condition which guarantees P s 1 ,s 2 (T K ≤ q α 1-β/2 ) ≤ β/2 will be enough to ensure (13). We denote by Z [3] and Z [4] the sets {(z 1 , z 2 , z 3 ) ∈ Z 3 , z 1 , z 2 , z 3 all different} and {(z 1 , z 2 , z 3 , z 4 ) ∈ Z 4 , z 1 , z 2 , z 3 , z 4 all different} respectively. Let us denote by dZ the point measure associated with the pooled process Z.

From Markov's inequality, we have that

P s 1 ,s 2 (|-T K + E s 1 ,s 2 [T K ]| ≥ t) ≤ Var(T K ) t 2 . Since E s 1 ,s 2 [T 2 K ] = E s 1 ,s 2 E Z [2] K(z, z )ε 0 z ε 0 z dZ z dZ z 2 |Z
, by using ( 12), we obtain that

E s 1 ,s 2 [T 2 K ] = E s 1 ,s 2 Z [4] K(z 1 , z 2 )K(z 3 , z 4 ) s 1 -s 2 s 1 + s 2 (z 1 ) s 1 -s 2 s 1 + s 2 (z 2 ) s 1 -s 2 s 1 + s 2 (z 3 ) s 1 -s 2 s 1 + s 2 (z 4 )dZ z 1 dZ z 2 dZ z 3 dZ z 4 +4E s 1 ,s 2 Z [3] K(z 1 , z 2 )K(z 1 , z 3 ) s 1 -s 2 s 1 + s 2 (z 2 ) s 1 -s 2 s 1 + s 2 (z 3 )dZ z 1 dZ z 2 dZ z 3 +2E s 1 ,s 2 Z [2] K 2 (z 1 , z 2 )dZ z 1 dZ z 2 .
Now, from Lemma 5.4 III in [START_REF] Daley | An introduction to the theory of point processes[END_REF] on factorial moments measures applied to Poisson processes, we deduce that

E s 1 ,s 2 [T 2 K ] = Z 4 K(z 1 , z 2 )K(z 3 , z 4 )(s 1 -s 2 )(z 1 )(s 1 -s 2 )(z 2 ) (s 1 -s 2 )(z 3 )(s 1 -s 2 )(z 4 ) dµ z 1 dµ z 2 dµ z 3 dµ z 4 +4 Z 3 K(z 1 , z 2 )K(z 1 , z 3 )(s 1 + s 2 )(z 1 )(s 1 -s 2 )(z 2 )(s 1 -s 2 )(z 3 )dµ z 1 dµ z 2 dµ z 3 +2 Z 2 K 2 (z 1 , z 2 )(s 1 + s 2 )(z 1 )(s 1 + s 2 )(z 2 )dµ z 1 dµ z 2 ,
where the integrals in the right hand side are finite from the assumption (1).

We finally obtain that

E s 1 ,s 2 [T 2 K ] = (E s 1 ,s 2 [T K ]) 2 + 4A K + 2B K , so P s 1 ,s 2 |-T K + E s 1 ,s 2 [T K ]| ≥ 8A K + 4B K β ≤ β 2 .
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Therefore if

E s 1 ,s 2 [T K ] > 8A K + 4B K β + q α 1-β/2 , (14) 
then P s 1 ,s 2 (T K ≤ q α 1-β/2 ) ≤ β/2. Let us now give a sharp upper bound for q α 1-β/2 . Conditionally on Z, T ε K is a homogeneous Rademacher chaos of the form i =i z i,i ε i ε i , where the z i,i 's are some real deterministic numbers and (ε i ) i∈N is a sequence of i.i.d. Rademacher variables. From Corollary 3.2.6 of de la Peña and Giné (1999), we deduce that there exists some absolute constant κ > 0 such that

E exp | i =i z i,i ε i ε i | κ i =i z 2 i,i ≤ 2,
hence by using Markov's inequality, we have that

P   | i =i z i,i ε i ε i | ≥ κ ln(2/α) i =i z 2 i,i   ≤ α.
Applying this result to T ε K , we obtain that q α 1-β/2 is upper bounded by the (1 -β/2) quantile of κ ln(2/α) Z [2] K 2 (z, z )dZ z dZ z . By using Markov's inequality again and Lemma 5.4 III in [START_REF] Daley | An introduction to the theory of point processes[END_REF] again, we finally deduce that

P s 1 ,s 2 Z [2] K 2 (z, z )dZ z dZ z ≥ 2B K β ≤ β 2 ,
and that q α 1-β/2 ≤ κ ln(2/α) 2B K β , which allows to conclude with (14).

Appendix E. Proof of Theorem 4

First, notice that A K ≤ n 3 ||K (s 1 -s 2 )|| 2 2 ||s 1 + s 2 || ∞ and recall that B K = n 2 C K . Then, for all r > 0,

E s 1 ,s 2 [T K ] = n 2 r 2 ||s 1 -s 2 || 2 2 + r -2 ||K (s 1 -s 2 )|| 2 2 -||(s 1 -s 2 ) -r -1 K (s 1 -s 2 )|| 2 2 .
From Proposition 3, we deduce that P s 1 ,s 2 (Φ K,α = 0) ≤ β if

||s 1 -s 2 || 2 2 + r -2 ||K (s 1 -s 2 )|| 2 2 -||(s 1 -s 2 ) -r -1 K (s 1 -s 2 )|| 2 2 ≥ 4 2||s 1 + s 2 || ∞ nβ ||K (s 1 -s 2 )|| 2 r + 2 nr √ β 2 + κ √ 2 ln 2 α C K .
By using the elementary inequality 2ab ≤ a 2 + b 2 with a = ||K (s 1 -s 2 )|| 2 /r and b = 2 √ 2 ||s 1 + s 2 || ∞ /(nβ) in the right hand side of the above condition, this condition can be replaced by:

||s 1 -s 2 || 2 2 ≥ ||(s 1 -s 2 ) -r -1 K (s 1 -s 2 )|| 2 2 + 8||s 1 + s 2 || ∞ nβ + 2 nr √ β 2 + κ √ 2 ln 2 α C K .
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We can even add an infimum over r in the right hand side of the condition, since r can be arbitrarily chosen. This exactly leads to the result in the case 3. The results in the cases 1 and 2 are obtained by taking r = 1 and controlling C K in these two cases.

Control of C K in Case 1. We consider an orthonormal basis {ϕ λ , λ ∈ Λ} of a D-dimensional subspace S of L 2 (Z, dν) and K(z, z ) = λ∈Λ ϕ λ (z)ϕ λ (z ). In this case,

K (s 1 -s 2 ) = λ∈Λ Z ϕ λ (z)(s 1 -s 2 )(z)dν z ϕ λ = Π S (s 1 -s 2 ).
Moreover, since the dimension of S is assumed to be finite, equal to D,

C K ≤ ||s 1 + s 2 || 2 ∞ Z λ∈Λ ϕ λ (z)ϕ λ (z ) 2 dν z dν z ≤ ||s 1 + s 2 || 2 ∞ D.
Control of C K in Case 2. Assume now that Z = R d and introduce an approximation kernel such that k 2 (z)dν z < +∞ and k(-z) = k(z), h = (h 1 , . . . , h d ), with h i > 0 for every i, and

K(z, z ) = k h (z -z ), with k h (z 1 , . . . , z d ) = 1 d i=1 h i k z 1
h 1 , . . . , z d h d . In this case, K (s 1 -s 2 ) = k h * (s 1 -s 2 ), and 

C K = Z k 2 h (z -z )(

Figure 1 :Figure 2 :

 12 Figure 1: Left: (s 1 , s 2 ) = (f 1 , f 2,a,ε ). Each column resp. corresponds to (a, ε) =(1/8, 1), (1/4, 0.7), (1/4, 0.9), and (1/4, 1). Right: (s 1 , s 2 ) = (f 1 , f 3,η ). Each column resp. corresponds to η = 4, 8 and 15.

  The only case where the test M clearly outperforms ours involves more regular intensities. Of course, we do not always know whether the underlying intensities of
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Appendix A. Short simulation study

In this Appendix, we want to bring a part of an experimental study, which aims at illustrating the theoretical results of this paper. We consider the only Poisson process model here. Let Z = [0, 1] or Z = R, n = 100 and ν be the Lebesgue measure on Z. Z (1) and Z (2) denote two independent Poisson processes with intensities s 1 and s 2 on Z with respect to µ = 100 ν. We focus on the multiple testing procedure Φ K,α defined by ( 9), with K chosen as: a projection kernel based on nested subsets of the Haar basis on [0, 1], the standard Gaussian kernel, or the Epanechnikov approximation kernel, and with α = 0.05. The corresponding tests are denoted by Ne, G, and E respectively. To be more explicit, recall that we introduced the Haar basis {ϕ 0 , ϕ (j,k) , j ∈ N, k ∈ {0, . . . , 2 j -1}} in Section 3.1. Let K 0 (z, z ) = ϕ 0 (z)ϕ 0 (z ), and for J ≥ 1, K J (z, z ) = λ∈{0}∪Λ J ϕ λ (z)ϕ λ (z ) with Λ J = {(j, k), j ∈ {0, . . . , J -1}, k ∈ {0, . . . , 2 j -1}}. For J ≥ 1, we take w J = 2 ln(J + 1) + ln(π/ √ 6) . The test Ne then corresponds to the multiple testing procedure Φ α defined by (9), with the collection of kernels {K J , J = 0, . . . , 7} and with the collection of weights {w J , J = 0, . . . , 7}. Let us now describe precisely the tests G and E. Let k be defined by either

in the Epanechnikov case. Let {h m , m ∈ M} = {1/24, 1/16, 1/12, 1/8, 1/4, 1/2} be a collection of bandwidths and {K m , m ∈ M} be the corresponding collection of kernels given by 23.13

Appendix B. The testing statistics as unbiased estimators

The Poisson process model. Let (ε 0 z ) z∈Z be defined by 2) , and let dZ be the point measure associated with the pooled process Z. Denoting by Z [2] the set {(z, z ) ∈ Z 2 , z = z }, we have that

23.15

Hence, by similar arguments as above, we obtain that

TK is thus an unbiased estimator of K (s 1 -s 2 ), s 1 -s 2 .

Appendix C. Exact validity of the wild bootstrap approach in the Poisson process model

We here want to prove that under (H 0 ), the testing statistic T K and its bootstrapped version T ε K exactly have the same distribution conditioned on Z. In this appendix, we prove a more precise result, which is known in the Poisson process field, but never explicitly stated as follows to our knowledge.

Proposition 6 (i) Let Z (1) and Z (2) be two independent Poisson processes on a metric space Z with intensities s 1 and s 2 with respect to some measure µ on Z and such that s 1 , s 2 ∈ L 1 (Z, dµ).

Denote by dZ (1) and dZ (2) the point measures respectively associated with Z (1) and Z (2) . Then the pooled process Z whose point measure is given by dZ = dZ (1) + dZ (2) is a Poisson process on Z with intensity s 1 + s 2 with respect to µ. Let ε 0 z z∈Z be defined by ε 0 z = 1 if z belongs to Z (1) and ε 0 z = -1 if z belongs to Z (2) . Then conditionally on Z, the variables ε 0 z z∈Z are i.i.d. and

with the convention that 0/0 = 1/2. (ii) Respectively, let Z be a Poisson process on Z with intensity s 1 + s 2 with respect to some measure µ. Let (ε z ) z∈Z be a family of random variables with values in {-1, 1} such that, conditionally on Z, the variables (ε z ) z∈Z are i.i.d. and

with the convention that 0/0 = 1/2. Then the point processes Z (1) and Z (2) , respectively defined by the point measures dZ

(1) z = 1 εz=1 dZ z and dZ

(2) z = 1 εz=-1 dZ z are two independent Poisson processes with respective intensities s 1 and s 2 with respect to µ.

All along the proof, denotes Z . One of the key arguments of the proof is that the marked point processes are characterized by their Laplace functional (see for instance [START_REF] Daley | An introduction to the theory of point processes[END_REF]).

23.17 Given β in (0, 1), we here want to bring out an exact condition on the alternative (s 1 , s 2 ) which ensures that P s 1 ,s 2 (Φ K,α = 0) ≤ β.

(13)

23.19