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Identification d'un modèle non linéaire de signaux SEEG en épilepsie

Les enregistrements EEG de profondeur effectués lors d'examens pré-chirurgicaux de patients épileptiques candidats à une résection, portent a priori des informations précieuses sur la dynamique spatio-temporelle des zones épileptogènes locales. Actuellement l'interprétation de tels signaux, essentiellement qualitative reste un problème délicat et des efforts restent à faire pour interpréter quantitativement l'information physiologique qu'ils contiennent. C'est pourquoi une procédure d'identification d'un modèle de populations neuronales dont les paramètres représentent l'excitation et l'inhibition dans le tissu neuronal enregistré est proposée. Cette méthode maximisant la vraisemblance estimée par un filtre de Kalman étendu (EKF) à l'aide d'un essaim particulaire est comparée sur données simulées à une méthode d'identification proposée lors de travaux antérieurs.

1 Modèle de populations neuronales pour les signaux SEEG en épilepsie

Les patients atteints d'épilepsies partielles temporales et candidats à une résection de la zone épileptogène subissent une série d'examens afin d'identifier la zone pathogène à supprimer. L'un d'eux, la stéréo-électroencéphalographie (SEEG), consiste à enregistrer l'évolution temporelle de l'activité électrique dans différentes structures cérébrales et notamment dans l'hippocampe supposée être très impliquée dans l'initiation de ces crises. Un scénario typique d'enregistrement est représenté figure 1. On observe différents changements de dynamique pouvant être découpés en quatre phases [START_REF] Wendling | Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition[END_REF]. Durant la première appelée interictale (intICTAL) ou activité de fond, on observe un signal erratique de faible amplitude sans transition brutale. La deuxième, appelée pré-ictale (preICTAL) est caractérisée par l'apparition brutale de pointes sporadiques de forte amplitude. Durant la troisième phase appelée ONSET un signal de forte énergie concentrée dans une bande étroite autour de 25Hz apparaît. Le dernier segment considéré est la phase ictale (ICTAL) où le rythme est plus lent que ONSET, occupant une bande aux alentours de 4 à 10 Hz.

Le modèle bio-mathématique représenté figure 2, proposé initialement dans [START_REF] Wendling | Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition[END_REF], décrit l'activité de 3 sous-populations neuronales de l'hippocampe (P si , P f i , P e ) : Une première composée de neurones principaux excitateurs notée P e et deux autres composées d'inter-neurones inhibiteurs lents P si et rapides P f i avec τ ∈ {a, b, g} où {a, b, g} sont les constantes de temps synaptiques des populations P e , P si et P f i (b > g). Les paramètres {A, B, G} sont liés à l'efficacité synaptique de l'excitation et deux types d'inhibition. L'influence des afférences extérieures sur les cellules principales est modélisée par un bruit blanc W (t) de moyenne m w et de densité spectrale σ w . Enfin l'instrumentation est modélisée par un filtrage passe-haut suivi d'un échantillonnange à la fréquence F s = 256Hz. Cette mesure échantillonnée est de plus perturbée par un bruit blanc gaussien V k ∼ N (0, σ v ).

Lors d'une transition intICTAL/ICTAL, les gains synaptiques {A, B, G} sont supposés varier [START_REF] Wendling | Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition[END_REF]. En simulant le modèle pour différentes valeurs des paramètres θ = (A, B, G) on observe en sortie du modèle, figure 3, des signaux de différentes dynamiques proches des dynamiques réellement observées. Il apparaît ainsi nécessaire de construire un estimateur qui à partir d'un signal SEEG Y 1:N détermine la valeur des paramètres (A, B, G).

Méthodes d'identification

Plusieurs travaux ont porté sur l'identification de modèles de populations neuronales. Dans [START_REF] Valdes | Nonlinear eeg analysis based on a neural mass model[END_REF] la vraisemblance est estimée à l'aide d'un filtre LL (linéarisation locale). Deux autres méthodes [START_REF] Jansen | Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns[END_REF] et [START_REF] Wendling | Interictal to ictal transition in human temporal lobe epilepsy : insights from a computational model of intracerebral eeg[END_REF], minimisent une distance évaluée entre la sortie d'un modèle simulé et l'observation à l'aide d'un algo-rithme génétique. Ces deux dernières apparaissent cependant doublement bruitée du fait d'une part de la nature stochastique de l'algorithme génétique et, d'autre part, du bruit nécessaire à la simulation du modèle. Ce phénomène a été discuté plus en détail dans [START_REF] Bellanger | Mesure de l'excitation et de l'inhibition dans le tissu neuronal en épilepsie par identification d'un modèle dynamique non linéaire d'activité eeg[END_REF].

La méthode proposée ici se rapproche plus des travaux de [START_REF] Valdes | Nonlinear eeg analysis based on a neural mass model[END_REF] où cette fois le filtre utilisé pour estimer la vraisemblance est un filtre de Kalman étendu (EKF) [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF] et l'algorithme d'optimisation est un essaim particulaire [START_REF] Clerc | Particle swarm optimization[END_REF]. Elle est développée dans la partie 2.1. Dans la partie expérimentale de cet article (section 3) la méthode proposée est comparée à une méthode déjà proposée dans [START_REF] Wendling | Interictal to ictal transition in human temporal lobe epilepsy : insights from a computational model of intracerebral eeg[END_REF] et résumée dans la section 2.2. L'algorithme génétique est cependant remplacé par un essaim particulaire. La fonction de coût basée sur des caractéristiques spectrales reste identique.

Filtrage EKF et essaim particulaire (EKFSW)

La dynamique d'état du modèle d'hippocampe (figure 2) est un processus markovien continu décrit pouvant être décrit par une équation différentielle stochastique de la forme : 

dX = f (X, θ)dt + G(θ)dβ t (1) où X ∈ R 11 est l'état caché, θ = (A, B, G) ∈ R 3 représente
Y k = x 10 (t k ) + v k (2) 
La période d'échantillonnage est notée ∆ y = 1/(t kt k-1 ).

Pour l'étape de prédiction dans le filtre EKF, le processus continu est approché par un processus discret X k = X(t k ) en utilisant le schéma stochastique de Runge-Kutta à l'ordre 4 [START_REF] Wilkie | Numerical methods for stochastic differential equations[END_REF] pouvant être mis sous la forme : [START_REF] Valdes | Nonlinear eeg analysis based on a neural mass model[END_REF]. La vraisemblance est alors approchée à partir de l'innovation

X k = f srk4 (X k-1 , W k ) (3) où W k ∼ N (0, σ 2 w * ∆ y ). Le filtre EKF discret-discret [6] est ensuite construit à partir du modèle d'état discret (3) et de l'équation d'observation
I k = Y k -H Xk|k-1 par : L(y 1:N , θ) = - N 2 log(2π)- N k=1 1 2 log(|Q Ik |)- N k=1 1 2 I T k Q -1 Ik I k (4) où Q Ik = HP k|k-1 H T + Q v , Xk|k-1 = E[X k |Y 1:k-1 ] et P k|k-1 = E[(X k -Xk|k-1 )(X k -Xk|k-1
) T ] sont fournis par le filtre EKF [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF].

L'optimisation par essaims particulaire [START_REF] Clerc | Particle swarm optimization[END_REF] est une heuristique d'optimisation globale utilisée ici pour trouver la valeur θMV qui maximise la vraisemblance (4). Cet algorithme met en jeu un ensemble de N s particules S = {P i , i = 1, ..., N s } évoluant dans un espace de recherche Θ ⊂ R N θ et positionnées à l'itération k en θ i k ∈ Θ, i = 1, ..., N s . Chaque particule mémorise sa meilleure position rencontrée B i k ∈ Θ durant son parcours antérieur. À chaque itération k chaque particules P i possède un ensemble d'informatrices S i = {P j , j ∈ I i } ⊂ S où I i est un sous ensemble d'indices inclus dans {1, ..., N s }. Entre k et k -1 Une particule évolue en fonction de sa meilleure position rencontrée B i k et de la meilleure position de la meilleure des informatrices I i k . La vitesse v i k et la position θ k d'une particule P i sont ainsi mises à jour récursivement à l'itération k : 

(v i k ) l = α(v i k-1 ) l + c(U T 1 (B i k -θ i k-1 ) + U T 2 (I i k -θ i k-1 )) θ i k = θ i k-1 + v i k (5) 

Moments spectraux estimés et essaim particulaire (MOSW)

Grâce à un essaim particulaire [START_REF] Clerc | Particle swarm optimization[END_REF] (section 2.1) cette procédure minimise une fonction erreur de la forme s(θ, y 0:N ) = d(F (θ), F (y 0:N )) où d est une distance calculée entre un descripteur F (θ) égal à une fonctionnelle de la loi P θ Y 0:N et une estimation F (y 0:N ) de F (θ) évaluée sur les observations. Dans [START_REF] Wendling | Interictal to ictal transition in human temporal lobe epilepsy : insights from a computational model of intracerebral eeg[END_REF] F = [F 1 , F 2 , F 3 , F 4 ] ∈ R 4 est un vecteur de caractéristiques définies sur le vecteur aléatoire Y 0;N centré et normalisé (variance égale à 1). Les 3 premières coordonnées de F correspondent à la puissance (intégrale de la densité spectrale) dans trois sous-bandes B i , i = 1, 2, 3, disjointes et choisies expérimentalement en tenant compte des bandes classiquement considérées dans l'analyse du signal EEG [START_REF] Wendling | Interictal to ictal transition in human temporal lobe epilepsy : insights from a computational model of intracerebral eeg[END_REF]. La 4ème coordonnée correspond à la différence entre les premiers et derniers déciles de la distribution d'amplitude de l'observation afin de mettre en évidence les ondes pointues. Ici le calcul théorique de F (θ) étant hors de portée, on substitue à F (θ) une estimation F ( Ỹ s 0:N s (θ, w)) calculée sur une simulation Ỹ s 0:N s (θ, w) . On introduit ainsi :

d( F ( Ỹ s 0:N s (θ, w)), F (Y 0:N )) = d( Fs (θ, w r ), Fr ) = Fr -Fs (θ, w r ) 2 ≃ d(F (θ), F (y 0:N )) (6) 
où Fr et Fs (θ, w r ) sont des estimations de F calculées respectivement sur le signal SEEG observé Y 0:N et sur le signal EEG simulé Ỹ s 0:Ns (θ, w r ), avec une réalisation de bruit w r , chacun étant préalablement centré et normalisé en puissance. La norme 2 utilisée est euclidienne pondérée.

Résultats sur signaux simulés

Quatre modèles ont été considérés ici correspondant à quatre valeurs de paramètres θ M 4 = (7, 2, 30), θ M 5 = (6, 20, 15), 

Bruit interne des estimateurs

Pour évaluer l'effet du bruit interne sur l'estimateur EKFSW (dû à la stratégie aléatoire de l'algorithme d'optimisation), sur une même réalisation y M pour chacun des quatre modèles M ∈ {M 4, M 5, M 6, B3} (représentées figure 3) la méthode EKFSW à été exécutée 30 fois donnant ainsi 30 estimations θi M , i = 1, ..., 30 par modèle. Les trois premiers graphiques de la figure 4 La même méthodologie est appliquée pour évaluer la méthode des moments associée à l'algorithme en essaim (MOSW). Les résultats sont représentés de la même manière sur la figure 5. On constate ainsi la très forte dépendance au bruit de l'estimateur MOSW par rapport à EKFSW. Les paramètres estimés par cette méthode varient sur des plages importantes. Les signaux simulés avec ces valeurs dispersées présentant des spectres proches de celui du signal à identifier les valeurs du score (défini ici comme le max de -d( Fs (θ, w), Fr ) restent concentrées autour d'une même valeur (proche de 0).

Biais et variance de l'algorithme EKFSW

Trente réalisations différentes y i M , i = 1, ..., 30 ont été générées pour chacun des modèles M ∈ {M 4, M 5, M 6, B3}. Pour chaque réalisation y i M la méthode EKFSW a fourni une estimation θi M de θ. La moyenne et la variance des estimations θ i M , i = 1, ..., 30 pour chaque modèle M ∈ {M 4, M 5, M 6, B3}, sont reportées dans le tableau 1. Le biais de cet estimateur est estimé en calculant la différence entre le vrai paramètre et la moyenne des estimations. Pour θ B3 et θ M 6 le biais de l'estimation de G est plus important.

Conclusion

Les résultats d'identification sur signaux simulés ont montré que pour une même réalisation la méthode EKFSW donnait un résultat très stable contrairement à la méthode MOSW qui est très dépendante du bruit w introduit en entrée du système quand on estime F (θ, w). Pour différentes valeurs de θ, le biais et la variance l'estimateur EKFSW ont été estimés en identifiant θ pour trente réalisations simulées. Les résultats étaient cohérents et présentaient une erreur d'estimation raisonnablement faible. Il n'a pas jugé utile de présenter des résultats d'estimation (biais et variance) par la méthode MOSW obtenus avec des réalisations différentes. Ils sont encore plus dispersés. L'appli- 
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 12 FIG.1-Signal SEEG enregistré dans l'hippocampe d'un patient pendant de la transition de l'état normal à l'état de crise.
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 3 FIG. 3 -Simulations pour différentes valeurs de (A, B, G)
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 4 FIG.4-Résultat de 30 estimations des parmètres θ par la méthode EKFSW sur la même réalisation de quatre modèles dont les paramètres sont θ M 4 = (7, 2, 30), θ M 5 = (6, 20, 15), θ M 6 = (6, 9.5, 15) et θ B3 = (5.5, 30, 15).
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 6 = (6, 9.5, 15) et θ B3 =(5.5, 30, 15), pour lesquelles le modèle simule des dynamiques distinctes. La figure3représente quatre signaux simulés par les différents modèles. L'influence sur la variance d'estimation dans les méthodes précédemment décrites, EKFSW et MOSW, est réalisée dans la section 3.1. Le biais et la variance de l'estimateur EKFSW pour les différents signaux sont ensuite estimés dans la section 3.2.

  montrent pour chaque paramètre A, B, G les dix estimations θi M représentées par des petites croix, avec en abscisse les différents types de signaux y M 4 , y M 5 , y M 6 et y B3 . Les grandes croix correspondent aux vraies valeurs des paramètres θ M 4 = (7, 2, 30), θ M 5 = (6, 20, 15), θ M 6 = (6, 9.5, 15) et θ B3 = (5.5, 30, 15) utilisées pour la simulation. Sur cette figures, les scores L0:N ( θi M ) de chacune des 30 estimations θi M sont représentés en bas à droite pour chaque signal y M , M ∈ {M 4, M 5, M 6, B3}. Pour Y M 5 , Y M 6 , et Y B3 ces scores sont quasi identiques pour les 30 essais. Pour le signal y M 4 , une seule réalisation à mené à un optimum local ce qui explique la présence d'une croix isolée, indiquant un score inférieur à celui indiqué par la position de la majorité des autres croix. A part ce cas, toutes les estimations se concentrent dans une région relativement étroite montrant ainsi, pour θ M 4 , θ M 5 , θ M 6 et θ B3 , une faible dépendance au bruit de l'estimateur EKFSW.
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 5 FIG.5-Résultat de 30 estimations des parmètres θ par la méthode MOSW sur la même réalisation de quatre modèles dont les paramètres sont θ M 4 = (7, 2, 30), θ M 5 = (6, 20, 15), θ M 6 = (6, 9.5, 15) et θ B3 = (5.5, 30, 15).
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  7, 2, 30) Moyenne, variance et biais des estimations sur signaux simulés. cation de EKFSW sur données réelles et les difficultés inhérentes à l'adéquation du modèle sont discutées dans[START_REF] Frogerais | Modelisation et identification en épilepsie : De la dynamique des populations neuroanles aux signaux EEG[END_REF].

		Moyenne Variance Biais
	A	7.33	0.0062	0.33
	B	2.31	0.003	0.31
	G	29.91	0.0084	-0.09
	θ M 5 = (6, 20, 15) A	6.03	0.0014	0.03
	B	20.00	0.0067	0.001
	G	15.08	0.095	0.08
	θ M 6 = (6.5, 9, 15) A	7.02	0.016	0.52
	B	9.29	0.0055	0.29
	G	19.60	7	4.6
	θ B3 = (5.5, 30, 15)			
	A	5.57	0.0021	0.07
	B	30.15	0.11	0.15
	G	18.03	8.5	3.03
	TAB. 1 -