Markov approximation of chains of infinite order in the $\bar{d}$-metric - Archive ouverte HAL
Article Dans Une Revue Markov Processes And Related Fields Année : 2013

Markov approximation of chains of infinite order in the $\bar{d}$-metric

Matthieu Lerasle
D.Y. Takahashi
  • Fonction : Auteur
  • PersonId : 949333

Résumé

We derive explicit upper bounds for the d-distance between a chain of in nite order and its canonical k-steps Markov approximation. Our proof is entirely construc- tive and involves a \coupling from the past" argument. The new method covers non necessarily continuous probability kernels, and chains with null transition probabilities. These results imply in particular the Bernoulli property for these processes.
Fichier principal
Vignette du fichier
revisedGalloEtAl.pdf (463.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00913858 , version 1 (05-12-2013)

Identifiants

  • HAL Id : hal-00913858 , version 1

Citer

Sandro Gallo, Matthieu Lerasle, D.Y. Takahashi. Markov approximation of chains of infinite order in the $\bar{d}$-metric. Markov Processes And Related Fields, 2013, 19 (1), pp.51--82. ⟨hal-00913858⟩
160 Consultations
120 Téléchargements

Partager

More