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Classification de séries temporelles par modèles markoviens cachés Application à l'ischémie myocardique

Une nouvelle méthodologie pour la détection de l'ischémie myocardique est proposée dans cette communication. L'originalité de la méthode repose sur la prise en compte des dynamiques évolutives des séries extraites de l'ECG alors que les méthodes traditionnelles se basent uniquement sur des mesures statiques. Après l'extraction d'un vecteur de caractéristiques, les dynamiques sont caractérisées à l'aide de modèles Semi-Markovien caché (MSMC). Le détecteur d'ischémie est mis en oeuvre à partir d'un MSMC de référence et d'un MSMC 'ischémique' et en comparant les vraisemblances des séries temporelles. Les résultats obtenus avec les enregistrements de PTCA (angioplastie coronaire transluminale percutanée) de la base de données STAFF3 montrent un très bon de taux de détection (sensibilité de 96% et spécificité de 80%).

Introduction

La détection de l'ischémie myocardique demeure un problème de santé publique avec deux objectifs cliniques majeurs. Le premier, en cas d'ischémie aiguë, est de diminuer le délai entre le début de l'ischémie et l'application d'une procédure de reperfusion adaptée [START_REF] Mcginn | Trends in prehospital delay time and use of emergency medical services for acute myocardial infarction : experience in 4 US communities from 1987-2000[END_REF]. Le second est la détection robuste de l'ensemble des épisodes ischémiques, puisque leur fréquence d'apparition est un indicateur pour la stratification de risque futur d'infarctus [START_REF] Touzé | Risk of myocardial infarction and vascular death after transient ischemic attack and ischemic stroke[END_REF]. Parmi les données électrocardiographiques, l'analyse de la déviation du segment ST reste la méthode la plus répandue dans les systèmes de monitoring [START_REF] Jager | Detection of transient ST segment episodes during ambulatory ECG monitoring[END_REF]. Il est cependant reconnu que pour palier à sa trop faible spécificité, d'autres indicateurs doivent être analysés conjointement [START_REF] Langer | ST Segment Monitoring in Patients with Acute Ischemic Syndromes : Past and Future Revue[END_REF]. L'objet de la base de données STAFF3 a été d'en étudier quelques uns sur des épisodes ischémiques induits par inflation (angioplastie coronaire transluminale percutanée, PTCA) et précisément annotés [START_REF] Pueyo | QRS Slopes for Detection and Characterization of Myocardial Ischemia[END_REF][START_REF] García | Temporal evolution of traditional versus transformed ECG-Based indexes in patients with induced myocardial ischemia[END_REF]. Cependant, quelle que soit la méthode proposée, l'étude de l'évolution des indicateurs se limite à leur tracé en fonction du temps et la décision finale (ischémie présente ou absente) est simplement basée sur des fonctions de décision à simple seuil. Pour améliorer la détection, il apparaît important de prendre en considération l'évolution temporelle de ces indicateurs et si possible leur évolution conjointe. La solution à ce problème peut être approchée par une modélisation des dynamiques. Plusieurs alternatives ont été proposées pour ré-pondre à cette problématique. Les réseaux de neurones ont été adaptés aux séries temporelles avec par exemple les réseaux de neurones à délai temporel [START_REF] Waibel | Phoneme recognition using time-delay neural networks[END_REF] et les réseaux de neurones récursifs [START_REF] Connor | Recurrent Networks and NARMA Modeling[END_REF]. Les espaces de phases reconstruits (EPR), largement employés pour l'analyse des dynamiques des systèmes non-linéaires, sont aussi généralisables en utilisant des mixtures de gaussiennes [START_REF] Povinelly | Towards the prediction of transient ST changes[END_REF] ou des fonctions polynomiales [START_REF] Abarbanel | Predicting physical variables in timedelay embedding[END_REF] pour modéliser la trajectoire intégrée dans l'EPR. Finalement, le filtrage de Kalman présente une méthodologie pour ajuster les paramètres de systèmes linéaires ou non-linéaires, définis par des équations de transitions entre états et d'observations. Comparés à ces différentes approches, les modèles de Markov cachés semblent cependant plus adaptés, en particulier pour le problème considéré dans cette communication : leur structure reste simple, avec un seul hyper-paramètre à ajuster (le nombre d'états), et l'extension aux modèles semi-Markovien cachés (MSMC) est encore plus adapté pour les signaux continus. Enfin, aucun a priori n'est requis sur les données et les différentes manipulations des modèles (apprentissage, test, simulation) sont faciles à mettre en oeuvre.

Pour représenter l'évolution des paramètres extraits de l'ECG dans le contexte de l'ischémie, un MSMC de référence et un MSMC ischémique sont construits, puis utilisés dans un détecteur d'ischémie. La section 2 détaille avec soin la méthode employée alors que la section 3 propose les résultats obtenus sur la base de données STAFF3.

Méthode proposée

La méthode proposée est appliquée en 3 étapes. La première est l'extraction des caractéristiques de l'ECG, sous forme de séries temporelles. La seconde concerne la modélisation de ces séries, avec un modèle de référence et un modèle d'ischémie. La dernière est l'application du détecteur à partir des courbes de log-vraisemblance correspondant aux deux modèles.

Extraction des indicateurs de l'ECG

L'extraction d'indicateurs pertinents de l'ECG a pour objectif de limiter la taille des données à analyser et de conserver une information facilement interprétable par les cardiologues. Elle est basée sur une chaîne de traitement du signal qui se décompose en 5 étapes :

1. la suppression des interférences du secteur par filtrage adaptatif.

2. la détection des battements de toutes les voies ECG par l'algorithme de Pan & Tompkins [START_REF] Pan | A real-time QRS detection algorithm[END_REF].

3. l'application d'une analyse en composantes principales sur chacun des battements détectés à l'étape 2. Cette étape permet de reconstruire une représentation orthogonale des battements et de réduire le nombre de voies (de 12 à 2 dans notre cas). Les étapes 4 et 5 sont ensuite appliquées sur chacune de ces deux voies.

4. le recalage des battements projetés sur le premier battement de l'enregistrement, pour limiter les variations dues à la respiration.

5. la segmentation de chacun des battements à l'aide d'une décomposition en ondelettes [START_REF]Improving ECG Beats Delineation with an Evolutionnary Optimization process[END_REF] qui permet d'estimer les positions temporelles de début et de fin du complexe QRS, de fin de l'onde T, des extrema des ondes Q, R, S et T. Les amplitudes des extrema et le niveau ST [START_REF] Smrdel | Automated detection of transient ST-segment episodes in 24h electrocardiograms[END_REF] sont aussi conservés.

Se pose ici, tout au long de cette chaîne, le problème difficile du choix optimum des seuils de décision. Une solution assurant l'optimisation par algorithmes génétiques a déjà été proposée et reportée dans la littérature [START_REF]Improving ECG Beats Delineation with an Evolutionnary Optimization process[END_REF]. A l'issu de ce traitement préliminaire, les indicateurs suivant (tableau 1) sont extraits et rééchantillonés à 1Hz.

TAB. 1 -Indicateurs extraits

Amplitudes

Ondes Q, R, S et T, niveau ST Intervalles RR, QRS (durée du complexe QRS), QT et RT

Modélisation des séries extraites

Les MSMC [START_REF] Levinson | Continuously variable duration hidden markov models for automatic speech recognition[END_REF] sont une spécialisation des modèles markoviens pour représenter des séries temporelles multivariées et à valeurs continues. Les états d'un MSMC à états continus diffèrent des états du MMC standard sur deux points :

-chaque état représente un sous-espace des distributions observées. Pour réduire les temps de calcul, ces distributions (multidimensionnelles dans notre cas) sont représentées par des lois gaussiennes. -chaque état modélise la loi de probabilité du temps passé dans cet état par une loi gaussienne, tronquée en zéro. Dans les cas de signaux continus, où les temps passés dans chaque état peuvent être longs, la loi gaussienne semble en effet plus adaptée que la loi géométrique initialement présente dans les MMC. Avant d'apprendre les modèles, les séries temporelles sont normalisées par rapport à l'écart type mesuré sur des enregistrements de référence, afin d'analyser les différents indicateurs extraits avec le même poids. Ensuite les paramètres des modèles sont initialisés à l'aide d'un MMC et dans un second temps, l'algorithme de Viterbi [START_REF] Forney | The Viterbi algorithm[END_REF], adapté aux MSMC, est appliqué. Deux modèles sont appris sur une base de données annotées (cf. section Résultats). Le premier, M od P T CA , qui caractérise l'ischémie, est tout d'abord appris et le second,

Réalisation du détecteur

En utilisant une fenêtre glissante, qui observe donc une portion de série temporelle multivariée (O i ), il est possible de calculer les log-vraisemblances par rapport aux deux modèles et ainsi de les mettre en compétition. Cependant, plutôt que d'utiliser le maximum de vraisemblance, on préfère étudier la différence avec un seuil S, tel que :

si LogP (O i , M od Ref ) -LogP (O i , M od P T CA ) > S alors pas d'ischémie sinon ischémie
L'utilisation de cette règle se justifie par le fait qu'en période non ischémique, la log-vraisemblance avec M od P T CA est quelquefois légèrement supérieure à celle du modèle de M od Ref alors qu'en période d'ischémie, la différence en faveur de M od P T CA est généralement très nette (cf section Résultats). Le seuil de décision S est donc optimisé sur les données d'apprentissage, en cherchant à minimiser le nombre total d'erreurs de détection. L'expérimentation a été réalisée sur la base de données STAFF3. Cette base contient des enregistrements PTCA et des enregistrements pré-opératoires pour 108 patients. Les 65 enregistrements de patients sans antécédents d'infarctus ont été conservés. L'intérêt majeur de cette base de données réside dans de précises annotations des périodes d'occlusion du ballon. Cette section détaille donc l'apprentissage des modèles à partir des données de la base STAFF3 puis évalue les performances du détecteur d'ischémie proposé. 

Apprentissage des modèles

Evaluation du détecteur

Le détecteur précédemment décrit section 2.3 a été appliqué sur les enregistrements préopératoires et sur les enregistrements en inflation de la seconde moitié des patients de la base STAFF3. De plus, 10 tirages ont été réalisés pour ob-tenir des résultats indépendants du tirage effectué. Les logvraisemblances sont calculées à l'aide d'une fenêtre temporelle glissante de 140 secondes et les résultats sont analysés en fonction des indicateurs inclus dans les modèles. La figure 2 Il apparaît que les indicateurs RT et amplR produisent les résultats les plus intéressants. La sensibilité mesurée expérimentalement pour l'indicateur RT seul est quasiment de 96% pour une spécificité de 80%. Cette dernière, obtenue sur les enregistrements pré-opératoires de la base STAFF3, correspondrait à environ une fréquence de 3 fausses détections par heure d'enregistrement.

La courbe ROC, évaluant les résultats de classification en fonction du seuil de décision, pour l'indicateur RT, est reportée figure 3. Cette courbe ROC montre, comme nous l'avions souligné, qu'appliquer directement le maximum de vraisemblance pour assigner les séries temporelles aux deux modèles conduit à une sensibilité élevée mais au détriment d'une spécificité faible (seuil S = 0). Le seuil S = SLearn estimé pendant l'apprentissage n'est pas exactement le même que S = SOptim, le seuil optimal en terme de taux d'erreur de classification. SLearn est cependant déjà un bon compromis entre sensibilité et spécificité. La différence entre SLearn et SOptim est probablement due à la taille de notre ensemble d'apprentissage, qui ne peut pas permettre à M od Ref de généraliser tous les bruits présents dans les enregistrements de référence (ce qui explique la spécificité plus faible) mais qui est cependant suffisant pour caractériser les dynamiques de l'ischémie (ce qui conduit à une bonne sensibilité). FIG. 3 -Courbe ROC du seuil de décision, pour une modélisation de l'indicateur RT. Points particuliers : i) S = 0, point correspondant à l'application du maximum de vraisemblance ; ii) SLearn, seuil estimé sur l'ensemble d'apprentissage ; iii) SOptim, seuil optimal obtenu sur l'ensemble de test et qui minimise la distance par rapport au point (0 ;1).

Conclusion

Un détecteur d'ischémie, basé sur les MSMC et exploitant les dynamiques multivariées de séries temporelles, est proposé. L'apprentissage de deux modèles, effectué à l'aide de l'algorithme de Viterbi adapté aux MSMC, permet de caractériser les variations des indicateurs pendant les périodes "normales" et les variations pendant l'ischémie. Ces modèles statistiques sont ensuite utilisés pour estimer les vraisemblances de nouvelles séries temporelles. Les premiers résultats démontrent la pertinence de l'approche et semblent intéressants : une très bonne sensibilité (96%) et une spécificité de 80% sont observés. L'intervalle RT se révèle être un indicateur discriminant. A très court terme, il apparaît donc pertinent d'intégrer des indicateurs plus spécifiques, tels que les coefficients de la trans-formée de Karhunen-Loève caractérisant l'onde T [START_REF] García | Temporal evolution of traditional versus transformed ECG-Based indexes in patients with induced myocardial ischemia[END_REF].
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 1 FIG. 1 -Apprentissage d'un modèle de référence et d'un modèle ischémique. Ces modèles sont respectivement appris à partir des indicateurs observés en pré-inflation (ou en préopératoire) et en inflation. Deux ensembles (un de référence et un d'ischémie) d'apprentissage sont extraits de la base STAFF3 pour créer les modèles M od P T CA et M od Ref , à partir de la moitié des patients sélectionnés aléatoirement. Pour M od P T CA , nous exploitons naturellement les données entre le début et la fin de l'inflation. Pour M od Ref , les données préinflation, qui sont acquises avec des conditions très proche de l'ischémie induite par l'inflation du ballon, sont utilisées en priorité. Si l'enregistrement ne contient pas de données préinflation, les ECG pré-opératoires sont utilisés en remplacement. La figure 1 représente cette apprentissage en considérant ici les indicateurs Niveau ST, Intervalle RT et RR.

  présente un exemple d'évolution des log-vraisemblances pour une observation multivariée O i constituée du niveau ST et des intervalles RT et RR.
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 2 FIG. 2 -Test des séries temporelles sur les deux modèles M od P T CA et M od Ref . Une fenêtre glissante présente des portions des indicateurs aux modèles afin d'en estimer la logvraisemblance. Les deux log-vraisemblances sont ensuite comparées pour faire la détection. La table 2 présente les meilleurs résultats obtenus. Les faux positifs correspondent à des détections d'ischémies dans les enregistrements pré-opératoires et les faux négatifs à des nondétections dans les enregistrements avec inflation. Ils sont cumulés sur les 10 tirages. Les sensibilités, spécificités et les taux d'erreurs ont été calculés à l'aide des relations suivantes : Se = 1 -Nb Fn Nb PTCA ; Sp = 1 -Nb Fp Nb Ref ; Tx Err = Nb Fp + Nb Fn Nb PTCA + Nb Ref

M od Ref , qui caractérise les autres variations des indicateurs, hérite des états de M od P T CA , mais avec ses propres matrices de transition et probabilités de durées dans les états. Ceci permet de différencier les séries en priorité en fonction de leurs dynamiques et non en fonction de leurs amplitudes. Dans la même optique, pour chaque indicateur et pour chaque patient, une référence (la médiane sur les 20 premières secondes) est systématiquement soustraite et ce sont les variations par rapport à cette référence qui sont conservées.