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ABSTRACT
Building performance simulation often fails to predict
accurately the real energy performance, mostly due to
great uncertainties in the input data. Errors in com-
puted performance are particularly significant in the
case of existing buildings, for which the amount of in-
formation about intrinsic characteristics is low. How-
ever, efficient energy retrofit operations make neces-
sary an accurate understanding of the initial state of
a building using a calibrated prediction model. Sev-
eral works have investigated the use of identification
techniques for model calibration. The present paper
investigates the use of such techniques to derive an
energy audit procedure suitable to be an efficient aid
for retrofit. In particular, we study here the possibility
to determine the unknown thermal conductivity of the
envelope and the internal gains based on temperature
measurements only. We show how the adjoint method
can be used to solve efficiently the inverse problem,
while providing a fast method for computing model’s
sensitivities.

INTRODUCTION
Building energy performance simulation often fails
to predict accurately the actual energy performance,
(Norford et al., 1994; Bordass et al., 2004; Demanuele
et al., 2010). Errors in computed performance are par-
ticularly significant in the case of existing buildings,
for which the uncertainties on intrinsic characteris-
tics are high. Most of today’s audit methods are un-
able to provide reliable data under cost and implemen-
tation constraints. However, efficient energy retrofit
operations make necessary an accurate understanding
of the models used for studying and choosing the re-
habilitation procedures. This need has fostered the
research for the developpement of model calibration
techniques. The present paper investigates the use of
inverse modelling to identify some among the most
significant parameters of a model.
State-parameter identification aims at determining
heat sources and intrinsic properties of a mathemati-
cal model based on partial observations of the thermal
state of the building. Using optimal control theory, it
can be formulated as a minimization problem, where
the unknowns are sought as minimizers of a cost func-
tion evaluating the gap between the measures and the
response of the model. Such inverse problems are ill-

posed in the sense of Hadamard, which means that
their solution, if it exists and is unique, does not de-
pend continuously on the data, (Tikhonov and Arsenin,
1977). In order to obtain a stable numerical scheme,
some regularization has to be introduced. We use here
Tikhonov regularization, which consists in adding a
regularization term to the cost function thus providing
local convexity and transforming the initial problem
into a well-posed one, (Chavent, 2009).

The minimization is done using a descent algorithm,
and the gradient is computed with the adjoint state
method, (Lions, 1968). This method gives a way to
derive the gradient by solving a problem which has
the same structure than the direct one, meaning that
the same tools can be used for both computations. An
additional advantage is that the minimization frame-
work gives a complete local sensitivity analysis of the
model (Griesse, 2007), as it will be illustrated in the
last section of this document.

The choice of the regularization term greatly influ-
ences the shape of the reconstructed functions. The
internal gains modelling the use of heating devices
are discontinuous functions of time. However, the
usual L2 framework in least squares minimization
with Tikhonov regularization fails to render disconti-
nuities in time. Several works, in the field of image
restoration, showed that the total variation (TV) is an
efficient regularization term for the reconstruction of
piecewise constant functions, (Rudin et al., 1992; Vo-
gel and Oman, 1996; Osher et al., 2005).

We focus here on the identification of thermal con-
ductivities and internal gains. These two parameters
are reconstructed using simple ambient and wall sur-
face temperatures. Tikhonov regularization is used in
a TV framework to catch time discontinuities in inter-
nal gains. The adjoint method is employed to construct
a non linear minimization algorithm. We show in the
last section how the adjoint model can be used to effi-
ciently compute model’s sensitivities.

The general methodology framework is presented here
on a very simple test case composed of a two-zone
building for illustration purpose, see figure 1. Solar
radiation is neglected.



Figure 1: Case study and walls numbering

BUILDING THERMAL SIMULATION
Inverse identification aims at determining the input
parameters of a mathematical model that minimize
the discrepancy between the model’s response and the
data. We describe in this section the model used for
this study.
The mathematical model describing the thermal state
of the building builds upon standard multizone as-
sumptions for the air temperatures, and partial dif-
ferential equations for the heat flow in the envelope,
(Boland, 1997). In this framework, the entire zone
temperature and pressure are assumed to be homoge-
neous, and the heat transfers through the walls are as-
sumed one-directional. The equations system is com-
posed of eleven partial differential equations for the
temperature distribution into walls, and two ordinary
differential equations for the zone temperatures. All
equations are coupled by radiative and convective ex-
change coefficients.
The evolution of the temperature Ti of the room i ∈
{1; 2} is governed by:

Ci
dTi
dt

=
∑
p∈Pi

Sph
0
p

(
θsp(t)− Ti

)
+Wi

Ti(t = 0) = T 0
i

(1)

whereCi is the room heat capacity in J.K−1, Sp is the
area of the wall p in m, h0p is the convective exchange
coefficient with the surface of the wall p whose tem-
perature is denoted θsp(t), and Wi(t) the internal gains
in J.s−1. Pi is the index set of walls having a surface
adjacent to the zone i.
The evolution of the tempeature field θp(x; t) inside a
wall p of thickness Lp adjacent to the zone i is given
by an equation of the form:

Spcp
∂θp
∂t
− Sp

∂

∂x

(
kp
∂θp
∂x

)
= 0

−kpSp
∂θp
∂x

(0; t) = Sph
0
p (Ti − θp(0; t))

+
∑
m∈Pi

Spαp;m (θm(0; t)− θp(0; t))

kpSp
∂θp
∂x

(Lp; t) =Sph
L
p (Ta − θp(Lp; t))

+ Spβp (T
∞ − θp(Lp; t))

θp(x, t = 0) = θ0p(x)
(2)

where cp is the equivalent heat capacity in
J.m−3.K−1, kp is the equivalent thermal conductiv-
ity in J.s−1.m−1.K−1, αp;m is the radiative exchange
coefficient with the wall m, h0p is the convective ex-
change coefficient with the room temperature and hLp
is the convective exchange coefficient with the outside
temperature Ta(t), and βp is the radiative exchange
coefficient with the sky temperature T∞(t). Equation
(2) is written for a wall with surface (x = 0) adjacent
to the zone i and surface (x = Lp) facing outside.
Of course, the various boundary conditions have to be
adapted to each wall situation.
For the sake of simplicity, we will not write the heat
equation inside every wall. They are all the same, only
boundary conditions differ.

INVERSE PROBLEM
We present in this section the identification method
based on the model described in the previous section.
We suppose that we have air and surface temperature
measurements obtained from sensors deployed on site
for a given period of time. Let ta be the actual time,
we suppose having data starting from the initial time
to the actual time : t ∈ [0; ta]. We set T di (t) the inside
air temperature measurements of the room i ∈ {1; 2},
and θdp(0; t) and θdp(Lp; t) the temperature measure-
ments of the surface (x = 0) and (x = Lp) of the wall
p, respectively. More precisely, the two surface tem-
peratures of walls 1 and 2, and two zone temperature
are measured. We suppose that all the walls in contact
with the outside have the same internal composition.
That is, their thermal conductivity are the same, de-
noted k hereafter.
Based on the measurements described above, we aim
at reconstructing this equivalent thermal conductivity
k of the walls having a surface in contact with the
outside, the equivalent thermal conductivity k2 of the
wall 2, and the internal gains in each room. The in-
ternal gains Wi heating the rooms are due to heating
devices. They are typically discontinuous functions of
time, and traditional identification techniques are un-
able to catch discontinuities in their time evolution. To
deal with the discontinuous nature of the unknowns,
we use here a regularization technique first developped
in the field of image restoration, (Rudin et al., 1992;
Vogel and Oman, 1996). It consists in looking for the
unknowns in the space of bounded variation functions,
thus separating, in the set of unknowns, the smoothly
varying components from the rapidly varying ones.
We make use of this technique here for the reconstruc-
tion of the internal gains, (Brouns et al., 2013).
Let u = {k; k2;W1,W2} ∈ P be the vector of un-
knowns. It belongs to the parameters space P =

(R+)
2×BV (0; ta)

2, where BV (0; ta) is the space of
bounded variation functions. We set the problem as an
optimization problem, consisting in the minimization
of a cost function evaluating the gap between the data
and the model’s response. The problem reads: find



u ∈ P that minimizes

J(u) =
1

2

2∑
p=1

‖θp(0; t)− θdp(0; t)‖2M

+
1

2

2∑
p=1

‖θp(Lp; t)− θdp(Lp; t)‖2M

+
1

2

2∑
i=1

‖Ti(t)− T di (t)‖2M +
ε

2
‖u‖2P

(3)

with M = L2(0; ta) the measurements space, and ε
the regularization parameter.

Levenberg-Marquardt algorithm

Since the model response is not linear with respect
to the thermal conductivities, we use an iterative
method based on the Levenberg-Marquardt approach
(Moré, 1977), coupled with the conjugate gradient
to solve the minimization problem. This technique
relies on the following approximation: let δu =
{δk; δk2; δW1, δW2} ∈ P be a small perturbation of
the unknowns ; the approximation writes:

θp(u+ δu) ' θp(u) + δθp(δu), p ∈ J1; 11K (4)
Ti(u+ δu) ' Ti(u) + δTi(δu), i ∈ J1; 2K

where δTi and δθp are the solutions to the sensitivity
model arround u, written in (5)-(7):


Ci
dδTi
dt

=
∑
p∈Pi

Sph
0
p

(
δθsp(t)− δTi

)
+ δWi

δTi(t = 0) = 0
(5)
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(6)
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Therefore, we introduce a new cost function:

J̃u(δu) =
1

2

2∑
p=1

‖θp(0; t) + δθp(0; t)− θdp(0; t)‖2M

+
1

2

2∑
p=1

‖θp(Lp; t) + δθp(Lp; t)− θdp(Lp; t)‖2M

+
1

2

2∑
i=1

‖Ti(t) + δTi(t)− T di (t)‖2M +
ε

2
‖δu‖2P

(8)

The new unknown is the optimal local increase δu
which will be used for the next linearization step
around un+1 = un + δu.

The cost function (8) is quadratic, which ensures con-
vexity. Its minimum corresponds to the solution of Eu-
ler’s equation:

δu = argmin
δu∈P

J̃u(δu)⇐⇒ ∇J̃u(δu) = 0 (9)

The problem (9) is solved using the conjugate gradi-
ent method. In order to do this, the gradient of (8) is
computed using the adjoint method. With this method,
an exact expression of the gradient can be obtained
by solving the so-called adjoint problem, which as the
same structure as the initial problem (1)-(2).

Adjoint state method

Let Vi, i ∈ J1; 2K, andAp, p ∈ J1; 11K, be the solutions
to the adjoint state equations (10)-(12):


−Ci

dVi
dt

=
∑
p∈Pi

Sph
0
p

(
Asp(t)− Vi

)
+ Ti + δTi − T di

Vi(t = ta) = 0

(10)





−Spcp
∂Ap
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k
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) (
δ0(x) + δLp(x)

)
−kSp

∂Ap
∂x
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0
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m∈Pi
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kSp
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∂x
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(
hLp + βp

)
Ap(Lp; t)

Ap(x, t = ta) ≡ 0
(11)
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(x))
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∂x
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0
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+
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k2S2
∂A2

∂x
(L2; t) = S2h

L
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+
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A2(x, t = ta) ≡ 0
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where δa is the Dirac measure at a. The optimal con-
trol theory tells us that the components of ∇J̃u(δu)
are the following:

〈
∇J̃u; δk̃

〉
=−

∑
p∈J1;7K\{2}

∫ ta

0

∫ Lp

0

δk̃Sp
∂θp
∂x

∂Ap
∂x

+ ε
〈
δk̃; δk

〉 (13)

〈
∇J̃u; δk̃2

〉
=−

∫ ta

0

∫ Lp

0

δk̃2S2
∂θ2
∂x

∂A2

∂x

+ ε
〈
δk̃2; δk2

〉 (14)

〈
Xi; δW̃i

〉
L2(0;ta)

=

∫ ta

0

δW̃iVi

+ ε
〈
δW̃i; δWi

〉
L2(0;ta)

(15)

with i ∈ {1; 2}.
The third and fourth components of the gradient are
obtained by the projection in the space BV (0; ta)
using the following computation (see (Brouns et al.,
2013) for more details):

‖Xi −∇J̃u‖L2(0;ta) = min
v∈BV (0;ta)

‖Xi − v‖L2(0;ta)

(16)
with i ∈ {1; 2}.
Once we have the gradient, we use a descent method
for solving (9). We choose the conjugate gradient
method (see (Nassiopoulos and Bourquin, 2013) for
more details).

IDENTIFICATION RESULTS

In order to give numerical evidence of the perfor-
mance of the method, we generate simulated temper-
ature measurements with our model. The virtual sen-
sors are distributed on the two surfaces of the walls 1
and 2 (meanning that one of the surface temperature
sensors of the wall 1 is outside of the building), and in
each room. The data are sampled at 10−3Hz (every
15 min), during 24h. We add a gausian white noise
with standard deviation 10−2 to the data. These data
are then used as inputs for the inverse algorithm.

We reconstruct simultaneously the thermal conductiv-
ities k and k2, and the internal gains Wi, i ∈ {1; 2}.
The algorithm is initialized by 0.7 for the conductivi-
ties, and by the zero function for the internal gains. All
other parameters are assumed to be known.

The figures 2 and 3 represent the reconstruction of the
thermal conductivities k and k2, respectively. The re-
construction ofW1 andW2 are presented in the figures
4 and 5, respectively.

Figure 2: Reconstruction of k versus the algorithm it-
erations

Figure 3: Reconstruction of k2 versus the algorithm
iterations



Figure 4: Reconstruction of W1 after projection
method in the BV space

Figure 5: Reconstruction of W2 after projection
method in the BV space

COMPUTING SENSITIVITIES
When a calibrated energy performance model is avail-
able, one can accurately predict the overall perfor-
mance of the building. But the next question that
arises is: how robust is this prediction? In other words,
how uncertainties or variations in the parameters of the
model impact the overall performance? One way to
analyse the behaviour of the model in that sense is to
compute the sensitivities of the model’s response with
respect to the various parameters. We show in this
section that with the adjoint method and the numeri-
cal tools presented above this kind of computation is
straightforward.
A retrofit operation aims at reducing the overall energy
demand of a building. This demand is computed as the
overall heat needed to maintain a given setpoint tem-
perature Tc. Neglecting the type of thermal regulation
used to control the heating systems performance, one
can compute the theoretical overall energy demand as
a solution of an optimization problem representing a
trade-off between setpoint temperature control and en-
ergy consumption. This problem can be written as:

find w∗ ∈ L2(0; ta) such that

w∗ = argmin
w∈L2(0;ta)

J (w) (17)

where

J (w) =
2∑
i=1

µ

2
‖Ti − Tc‖2M +

1

2
‖w‖2L2(0;ta)2

(18)

and Ti is the solution of
Ci
dTi
dt

=
∑
p∈Pi

Sph
0
p

(
θsp(t)− Ti

)
+Wi + w

Ti(t = 0) = T 0
i

(19)
In (18), µ is a parameter modulating the severity of
the setpoint temperature constraint. The first term of
(18) measures the gap between the model response for
the rooms air temperature and the setpoint tempera-
ture, while the second measures the overall consump-
tions. The result of (17) represents an optimal theoret-
ical consumption that most of the times is not reached
because of the non-optimal regulation system. But one
can argue that the sensitivities ofw∗ with respect to the
parameters of the model are of the same magnitude as
the sensitivities of the true consumption.
We show hereafter how the adjoint model can be used
in order to compute these sensitivities in this setting.
We will illustrate this method by focusing on the com-
putation of the sensitivities with respect to two param-
eters: k and T∞.
In fact, the cost function (18) depends implicitly on k
and T∞: J (w) = J (w; k;T∞), so we introduce the
following notation:

J (w∗; k;T∞) = min
w
J (w; k;T∞) (20)

The optimal solution w∗ also depends on k and T∞.
The sensitivity of w∗ with respect to k and T∞ is de-
fined as the variation of w∗ under perturbations δk
and δT∞ respectively. These sensitivities, denoted
w̃∗δk and w̃∗δT∞ respectively, are given by the Gâteaux
derivatives:

w̃∗δk = lim
ε→0

w∗(k + εδk;T∞)− w∗(k;T∞)

ε
(21)

w̃∗δT∞ = lim
ε→0

w∗(k;T∞ + εδT∞)− w∗(k;T∞)

ε
(22)

One can show (Griesse, 2007) that the solutions of
the problems (21)-(22) are in fact the solutions of the
folowing problems:

min
w̃∈L2(0;ta)

{
2∑
i=1

µ

2
‖T̃i‖2M +

1

2
‖w̃‖2L2(0;ta)2

}
(23)



with w̃ ∈ L2(0; ta), and T̃i, i ∈ {1; 2} the solutions of
equations (24)-(25):

Ci
dT̃i
dt

=
∑
p∈Pi

Sph
0
p

(
θ̃sp(t)− T̃i

)
+ w̃

T̃i(t = 0) = 0

(24)
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)
= Sp

∂

∂x

(
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∂θp
∂x

)
−kSp

∂θ̃p
∂x

(0; t) = Sph
0
p

(
T̃i − θ̃p(0; t)

)
+
∑
m∈Pi

Spαp;m

(
θ̃m(0; t)− θ̃p(0; t)

)
+ δkSp

∂θp
∂x

(0; t)

kSp
∂θ̃p
∂x

(Lp; t) = −Sp
(
hLp + βp

)
θ̃p(Lp; t)

+ SpβpδT
∞ − δkSp

∂θp
∂x

(Lp; t)

θ̃p(x, t = 0) ≡ 0
(25)

where δk and δT∞ are small perturbations of k and
T∞, respectively. The term θp(x; t) appearing in (25)
is the solution of the initial problem (1)-(2) for the
given k and T∞.
Let w̃∗δk and w̃∗δT∞ be the solution of the minimization
(23) for the problem (21) and (22), respectively. They
satisfy locally:

w∗|k+δk ' w∗|k + w̃∗δk (26)
w∗|T∞+δT∞ = w∗|T∞ + w̃∗δT∞ (27)

Since the model’s response is linear with respect to the
sky temperature, the equation (27) is an equality, and
is globally satisfied. The equation (26) is an approxi-
mation only satisfied for a small perturbation δk.
This sensitivity analysis could be a precious aid for
retrofit. Firstly, it helps the professionals to evaluate
the uncertainty of the energy performance computa-
tion with the knowledge of the uncertainties on the
other parameters. Secondly, it can help the profes-
sionals to determine the best rehabilitation scenario by
highlighting the most sensitive parameters.

CONCLUSION
We showed the possibility to reconstruct thermal con-
ductivities and internal gains of a two-zone building
based on six temperature sensors. We use a projec-
tion method in the space of bounded variation func-
tions to increase the accuracy of the reconstruction of
the internal gains. The procedure has been validated
using sythetic data obtained from simulation, where
numerical noisehas been added. We showed that the
adjoint model can be used efficiently to perform a lo-
cal sensitivity analysis: the problem is equivalent to
a minimization problem similar to the initial inverse
problem. We outlined the methodology in the case of

the computation of sensitivities of the theoretical con-
sumptions of the building with respect to its thermal
conductivities and the sky temperature.
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