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Abstract: We consider the problem of interaction neighborhood estima-
tion from the partial observation of a finite number of realizations of a
random field. We introduce a model selection rule to choose estimators of
conditional probabilities among natural candidates. Our main result is an
oracle inequality satisfied by the resulting estimator. We use then this selec-
tion rule in a two-step procedure to evaluate the interacting neighborhoods.
The selection rule selects a small prior set of possible interacting points and
a cutting step remove from this prior set the irrelevant points.
We also prove that the Ising models satisfy the assumptions of the main
theorems, without restrictions on the temperature, on the structure of the
interacting graph or on the range of the interactions. It provides therefore
a large class of applications for our results. We give a computationally effi-
cient procedure in these models. We finally show the practical efficiency of
our approach in a simulation study.

AMS 2000 subject classifications: Primary 62M40; secondary 62M45.
Keywords and phrases: Ising Model, Model Selection, Computationally
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1. Introduction

Graphical models, also known as random fields, are used in a variety of domains,
including computer vision [4, 21], image processing [9], neuroscience [19], and
as a general model in spatial statistics [18]. The main motivation for our work
comes from neuroscience where the advancement of multichannel and optical
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technology enabled the scientists to study not only a unit of neurons per time,
but tens to thousands of neurons simultaneously [20]. The very important ques-
tion now in neuroscience is to understand how the neurons in this ensemble
interact with each other and how this is related to the animal behavior [8, 19].
This question turns out to be hard for three reasons at least. First, the experi-
menter has always only access to a small part of the neural system. Moreover,
there is no really good model for population of neurons in spite of the good
models available for single neurons. Finally, strong long range interactions exist
[15]. Our work tries to overcome some of these difficulties as will be shown.

A random field can be specified by a discrete set of sites G, possibly infinite, a
finite alphabet of spins A, and a probability measure P on the set of configura-
tions X (G) = AG. One of the objects of interest are the one-point specification
probabilities, defined for all sites i in G and all configurations x in X (G) by a
regular version of the conditional probability

P ( x(i) | x(j), j ∈ G/{i}) .

From a statistical point of view, two problems are of natural interest.

Interaction neighborhood identification problem (INI):
The INI problem is to identify, for all sites i in G, the minimal subset Gi

of G necessary to describe the specification probabilities in site i (see Sections
2 and 3 for details). Gi is called the interaction neighborhood of i and the
points in Gi are said to interact with i. Gi is not necessarily finite but only
a finite subset VM ⊂ G of sites is observed. The observation set is a sample
X1:n(VM ) = (X1(j), ..., Xn(j))j∈VM , where (X1, ..., Xn) are i.i.d with common
law P . The question is then to recover from X1:n(VM ), for all i in VM , the sets
Gi ∩ VM .

Oracle neighborhood problem (ON):
The ON problem is to identify, for all i in G, a set Ĝi = Ĝi(X1:n(VM )), such

that the estimation of the conditional probabilities P (x(i)|x(j), j ∈ G/{i}) by

the empirical conditional probabilities P̂ (x(i)|x(j), j ∈ Ĝi) has a minimal risk
(see Sections 2 and 3 for details). Ĝi is then said to satisfy an oracle inequality
and it is also called oracle. We look for oracles among the subsets of VM and
we consider the L∞-distance between conditional probabilities to measure the
risk of the estimators. An oracle is in general smaller than Gi because it should
balance approximation properties and parsimony.

The literature has mainly been focused in the INI problem, see [3, 7, 10, 11, 17]
for examples. It requires in general strong assumptions on P to be solved. For
example, the `1-penalization procedure proposed in [17] requires an incoherence
assumption on the interaction neighborhoods that is very restrictive, as shown
by [3]. Moreover, it is assumed in [3, 7, 17] that G is finite and that all the
sites are observed, i.e. VM = G. Csiszar and Talata [10] consider the case when
G = Zd but assume a uniform bound on the cardinality of Gi. The procedure
proposed in [11] holds for infinite graph with each site having infinite neighbor-
hoods, but requires that the main interactions belong to a known neighborhood
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of i of order O(lnn). Moreover, the result is proved in the Ising model only when
the interaction is sufficiently weak.

The first goal of this paper is to show that the ON problem can be solved
without any of these hypotheses. We introduce in Section 3.2 a model selection
criterion to choose a model Ĝi and prove that it is an oracle in Theorem 3.2.
This result does not require any assumption on the structure of the interaction
neighborhoods inside or outside VM .

The second objective is to show that a selection rule provides also a useful
tool to handle the INI problem. We introduce the following two steps procedure.
First, we select, for all sites i in VM , a small subset V̂i of VM with the model
selection rule. We prove that this set contains the main interacting points inside
VM with large probability. Following the idea introduced in [11], we use then a
test to remove from V̂i the points of (G/Gi) ∩ V̂i. The new test can be applied
to all neighborhoods Vi that are smaller than O(lnn) and that contain the
main interaction points in Gi. It requires less restrictive assumptions on the
interactions outside Vi and on the measure P than the one of [11]. For example,
it works in the Ising models without restrictions on the temperature parameter.
Furthermore, the two-step method let us look for the interacting points inside

all the observation set VM (of order O(en
β

) for some 0 ≤ β < 1), and not only
inside a prior subset Vi (smaller than O(lnn)) of VM .

All the results hold under a key assumption H1 that is not classical, but that
is satisfied by Ising models, see Theorem 4.5. We obtain then a large class of
models, widely used in practice, where our methods are efficient. We also provide
for this model a computationally efficient version of our main algorithms.

The paper is organized as follows. In Section 2, we introduce notations and
assumptions used all along the paper. Section 3 gives the main results, in a
general framework. Section 4 shows the application to Ising models and Section
5 presents a large simulation study where the problem of the practical calibration
of some parameters is addressed. Section 6 is a discussion of the results with an
extensive comparison to existing papers. Section 7 gives the proofs of the main
theorems and some technical results are recalled in an appendix in Section 9.

2. Notations and Main Assumptions

Let G be a discrete set of sites, possibly infinite, A = {−1, 1} be the binary
alphabet of spins, and P be a probability measure on the set of configurations
X (G) = AG. More generally, for all subsets V of G, let X (V ) = AV be the
set of configurations on V . In what follows, the triplet (G,A, P ) will be called a
random field. For all i in G, for all V ⊂ G, for all x in X (G), let x(V ) = (x(j))j∈V
and for all probability measures Q on X (V ∪ {i}), let

Qi|V (x) = Q(x(i)|x(V/{i}))

be a regular version of the conditional probability. All along the paper, we will
use the convention that, if V is a finite set, Q a probability measure on X (V )
and x is a configuration such that Q(x(V/{i})) = 0, then Qi|V (x) = 1/2.
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For all x in X (G) and all j in G, let xj be the configuration such that xj(k) =
x(k) for all k 6= j and xj(j) = −x(j). We say that there is a pairwise interaction
from j to i if there exists x in X (G) such that Pi|G(xj) 6= Pi|G(x). For all subsets
V of G, for all probability measures Q on X (V ), let

ωVi,j(Q) = sup
x∈X (G)

{
Qi|V (x)−Qi|V (xj)

}
.

With the above notations, there is a pairwise interaction from j to i if and only
if ωGi,j(P ) > 0. Our second task in this paper is to recover the set Gi of sites
having a pairwise interaction with i. This definition differs in general from the
one suggested in introduction. However, it is easy to check that they coincide
in the Ising models defined in Section 4.
LetX1:n = (X1, ..., Xn) be i.i.d. with common law P . Let VM be a finite subset of
G of observed sites, with cardinality M . The observation set is then X1:n(VM ) =

(X1(VM ), ..., Xn(VM )). Let P̂ be the empirical measure on X (G) defined for all
configurations x in X (G) by

P̂ (x) =
1

n

n∑
i=1

1{Xi(G)=x(G)}.

For all real valued functions f defined on X (G), let ‖f‖∞ = supx∈X (G) |f(x)|.
For all subsets V of VM , the L∞-risk of P̂i|V is defined by

∥∥∥P̂i|V − Pi|G∥∥∥
∞

. This

risk is naturally decomposed into two terms. From the triangular inequality, we
have ∥∥∥P̂i|V − Pi|G∥∥∥

∞
≤
∥∥∥P̂i|V − Pi|V ∥∥∥

∞
+
∥∥Pi|V − Pi|G∥∥∞ .

We call variance term the random term
∥∥∥P̂i|V − Pi|V ∥∥∥

∞
and bias term the

deterministic one
∥∥Pi|V − Pi|G∥∥∞.

Let us finally present our general assumptions on the measure P . In the following
ν and κmin are positive constants. The two first assumptions are classical and
will only be used to discuss the main results.

NN: (Non-Nullness) For all x in X (G), ν−1 ≤ Pi|G(x).

CA:(Continuity) For all growing sequences (Vn)n∈N∗ of subsets of G such that
∪n∈N∗Vn = G, for all i in G,

lim
n→∞

∥∥Pi|Vn − Pi|G∥∥∞ = 0.

The following last assumption is very important for the model selection criterion
to work. It is satisfied for example by a generalized form of the Ising model as
we will see in Section 4.

H1: For all finite subsets V of G,

κmin

∥∥Pi|G − Pi|V ∥∥∞ ≤ ∥∥Pi|G∥∥∞ − ∥∥Pi|V ∥∥∞ .
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3. General results

3.1. Control of the variance term of the L∞-risk

Our first theorem provides a sharp control of the variance term of the risk of
P̂i|V . It holds without assumption on the measure P or the finite subset V .

Theorem 3.1. Let P be a probability measure on X (G), let V be a finite subset
of G. Let pV− = infx∈X (G), P (x(V ))6=0 P (x(V )). There exists an absolut constant
c1 such that, for all δ > 1,

P

(∥∥∥P̂i|V − Pi|V ∥∥∥
∞
> c1

√
ln(δ/pV−)

npV−

)
≤ 1

δ
. (1)

Moreover, let p̂V− = n−1 ∨ infx∈X (V ) P̂ (x(V/{i})). There exists an absolut con-
stant c2 ≤ 400 such that, for all δ > 1,

P

(∥∥∥P̂i|V (x)− Pi|V (x)
∥∥∥
∞
> c2

√
ln(δn)

np̂V−

)
≤ 1

δ
. (2)

Remark:

• Let |V | denote the cardinality of V , if P satisfies NN we have pV− ≥ ν−|V |.
Hence, (1) implies that,

P

(∥∥∥P̂i|V − Pi|V ∥∥∥
∞
≤ c1

√
ν|V |
|V | ln(ν) + 2 ln(n)

n

)
≥ 1− n−2.

The variance term goes almost surely to 0 if ν|V | << n(lnn)−1. If in
addition P satisfies CA and (Vn)n∈N∗ is a growing sequence of sets with

limit G, the estimator P̂i|Vn is consistent.
• (1) is only interesting theoretically, because the parameter pV− is unknown

in practice. We will use (2) for our model selection algorithm.

3.2. Model Selection

We deduce from Theorem 3.1 that the risk of the estimator P̂i|V is bounded in
the following way. For all δ > 1, for all subsets V ,

P

(∥∥∥Pi|G − P̂i|V ∥∥∥
∞
≤
∥∥Pi|G − Pi|V ∥∥∞ + c2

√
ln(δn)

np̂V−

)
≥ 1− δ−1. (3)

The risk of P̂i|V depends on the approximation properties of V through the bias∥∥Pi|G − Pi|V ∥∥∞ that is typically unknown in practice, and on the complexity of

V , measured here by p̂V−. The aim of this section is to provide model selection
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procedures in order to select a subset of VM that optimizes the bound (3). In the
following, we denote by Gn a finite collection of subsets of VM , possibly random,
and we call optimal or oracle in Gn, any subset Ĝ = Ĝ(X1:n(∪V ∈GnV )) in Gn,
possibly random, such that,

P

(∥∥∥Pi|G − P̂i|Ĝ∥∥∥∞ ≤ K inf
V ∈Gn

{∥∥Pi|G − Pi|V ∥∥∞ +

√
ln(δn)

np̂V−

})
≥ 1− δ−1.

We introduce the following selection rule. Let Nn be an almost sure bound on
the cardinality of |Gn|. For all δ > 1 and for all C > c2, let

Ĝ(C, δ,Gn) = arg min
V ∈Gn

{
−
∥∥∥P̂i|V ∥∥∥

∞
+ Cpen(V )

}
, where pen(V ) ≥

√
ln(δnNn)

np̂V−
.

(4)
The following theorem states that Ĝ(C, δ,Gn) is almost an oracle.

Theorem 3.2. Let P be a probability measure on X (G) satisfying H1. Let
Gn be a finite collection of finite subsets of G, possibly random, and let Nn
be an almost sure bound on the cardinality of Gn. For all C > c2, δ > 1,
let Ĝδ(C) = Ĝ(C, δ,Gn) be the estimator given by (4). There exists a positive
constant K = K(c2, C, κmin) such that,

P

(∥∥∥P̂i|Ĝδ(C) − Pi|G
∥∥∥
∞
≤ K inf

V ∈Gn

{∥∥Pi|G − Pi|V ∥∥∞ + pen(V )
})
≥ 1− 1

δ
.

Remarks:

• Theorem 3.2 states that the risk of the estimator selected by the rule (4)
is the best among the collection Gn. It is the main result of the paper and
we will discuss in what follows several applications.

• The key idea of the proof is that, by assumption H1, we have
∥∥Pi|G∥∥∞ −∥∥Pi|V ∥∥∞ ' ∥∥Pi|G − Pi|V ∥∥∞, hence, our decision rule consists essentially

in minimizing the sum of the bias term and the variance term of the risk,
and the selected estimator is then an oracle.

• The constant c2 derived in Theorem 3.1 is very pessimistic. Hence, Theo-
rem 3.2 is more interesting theoretically. In the simulations of Section 5,
we will calibrate C with the slope algorithm introduced in [5] and illustrate
the nice properties of the resulting Ĝδ(C).

Let us go back to the ON problem. It is solved thanks to the following corollary.

Corollary 3.3. Let (G,A, P ) be a random field. Let VM is a finite subset of
G with cardinality M , let δ > 1 and let ΓM (δ) = ln(n)(1 + log2(M)) + ln(δ).
For all m, e ≤ m ≤ M , let Gm,M = {V ⊂ VM , |V | ≤ m} . For all V ⊂ VM , let

pen(V ) = (np̂V−)−1/2
√

ΓM (δ), let Ĝδ(C) = Ĝ(C, δ,Glog2(n),M ) be the estimator
given by (4). With probability larger than 1− δ−1, we have∥∥∥P̂i|Ĝδ(C)) − Pi|G

∥∥∥
∞
≤ K inf

V⊂VM

{∥∥Pi|G − Pi|V ∥∥∞ +

√
ΓM (δ)

np̂V−

}
.
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Remarks:

• The risk of the estimator Ĝδ(C) optimizes the bound given in (2) among
all the subsets of VM , up to the log(M) term, it solves therefore the ON
problem.

• Ĝδ(C) is built using only the subsets of VM with size smaller than log2(n).
This is due to the fact that, for a subset of size m of VM , there is 2m

different configurations, hence, when m > log2(n), there is at least one
configuration that is not observed, hence p̂V− = n−1 and the bound given
in (2) or in Corollary 3.3 is useless.

• The complexity of the model selection algorithm for the collection Gm,M
is O(nMm). This collection is used when a uniform bound m on the car-
dinalities of the |Gi| is known. The complexity is the minimal necessary
to recover the interaction graph in this problem [7].

3.3. Estimation of the interaction subgraph

Let M be an integer and let VM be a finite subset of G, with cardinality M .
For all subsets VM of G, let us choose vVn (δ) ≥

√
ln(δn)(np̂V−)−1/2. Let V be a

finite subset of G, we study in this section the estimators of Gi given by

ĜVi (c) =
{
j ∈ V, ωVi,j(P̂ ) > cvVn (δ)

}
. (5)

We introduce the following function.

Ψ(v) = inf
V, p̂V−≥v−2

∥∥Pi|V − Pi|G∥∥∞ .

Ψ represents the minimal value of the bias term at a given value of the variance
term. Our assumption concerns the rate of convergence of Ψ to 0.

H2(εΨ): There exist CΨ > 0, αΨ > 0 such that, for all K > 1, for all v > 0,

P
(

Ψ(Kv) ≤ CΨK
−αΨΨ(v)

)
≥ 1− εΨ.

Theorem 3.4. Let (G,A, P ) be a random field satisfying H1, H2. Let e ≤M
be an integer, let VM be a finite subset of G with cardinality M . Let δ > 1 and
let ΓM (δ) = ln(n)(1 + log2(M)) + ln(δ). Let Gn = {V ⊂ VM , |V | ≤ (log2 n)}.
For all V in Gn, let

vVn (δ) =

√
ΓM (δ)

np̂V−
.

Let C ≥ c2, pen(V ) = vVn (δ) and let Ĝδ(C) = Ĝ(C, δ,Gn) be the set selected

by the selection rule (4). Let c > 0 and let Ĝ
Ĝδ(C)
i (c) be the associated set

defined by (5). Let K be the constant defined in Theorem 3.2 and let c∞ =
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2
(
c2 + C

−1/αΨ

Ψ (2K)1−1/αΨ

)
. We have

P (
{
j ∈ VM , ωGi,j(P ) ≥ (c+ c∞)vĜn (δ)

}
⊂ ĜĜδ(C)

i (c) ⊂
{
j ∈ VM , ωGi,j(P ) ≥ (c− c∞)vĜn (δ)

})
≥ 1− δ−1 − εΨ.

Remark:

• When c > c∞, Ĝ
Ĝδ(C)
i (c) contains exactly the sites that have a pairwise

interaction with i of order the risk of an oracle. It provides a partial
solution to the INI problem.

• Theorem 3.4 requires the extra assumption H2 compared to Theorem 3.2.
Moreover, the theoretical constant c∞ depends on the constants κmin, CΨ,
αΨ.

Let us conclude this section with the two steps algorithm suggested by Theorem
3.4 to estimate Gi = {j ∈ G, ωGi,j(P ) > 0}.

Estimation algorithm:

• Choose a large subgraph VM of G, typically the M nearest neighbors of i
in G.

• Selection step. Choose a model Ĝ, applying the model selection algo-
rithm of Theorem 3.2 to the collection of all subgraphs of VM with cardi-
nality smaller than log2(n).

• Cutting step. Cut the edges of Ĝ such that ωĜi,j(P̂ ) > c∞v
Ĝ
n .

4. Ising Models

The remaining of the paper is devoted to Ising models. These models are very
important in statistical mechanics [12] and neuroscience [19] where they repre-
sent the interactions respectively between particles and neurons. In this section,
we prove that Ising models satisfy H1, so that all our general results apply in
these models. We also define effective algorithms for the ON and INI problems,
adapted to this special case.

4.1. Verification of H1.

Let us recall the definition of Ising models.

Definition 4.1. Let f : G2 × A2 → R, (i, j, a, b) 7→ fi,j(a, b) be a real valued
function. For all i, j in G and all a in A, let ‖fai,j‖ = maxb∈A |fi,j(a, b)|. f is
said to be a pairwise potential of interaction if, for all a, b in A, fi,i(a, b) = 0
and if

r := sup
i∈G

sup
a∈A

∑
j∈G
‖fai,j‖ <∞.
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In this case, T = r−1 is called the temperature parameter of the pairwise poten-
tial f .

Definition 4.2. A probability measure P on X (G) is called an Ising model with
potential f if, for all x ∈ X (G),

Pi|G(x) =
e
∑
j∈G fi,j(x(i),x(j))∑

a∈A e
∑
j∈G fi,j(a,x(j))

=
1

1 + e
∑
j∈G fi,j(xi(i),x(j))−fi,j(x(i),x(j))

.

The existence of a such a measure is well known [12].

Remark:

• The classical Ising model has potential f defined by fij(a, b) = Jijab +
Hia1{i=j}, Jij ∈ R, Hi ∈ R, for all a, b ∈ A and i, j ∈ G.

• One of the fundamental questions studied for this class of models is the
description of conditions on potential f that guarantees uniqueness and
non-uniqueness of the Ising model. Usually, high temperature implies con-
ditions for the uniqueness of the Ising model and low temperature implies
non-uniqueness [12].

Let gi,j(a, b) = fi,j(a, b)− fi,j(−a, b), we have then

Pi|G(x) =
1

1 + e−
∑
j∈G gi,j(x(i),x(j))

.

It is clear that Ising models satisfy CA and NN with ν = (1 + e2r)−1.

Definition 4.3. Let (G,A, P ) be an Ising model, with potential f . For all i, j
in G, for all a in A, let

ωi,j(f) = sup
(a,b)∈A2

{gi,j(a, b)− gi,j(a,−b)} = sup
b∈A
{gi,j(a, b)− gi,j(a,−b)} .

Let us first recall some elementary facts about Ising models.

Proposition 4.4. Let (G,A, P ) be an Ising model, with potential f . For all
finite subsets V of G, for all i, j in G, we have

1. pV− ≥ (1 + e2r)−|V |.

2. 2e−2r

(1+e2r)2ωi,j(f) ≤ ωGi,j(P ) ≤ e2r(e4r−1)
4r(1+e−2r)2ωi,j(f).

The following theorem states that all of our general results apply in Ising models.
The key ingredient of the proof is the precise control of the bias term (6).

Theorem 4.5. Let (G,A, P ) be an Ising model, with potential f . There exist
two positive constants c∗r ≤ C∗r such that, for all subsets V of G,

c∗r
∑
j /∈V

ωi,j(f) ≤
∥∥Pi|G − Pi|V ∥∥∞ ≤ C∗r ∑

j /∈V

ωi,j(f). (6)

P satisfies assumption H1 i.e. there exists a constant κmin > 0 such that, for
all finite subsets V of G,

κmin

∥∥Pi|G − Pi|V ∥∥∞ ≤ ∥∥Pi|G∥∥∞ − ∥∥Pi|V ∥∥∞ .
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4.2. A special strategy for Ising models

The model selection algorithm (4) might be computationally demanding in
practice when the collection Gn is too large. This is the case of the collection
Glog2(n),M used several times in Section 3, when the values of M and n are large.
The purpose of this section is to show that a special strategy, computationally
more attractive, can be adopted in Ising models. The idea comes from [7]. Let
us describe the method.

Reduction of the number of sites. Let x1 be the configuration in X (G) such that,
for all j in G, x1(j) = 1.

Step 1 Computation of the empirical probabilities. For all j in VM , let

p̂(j) = P̂ (x1(j)), p̂(i, j) = P̂ (x1(i, j)).

Step 2 Reduction step. We keep the j in VM such that

|p̂(i, j)− p̂(i)p̂(j)| > η.

Let also ηms be the smallest η > 3
√

(2n)−1 ln(6Mδ) such that the number
of j kept after Step 2 is smaller than κ log2(n).

We denote by V̂ (η) the set of j kept after Step 2. It is clear that the reduction
algorithm has a complexity O(nM). Remark that the values |p̂(i, j)− p̂(i)p̂(j)|
do not depend on the configuration x1 since the alphabet has only two letters.

Model selection algorithm. Let G =
{
V ⊂ V̂ (ηms)

}
.

Step 1 Computation of the conditional probabilities. For all V in V̂ (ηms), com-
pute

∥∥Pi|V ∥∥, and pen(V ).
Step 2 Selection Step. We choose C > c2 and

Ĝ = arg min
V ∈G

{
−
∥∥Pi|V ∥∥+ C

√
ln(nκδ)

np̂V−

}
.

It is clear that, if m̂ = |V̂ (ηms)| ≤ κ(log2(n)), hence

N̂ = |G| =
m̂∑
k=0

Ckm̂ ≤ 2m̂ ≤ nκ.

Hence, the complexity of the model selection algorithm is O(nκ+1). The global
complexity of the algorithm is therefore O(nκ+1 + nM). As a comparison, the
model selection algorithm for Gn = Glog2(n),M was O(nM + nlog2(M)).

4.2.1. Control of the risk of the resulting estimator

Theorem 4.6. Let (G,A, P ) be an Ising model, with potential f . Let

C1 =
4r(1 + e2r)3

e−6r(e4r − 1)
, C2 =

4r(1 + e2r)2

e6r(e4r − 1)
.
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With probability larger than 1− δ we have that{
j ∈ VM , |ωi,j(f)| ≥ C1

(
η + 3

√
ln(6Mδ)

2n

)}

⊂ V̂ (η) ⊂

{
j ∈ VM ; |ωi,j(f)| ≥ C2

(
η − 3

√
ln(6Mδ)

2n

)}
.

Furthermore, let us denote by

V (δ,M) =
{
j ∈ VM ; |ωi,j(f)| ≤ C1(ηms + 3

√
(2n)−1 ln(6Mδ)

}
.

With probability larger than 1− 2δ, we have,

1

K

∥∥∥P̂i|Ĝ − Pi|G∥∥∥ ≤ ∑
j∈V (δ,M)

|ωi,j(f)|+ inf
V ∈G

 ∑
j∈V̂ (η)/V

|ωi,j(f)|+

√
ln(nκδ)

np̂V−

 .

Remarks:

• The estimator of the interaction graph has better properties than the one
obtained with selection and cutting procedure. The main difference is that

there is no term (p̂Ĝ−)−1/2 in the rate of convergence.
• The oracle inequality might be a little bit less sharp than the one ob-

tained in (19). This is the price to pay to have a computationally efficient
algorithm.

• Our result holds in the Ising model. However, [7] used a similar approach
in more general random fields with some additional assumptions and ob-
tained good properties for the INI problem.

5. Simulation studies

In this section we illustrate results obtained in Sections 3 and 4 using simulation
experiments and introduce the slope heuristic. All these simulation experiments
can be reproduced by a set of MATLAB R© routines that can be downloaded
from www.princeton.edu/∼ dtakahas/publications/LT10routines.zip.
Let G = {−1, 0, 1} × {−1, 0, 1}. For the sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.6,
and 5.7, we consider an Ising model on AG, with pairwise potential given by
fij(c, d) = J1j∈Vicd for i, j ∈ G, c, d ∈ A, J = 0.2, and Vi ⊂ G. The pair of sites
(i, j) where j ∈ Vi is shown in Figure 1. For all these experiments, i = (0, 0). We
simulated independent samples of the Ising model with increasing sample sizes
n = 100k, k = 1, . . . , 100. For each sample size we have N = 100 independent
replicas.

5.1. Variance term of the risk

In the following experiment we will verify Theorem 3.1 in a simulation. For each

sample size we computed the normalized variance term
√
n
∥∥∥P̂i|Vi − Pi|Vi∥∥∥∞ for

http://www.princeton.edu/~dtakahas/publications/LT10routines.zip
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−1 0 1

−1

0

1

Fig 1. Representation of the interacting pairs of the Ising model used in the simulation
experiments. The edges between sites indicate the interacting pairs. The grey colored
edges indicate the sites interacting with site (0, 0).

N different samples and obtained the average value. The result is summarized
in Figure 2.
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Fig 2. Plot of the number of samples n against
√
n
∥∥∥P̂i|Vi − Pi|Vi

∥∥∥
∞

. The dotted line

indicates the linear regression line. Observe that the regression line is essentially par-
allel to the abscissa.
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5.2. Slope heuristic

The constant c2 derived from Theorem 3.1 is too pessimistic to be used in
practice. The purpose of this section is to present a general method to design
this constant. It is based on the slope heuristic, introduced in [5] and proved in
several other frameworks in [1, 14]. We refer also to [2] for a large discussion on
the practical use of this method. In order to describe it, let us introduce, for all
V in Gm,M , a quantity ∆V , possibly random, measuring the complexity of the
model V . The heuristic states the following facts.

1. There exists a positive constant Cmin such that when C < Cmin, the
complexity of the model selected by the rule (4) is as large as possible.

2. When C is slightly larger than Cmin the complexity of the selected model
is much smaller.

3. When C = 2Cmin then the risk of the selected model is asymptotically the
one of an oracle.

The heuristic yields the following algorithm, defined for all complexity measures
∆V .

1. For all C > 0, compute ∆Ĝ(C), the complexity of the model selected by

the rule (4).
2. Choose C̃min such that ∆Ĝ(C) is very large for C < C̃min and much smaller

for C > C̃min.
3. Select the final Ĝ = Ĝ(2C̃min).

The algorithm is based on the idea that C̃min ' Cmin and therefore that
the final Ĝ, selected by 2C̃min∆V is an oracle by the third point of the slope
heuristic. The actual efficiency of this approach depends highly on the choice of
the complexity measure ∆V and on the practical way to choose C̃min in step 2 of
the algorithm. We illustrate the dependence on ∆V in the following experiences.

∆V is either the cardinality of V (the dimension) or the variance estima-
tor C(np̂V−)−1/2. C̃min is selected with the maximum jump criteria [2]: fix an
increasing sequence of positive numbers C0, . . . , Ct and define

k = arg max
i

{
∆Ĝ(Ci)

−∆Ĝ(Ci−1)

}
, and C̃min = Ck.

If the maximum is achieved in more than one value, take the biggest of such k.

Remark: The calculation of C̃min does not yield a significant increase of compu-
tational time compared to the evaluation of the model selection criteria for one
fixed constant C. The only additional cost is due to the fact that one has to keep
in the computer memory the conditional probabilities that must be computed
only once.
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5.3. Oracle risk compared to the risk of the estimated model

One way to verify the performance of the slope heuristic proposed in previous
section is to compute the ratio∥∥∥P̂i|Ĝ(2C̃min) − Pi|G

∥∥∥
∞

infV⊂G

∥∥∥P̂i|V − Pi|G∥∥∥
∞

. (7)

With a reasonable procedure, we expect that the above quantity remains bounded.
We applied the model selection procedure (4) with slope heuristic discussed
above for the set {V ⊂ G \ {i} : |V | ≤ 8}. For each sample size we computed
the ratio (7) for 100 different samples and we obtained the average. The result
is summarized in Figure 3.
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∆ = variance

∆ = dimension

Fig 3. Plot of the number of samples n against the average of ratio (7). Observe that
the risk ratio remains bounded for both the variance (solid black) and the dimension
(dashed grey) as the measure of complexity.

5.4. Discovery rate of the model selection procedure for ON problem

Another way to measure the performance of our model selection procedure is to
compute the positive discovery rate

E

[
|Ĝ(2C̃min) ∩ Ĝoracle|

|Ĝoracle|

]
(8)
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and the negative discovery rate

E

 |G \
(
Ĝ(2C̃min) ∪ Ĝoracle

)
|

|G \ Ĝoracle|

 . (9)

with respect to the oracle Ĝoracle.
We estimated (8) and (9) and the result is summarized in Figure 4.
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Fig 4. Plot of positive and negative discovery rates with respect to the oracle against
the sample size n. In solid/dashed black lines are represented the positive/negative
discovery rates using the variance (V) as the complexity measure and in solid black/grey
lines the positive/negative discovery rates using the dimension (D). Observe that the
variance gives a better positive and negative discovery rates with respect to oracle when
compared to the dimension.

5.5. Performance of the model selection procedure for INI problem

A natural question is how well the proposed model selection procedure behaves
for the INI problem. Observe that the model selection procedure was designed
to solve the ON problem and in principle does not necessary work for the INI
problem. To investigate this question for each sample size we estimated the
positive discovery rate

E

[
|Ĝ(2C̃min) ∩ Vi|

|Vi|

]
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and the negative discovery rate

E

 |G \
(
Ĝ(2C̃min) ∪ Vi

)
|

|G \ Vi|

 ,
with respect to the interaction neighborhood Vi. The result is summarized in
Figure 5.
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Fig 5. Plot of positive and negative discovery rates with respect to Vi against the sample
size n. In solid/dashed black lines are represented the positive/negative discovery rates
using the variance (V) as the complexity measure and in solid black/grey lines the
positive/negative discovery rates using the dimension (D). Observe that the variance
gives higher positive discovery rates than the dimension as the measure of complexity
although the negative discovery rates are the same.

5.6. Relationship between the INI and ON problems

Another interesting question is to understand what is the relationship between
the INI and ON problems. Useful quantities for this are the positive discovery
rate

E

[
|Ĝoracle ∩ Vi|

|Vi|

]
(10)

and the negative discovery rate

E

 |G \
(
Ĝoracle ∪ Vi

)
|

|G \ Vi|

 . (11)

We estimated these quantities and the results are summarized in Figure 6.
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Fig 6. Plot of positive and negative discovery rates of the oracle with respect to Vi
against the sample size n. The solid black line represents the results for positive discov-
ery rates and the dashed grey line represents the results for the negative discovery rates.
Observe that in this example the oracle Ĝoracle matches the interaction neighborhood
Vi quite fast. Also observe that in this example the oracle never included interactions
not contained in Vi.

5.7. Select and cut procedure

Here we will show the usefulness of the two-step procedure introduced in The-
orem 3.4 by an example. We consider the same independent samples used in
previous experiments. We also consider i = (0, 0) and sample sizes n = 100k,
k = 1, . . . , 100 with 100 independent replicas for each sample size.

Let Ĝ(2C̃min) be the subset of G chosen by first applying the model selection
procedure for the set {V ⊂ G \ {i} : |V | ≤ 8}. To choose the constant in
the model selection procedure, we used the slope heuristic with variance as the
complexity measure. Let Ĝ(SC) be the subset of G obtained by applying to
the subset Ĝ(2C̃min) the cutting procedure with cvVn = 0.3(np̂V−)−1. We first
computed the average of the risk ratio∥∥∥P̂i|Ĝ(SC) − Pi|G

∥∥∥
∞

infV⊂G

∥∥∥P̂i|V − Pi|G∥∥∥
∞

. (12)

for each sample size and compared them with the average of risk ratio (7). The
results are summarized in Figure 7.

We also computed the positive and negative discovery rates of Ĝ(SC) and
Ĝ(2C̃min) with respect to Vi. The results are presented in Figure 8.
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Fig 7. Plot of the number of samples n against the average of risk ratio (12) and (7).
In solid black is represented the risk ratio for the two-step procedure and in dashed grey
the risk ratio for the model selection procedure alone. Observe that the risk ratio of the
two-step procedure remains closer to one when compared to the model selection alone.
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Fig 8. Plot of positive and negative discovery rates of Ĝ(SC) and Ĝ(2C̃min) with
respect to Vi against the sample size n. The black solid/dashed lines represent the
positive/negative discovery rates of the two-step procedure. The grey solid/dashed lines
represent the positive/negative discovery rates of the model selection procedure alone.
Observe that the two-step procedure has almost perfect negative discovery rates with
increasing positive discovery rates.
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5.8. Computationally efficient algorithm

In this section we will illustrate the performance of the strategy introduced in
Section 4.2 on the Ising model on AG, where G = {1, . . . , 200}, with pairwise
potential fij(c, d) = |Jij |1j∈Vicd for i, j ∈ G, c, d ∈ A, Vi ⊂ G, and Jij indepen-
dently generated from a Gaussian distribution with E[Jij ] = 0 and E[J2

ij ] = 4.
The pairs of sites (i, j) with j ∈ Vi are represented in Figure 9.
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Fig 9. Representation of the interacting sites in the Ising model described in 5.8. The
positions (i, j) of the dots indicate the pair of sites (i, j) for which j ∈ Vi.

For this experiment i = 1 and |Vi| = 16. We simulated independent samples
of the Ising model with increasing sample sizes n = 100k, k = 1, . . . , 100. For
each sample size we have N = 50 independent replicas. In this example, it is not
practical to compute all candidates in collection G8,200 whereas the algorithm
introduced in Section 4.2 is very efficient. We illustrate its performance in the
case where the number of sites j kept after Step 2 of the reduction step in
Section 4.2 is 10. We denote the model chosen by this algorithm by Ĝefficient
We estimated the probability that the selected model Ĝefficient recover the
largest, and second, third, fourth, fifth largest interaction potentials. Formally,
let J1 = max{|Jij |1j∈Vi : i, j ∈ G} and Jk = max{|Jij |1j∈Vi : i, j ∈ G \ Jk−1},
for k = 1, . . . , 5. We estimated

P (Ĝefficient 3 Jk), (13)

for k = 1, . . . , 5. The result of the simulation is presented in Figure 10. By
Monte Carlo simulation using a sample size of 100 000 we concluded that the
considered Ising model at site i = 1 does not satisfy the incoherence condition
in [17].
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Fig 10. Plot of the number of samples n against the probability that Ĝefficient includes

the largest (solid black), and second (dashed black), third (solid gray), fourth (dashed
gray), fifth (solid light gray) largest interaction potentials. Observe that the model se-
lection procedure includes the sites with larger interaction potentials more often.

6. Discussion and comparison with existing results

We introduced a model selection procedure for interaction neighborhood esti-
mation in partially observed random fields. We proved that the proposed rule
satisfies an oracle inequality. The results hold under general assumptions, which
for instance, are satisfied by a generalized form of the Ising model.
Our model selection approach differs from other works [3, 7, 10, 11, 17] where
only the INI problem is considered and more restrictive conditions are assumed.
In particular, [3, 7, 17] consider the INI problem for finite random fields and as-
sume that all the interacting sites are observed. This assumption is quite strong
from practical point of view, e.g. in neuroscience, where the experimenter never
has access to the whole set of neurons. Our result holds for partially observed
random fields without any restriction on the range of the interactions.
Csiszar and Talata [10] considered a BIC like consistent model selection pro-
cedure for a homogeneous (translation invariant one point specification), finite
range random field on Zd based on one realization of the random field. Our
main motivation is an application in neuroscience, where a priori we cannot
assume homogeneity of interaction neither that every interacting sites are ob-
served. Therefore, we consider a neighborhood estimation problem of an inho-
mogeneous, infinite range random field on arbitrary countable graph based on
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n realizations of the random field. Because of these differences, the compari-
son between [10] and our work is not straightforward, but some differences are
noteworthy.

1. Csiszar and Talata [10] consistency result is asymptotic whereas all our
results are non-asymptotic and holds for all n.

2. Because they consider the finite range interaction random fields, the in-
teraction neighborhood of each site will be included for large enough size
of the the observed sites. As we consider the infinite range case, we have
to have a control on the interactions between non-observed sites.

3. As stated in the discussion of [10], they don’t exhibit a computationally
efficient algorithm to compute the proposed statistics. We show a compu-
tationally efficient algorithm when the model is a generalized form of the
Ising model.

4. The number of observed sites |Λ| in [10] is the analogous quantity for the
number of samples n in our article. From Theorem 2.1 in their article,
this implies that the maximum size of the neighborhood is o(log1/2 n)

which is selected from the o(log1/2 n) closest sites. Our model selection
algorithm can be applied in high dimension situation and allows maximum

neighborhood size of O(log n) selected from O(en
β

), 0 ≤ β < 1, possible
sites.

Nevertheless, it is interesting to notice that their estimator is a penalized
estimator and we can wonder if the BIC estimator might have oracle properties.
The risk naturally associated to their procedure is not the L∞-risk, as in this
paper, but rather the Küllback loss, defined by

K(Pi|G, P̂i|V ) = E

(
ln

(
P (X(i)|X(j), j 6= i)

P̂ (X(i)|X(j), j ∈ V/{i})

))
.

A complete study of the ON problem for Küllback loss, with a comparison
with the approach in L∞-risk presented here, is beyond the scope of this paper.
However, we believe that this problem is of interest and we will address these
questions in a forthcoming paper. Let us mention that Theorem 3.1 is related to
the typicality result of [10] (Proposition 3.1 in this paper). Both results give the

same asymptotic estimate for the L∞-risk of the estimator P̂i|V . Our Theorem
3.1 gives a non-asymptotic bound and holds even if V does not contain all the
interacting points. An important difference between our work and [10] is that we
work with independent realizations, whereas they have only one realization and
they have to divide their observation set to obtain conditionally independent
data. We also mention here that the typicality result is the starting point for
the analysis in Küllback loss presented in [10].
In [11], it is considered the INI problem for infinite range Ising models in Zd.
The main restriction in this last work is that it is assumed that the interactions
between the sites are weak (“high temperature”) and that a subset of the ob-
served sites of size O(log(n)), where n is the sample size, must be fixed to apply
the proposed procedure. Our procedure has no restriction on the strength of
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interaction and can be applied for example for low temperature Ising models,
provided that the samples come from the same phase.

In [7] the analysis is restricted to finite random fields, where the maximum
neighborhood size is known a priori. For infinite range random fields, their re-
sults are useless since the “constants” ε and δ, that should be positive, are both
equal to 0 in general. More importantly, their procedure use the knowledge of
the lower bound ε on the bias term. As this ε is unknown in practice, it is not
clear how it should be evaluated. Our general result on neighborhood estimation
Theorem 3.4 suffers the same kind of drawback since the constant c should be
chosen larger than the constant c∞, which depends on our assumptions, for our
test to be efficient. However, in the case of Ising models, we have been able to
remove this condition and propose in Theorem 4.6 a totally data-driven, effi-
cient procedure. It is not straightforward to generalize their result to the case
where the maximum neighborhood size is allowed to increase with n, this would
probably require a careful analysis of the behavior of the quantities ε and δ. Nev-
ertheless, in the specific case when the underling random field is the Ising model,
from Theorem 3 in [7], it is not difficult to show that when the number of total

sites is O(en
β

), 0 ≤ β < 1, the maximum size of the allowed neighborhood is
O(log n). We provide in Table 1 a comparative summary of the available results.

Table 1
Compartive table of related results

—
Algorithm This work [7] [10] [11] [17]
Infinite range interac-
tions

yes no no yes no

Type of problem ON/INI INI INI INI INI
Partially observed in-
teracting sites

yes yes, strong
conditions

no yes, high
tempera-
ture

no

Ising model on Zd be-
low critical tempera-
ture

yes no yes no no

Restrictions on the in-
teraction graph

none none none none Incoherence
condition

Computationally
efficient

yes, Ising
at any tem-
perature

yes, fast de-
cay of cor-
relation

no yes yes

Maximal size of the
neighborhoods

O(lnn) O(lnn) o(lnn) O(lnn) O(nα)

Number of possible
sites for the candidate
neighborhoods

O(en
β

) O(en
β

) o(lnn) O(lnn) O(en
β

)

We also introduced a two-step procedure in which the model selection rule
gives us a small set of candidate sites and a cutting procedure removes from
this set the irrelevant interactions. This two step procedure can be understood
as a combination of a model selection and a statistical test procedure in spirit
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of [22].
Our first simulation experiment shows that the concentration bound for the
variance term of the risk in Theorem 3.1 is sharp. We propose a slope heuristic
with maximal jump criteria using the variance or the dimension as a measure of
complexity to choose a good constant in the model selection procedure. In our
simulation experiment, we measured the performance of the slope heuristic for
ON and INI problems. We observed that the variance had a better behavior as
a complexity measure than the dimension because 1) the risk ratio was always
smaller for the variance compared to the dimension as the measure of complex-
ity, although both risk ratios remained bounded, 2) the estimated positive and
negative discovery rates with respect to the oracle were always higher for the
variance compared to the dimension as the measure of complexity, 3) also the
estimated positive and negative discovery rates with respect to the interaction
neighborhood were always higher for the variance compared to the dimension
as the measure of complexity.
Although at this point the variance seems to be a better choice for the complex-
ity measure, a more comprehensive study must be carried to obtain a definitive
conclusion and we recommend to consider both measures of complexity in prac-
tice. We addressed also in the simulation experiments the relationship between
the ON and INI problems and observed that for sufficiently large sample size,
both coincide. The two-step procedure introduced in this article was applied in
an example where it clearly enhances the performance of the model selection
procedure for both the INI and ON problems. Recently, multistep statistical
procedures are gaining attention [22] although only few rigorous results exist.
Our result for the two-step procedure is a contribution for this growing field. The
main drawback of the proposed model selection procedure is its high computa-
tional cost which becomes prohibitive when a large number of sites are observed.
We introduced a computationally efficient way to overcome this difficulty in the
case of Ising model. The new procedure drastically reduces the set of models
for which the model selection procedure must be applied, but still keeping the
main interacting sites and a good oracle property. In the simulation experiment
we show that the proposed algorithm has a good performance even when the
number of the observed sites is as big as 200. It must be remarked that the Ising
model considered for this experiment does not satisfy the incoherence condition
[17] and therefore other computationally efficient algorithms as `1-penalizations
are not guaranteed to be consistent. Finally, we provide a set of MATLAB R©

routines that can be used to reproduce our experimental results and to carry
further simulation and applied studies.
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7. Proofs

7.1. Proof of Theorem 3.1:

For all x such that P (x(V/{i})) = 0, we have P̂ (x(V/{i})) = 0, thus Pi|V (x) =

P̂i|V (x). Hence, we can only consider the configurations x such that P (x(V/{i})) >
0. Let us first provide some inequalities about conditional probabilities.

Lemma 7.1. Let x ∈ X (G), let V be a finite subset of G and let Q,R be two
probability measures on X (V ) such that R(x(V/{i})) > 0.

Qi|V (x)−Ri|V (x)

=
Q(x(V ))−R(x(V )) +Qi|V (x) (R(x(V/{i}))−Q(x(V/{i})))

R(x(V/{i}))
.

|Qi|V (x)−Ri|V (x)| ≤ 3 sup
x∈X (G), R(x(V/{i})) 6=0

|Q(x(V ))−R(x(V ))|
R(x(V/{i})

.

Remark: In particular, we deduce from this lemma that

∥∥∥P̂i|V − Pi|V ∥∥∥
∞
≤ 3 sup

x∈X (G), P (x(V/{i})6=0

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣

P (x(V/{i}))
.

The first inequality follows from the fact that Ri|V (x) = R(x(V ))/R(x(V/{i}))
and Q(x(V )) = Qi|V (x)Q(x(V/{i})). The second one is consequence of the first
one and the fact that

|R(x(V/{i}))−Q(x(V/{i}))| ≤ |R(x(V ))−Q(x(V ))|+ |R(xi(V ))−Q(xi(V ))|.

The proof of (1) is concluded thanks to the following Lemma.

Lemma 7.2. Let P be a probability measure on X (G) and let V be a finite subset
of G. Let X ′(V ) = {x ∈ X (G), P (x(V/{i})) 6= 0}, pV− = infx∈X ′(G) P (x(V/{i})).
For all δ > 1, with probability larger than 1− δ−1, we have

sup
x∈X ′(G)

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣

P (x(V/{i}))
≤ 64

√
2

√
ln(16δ/pV−)

npV−
+ 2048

ln(16δ/pV−)

npV−
.

Conclusion of the proof of (1). We deduce from Lemmas 7.1 and 7.2 that,
with probability larger than 1− δ−1,

∥∥∥P̂i|V − Pi|V ∥∥∥
∞
≤ 192

√
2

√
ln(16δ/pV−)

npV−
+ 6144

ln(16δ/pV−)

npV−
.
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As this result is trivial when
ln(16δ/pV−)

npV−
> 1, we can always assume that

ln(16δ/pV−)

npV−
≤

1, hence that
ln(16δ/pV−)

npV−
≤
√

ln(16δ/pV−)

npV−
, thus, with probability larger than 1−δ−1,

for c1 = 6144 + 192
√

2,∥∥∥P̂i|V − Pi|V ∥∥∥
∞
≤ c1

√
ln(16δ/pV−)

npV−
.

Proof of Lemma 7.2: We apply Bousquet’s version of Talagrand’s inequality to
the class of functions F = {(P (x(V/{i})))−11x(V )}. This inequality is recalled
in Appendix. We have v2 ≤ (pV−)−1, b ≤ (pV−)−1, hence, for all δ > 1, with
probability larger than 1− δ−1,

sup
x∈X ′(G)

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣

P (x(V/{i}))

≤ 2E

 sup
x∈X ′(G)

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣

P (x(V/{i}))

+

√
2 ln(δ)

npV−
+ 2

ln(δ)

npV−
. (14)

We apply Lemma 9.6 with Ax = x(V ), x ∈ X (G), αx = [P (x(V/{i}))]−1. We
have

α∗ = sup
x∈X ′(G)

[P (x(V/{i}))]−1 =
1

pV−
, p∗ = sup

x∈X ′(G)

[P (x(V/{i}))]−2P (x(V )) ≤ 1

pV−
.

Hence,

E

 sup
x∈X ′(G)

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣

P (x(V/{i}))

 ≤ 32
√

2√
npV−

√
ln

(
16

pV−

)
+

1024

npV−
ln

(
16

pV−

)
.

(15)
Lemma 7.2 is then obtained with (14) and (15).
Let us now turn to the proof of (2). Let V be a finite subspace of S. As (2) holds

when p̂V− = n−1, it remains to prove (2) when, for all x in X (V ), P̂ (X (V )) > 0.
This is done by the following Proposition.

Proposition 7.3. Let P be a probability measure on X (G), let V be a finite

subset of G. Let Xn =
{
x ∈ X (G), P̂ (x(V/{i}) 6= 0

}
, p̂V− = infx∈Xn P̂ (x(V )).

There exists an absolut constant c2 ≤ 400 such that, for all δ > 1,

P

(
∃x ∈ Xn, |P̂i|V (x)− Pi|V (x)| > c2

√
ln(δn)

nP̂ (x(V ))

)
≤ 1

δ
. (16)

In particular,

P

(
sup
x∈Xn

|P̂i|V (x)− Pi|V (x)| > c2

√
ln(δn)

np̂V−

)
≤ 1

δ
.
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Proof of Proposition 7.3. Let n ≥ 2, δ > 1, c2 = 400 and let us first remark
that we only have to prove (16) on the subset X ′n ⊂ Xn of all the x in Xn such

that P̂ (x(V )) ≥ c22 ln(δn)n−1. Let x in X ′n, then we also have P (x(V/{i}) 6= 0.
From Lemma 7.1, we have

|P̂i|V (x)− Pi|V (x)| ≤

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣+
∣∣∣P̂ (x(V/{i}))− P (x(V/{i}))

∣∣∣
P (x(V/{i}))

.

From Lemma 7.1, we also have

|P̂i|V (x)− Pi|V (x)| ≤

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣+
∣∣∣P̂ (x(V/{i}))− P (x(V/{i}))

∣∣∣
P̂ (x(V/{i})) ∨ c22 ln(δn)n−1

.

We deduce that

|P̂i|V (x)− Pi|V (x)| ≤

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣+
∣∣∣P̂ (x(V/{i}))− P (x(V/{i}))

∣∣∣
P (x(V/{i})) ∨ P̂ (x(V/{i})) ∨ c22 ln(δn)n−1

.

Hence, using the elementary inequality a ∨ b ≥
√
ab with a = P̂ (x(V/{i})),

b = P (x(V/{i})) ∨ c22 ln(δn)n−1, we deduce that

|P̂i|V (x)− Pi|V (x)| ≤

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣+
∣∣∣P̂ (x(V/{i}))− P (x(V/{i}))

∣∣∣√
P̂ (x(V/{i})) (P (x(V/{i})) ∨ c22 ln(δn)n−1 )

.

We have obtain that, for all x in X ′n,√
P̂ (x(V/{i}))|P̂i|V (x)− Pi|V (x)|

≤

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣+
∣∣∣P̂ (x(V/{i}))− P (x(V/{i}))

∣∣∣√
P (x(V/{i})) ∨ c22 ln(δn)n−1

≤ 3 sup
x∈X ′n

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣√

P (x(V/{i})) ∨ ln(δn)n−1
≤ 3 sup

x∈X (G)

∣∣∣P̂ (x(V ))− P (x(V ))
∣∣∣√

P (x(V/{i})) ∨ c22 ln(δn)n−1
.

We apply Bousquet’s version of Talagrand’s inequality to the class of functions

F =
{
f =

(
P (x(V/{i})) ∨ c22 ln(δn)n−1

)−1/2
1x(V ), x ∈ X (G)

}
We have

v2 = sup
f∈F

Var(f(X1)) ≤ 1, b = sup
f∈F
‖f‖∞ ≤

√
c−2
2 (ln(δn))−1n.
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Hence, for all ε > 0, with probability larger than 1− δ−1, we have

sup
x∈X ′n

√
P̂ (x(V/{i}))|P̂i|V (x)− Pi|V (x)|

≤ 3(1 + ε)E

(
sup
f∈F
|(Pn − P )f |

)
+ 3

√
2 ln(δ)

n
+

(
1 +

3

ε

)
ln(δ)

c2
√

ln(δn)n

≤ 3(1 + ε)E

(
sup
f∈F
|(Pn − P )f |

)
+

(
3
√

2 +
1

c2
+

3

c2ε

)√
ln(δ)

n
.

We apply Lemma 9.6 to the sets Ax = x(V ) and the real numbers αx =(
P (x(V/{i})) ∨ c22 ln(δn)n−1

)−1/2
. We have

α∗ ≤
√
n(c22 ln(δn))−1 p∗ = sup

x∈X (G)

(P (x(V/{i})))−1P (x(V )) ≤ 1.

Hence,

E

(
sup
f∈F
|(Pn − P )f |

)
≤ 64√

n

√
ln

(
4
√
n(c22 ln(δn))−1

)

+ 2048
ln
(

4
√
n(c22 ln(δn))−1

)
c2
√
n(ln(δn))−1

≤
(

32
√

2 +
2048

c2

)√
ln(n)

n
.

Thus, for all ε > 0, with probability larger than 1− δ−1, we have

sup
x∈X ′n

√
P̂ (x(V/{i}))|P̂i|V (x)− Pi|V (x)|

≤ 2

((
99
√

2 +
6144

c2

)
(1 + ε) +

1

c2

(
1 +

3

ε

))√
ln(δn)

n
.

We take ε = 0.001 to conclude the proof.

7.2. Proof of Theorem 3.2:

It comes from Theorem 3.1 that, for all subsets V in Gn, we have,

P

(∥∥∥P̂i|V − Pi|V ∥∥∥
∞
≤ c2

√
ln(Nnδn)

np̂V−

)
≥ 1− 1

Nnδ
.

We use a union bound to get that,

P

(
∀V ∈ Gn,

∥∥∥P̂i|V − Pi|V ∥∥∥
∞
≤ c2

√
ln(Nnδn)

np̂V−

)
≥ 1− δ−1.
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Hereafter in the proof of Theorem 3.2, we denote by vVn =

√
ln(Nnδn)

(
np̂V−

)−1

and by

Ω =
{
∀V ∈ Gn,

∥∥∥P̂i|V − Pi|V ∥∥∥
∞
≤ c2vVn

}
.

We have proved that P (Ω) ≥ 1 − δ−1. Let C > c2 and denote, for short Ĝ =
Ĝ(C, δ,Gn). By definition of Ĝ, for all V ∈ Gn,∥∥Pi|G∥∥∞ − ∥∥∥P̂i|Ĝ∥∥∥∞ + CvĜn ≤

∥∥Pi|G∥∥∞ − ∥∥∥P̂i|V ∥∥∥∞ + Cpen(V ).

Hence, on Ω, for all V in Gn,∥∥Pi|G∥∥∞ − ∥∥∥Pi|Ĝ∥∥∥∞ + (C − c2)vĜn ≤
∥∥Pi|G∥∥∞ − ∥∥Pi|V ∥∥∞ + (C + c2)pen(V ).

(17)

From Assumption H1,
∥∥Pi|G∥∥∞ − ∥∥∥Pi|Ĝ∥∥∥∞ ≥ κmin

∥∥∥Pi|G − Pi|Ĝ∥∥∥∞ and from

the triangular inequality, ,
∥∥Pi|G∥∥∞ − ∥∥Pi|V ∥∥∞ ≤ ∥∥Pi|G − Pi|V ∥∥∞ . Plugging

these inequalities in (17), we obtain that, for all V ∈ Gn,

κmin

∥∥∥Pi|G − Pi|Ĝ∥∥∥∞ + (C − c2)vĜn ≤
∥∥Pi|G − Pi|V ∥∥∞ + (C + c2)pen(V ). (18)

On Ω, for all V ∈ Gn, we have then∥∥∥P̂i|Ĝ − Pi|G∥∥∥∞ ≤ ∥∥∥P̂i|Ĝ − Pi|Ĝ∥∥∥∞ +
∥∥∥Pi|Ĝ − Pi|G∥∥∥∞ ≤ c2vĜn +

∥∥∥Pi|G − Pi|Ĝ∥∥∥∞
≤ max

(
1

κmin
,

c2
C − c2

)(
κmin

∥∥∥Pi|G − Pi|Ĝ∥∥∥∞ + (C − c2)vĜn

)

∥∥∥P̂i|Ĝ − Pi|G∥∥∥∞ ≤ max

(
1

κmin
,

c2
C − c2

)(∥∥Pi|G − Pi|V ∥∥∞ + (C + c2)pen(V )
)

≤ K(c2, C, κmin)
(∥∥Pi|G − Pi|V ∥∥∞ + pen(V )

)
.

7.3. Proof of Corollary 3.3:

It comes from [16] Proposition 2.5 p 20 that

Nm,M = |Gm,M | =
m∑
k=0

CkM ≤
(
eM

m

)m
≤Mm hence ln(Nm,M ) ≤ m ln(M).

Hence, from Theorem 3.2, with probability larger than 1− δ−1, we have

∥∥∥P̂i|Ĝδ(C)) − Pi|G
∥∥∥
∞
≤ K inf

V ∈Gm,M

{∥∥Pi|G − Pi|V ∥∥∞ +

√
ln(nMmδ)

np̂V−

}
. (19)
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For all |V | > log2(n), there is at least one configuration in X (V ) that is not
observed, hence p̂V− = 1/n. Therefore, for all m ≥ log2(n),

inf
V ∈Glog2(n),M

{∥∥Pi|G − Pi|V ∥∥∞ +

√
ΓM (δ)

np̂V−

}
= inf
V ∈Gm,M

{∥∥Pi|G − Pi|V ∥∥∞ +

√
ΓM (δ)

np̂V−

}
.

Taking m = M , (19) yields the corollary.

7.4. Proof of Theorem 3.4:

Let Ω be the event defined in the proof of Theorem 3.2 for the collection Gn and
let Ĝ = Ĝδ(C). We have P (Ωc) ≤ δ−1 and, on Ω, from Corollary 3.3,∥∥∥Pi|Ĝ − Pi|G∥∥∥∞ ≤ K inf

V⊂VM

{∥∥Pi|G − Pi|V ∥∥∞ + vVn (δ)
}
.

By definition of Ψ, denoting by ln =
√
n−1ΓM (δ), we have

inf
V⊂VM

{∥∥Pi|G − Pi|V ∥∥∞ + vVn (δ)
}

= inf
v>0
{Ψ(v) + vln } .

Let v∗ be the smallest solution of the equation vln = Ψ(v). As Ψ is non-
increasing and v 7→ vln is non decreasing, we have

Ψ(v∗) ≤ inf
v>0
{Ψ(v) + vln } ≤ 2Ψ(v∗).

Thus, on Ω, we have ∥∥∥Pi|Ĝ − Pi|G∥∥∥∞ ≤ 2KΨ(v∗).

Let Ω2 be the event defined in H2. Let r < 1 and ω in Ω∗ = Ω ∩ Ω2 such that
p̂Ĝ−(ω) ≥ (rv∗)−2. From assumption H2 applied to v = rv∗, K = r−1,

2KΨ(v∗) ≥
∥∥∥Pi|Ĝ(ω)− Pi|G

∥∥∥
∞
≥ Ψ(rv∗) ≥ C−1

Ψ r−αΨ(v∗).

Hence r ≥ (2CΨK)−1/α. Thus, on Ω∗, we have∥∥∥Pi|Ĝ − Pi|G∥∥∥∞ ≤ 2Klnv
∗ ≤ C−1/α

Ψ (2K)1−1/αvĜn .

By the triangular inequality, we have

sup
x∈X (G)

|(P̂i|V (x)− P̂i|V (xj))− (Pi|G(x)− Pi|G(xj))|

≤ 2
(∥∥∥P̂i|V − Pi|V ∥∥∥

∞
+
∥∥Pi|V − Pi|G∥∥∞) .

Hence, on Ω∗,∣∣∣ωĜi,j(P̂ )− ωGi,j(P )
∣∣∣ ≤ 2

(
c2v

Ĝ
n +

∥∥∥Pi|Ĝ − Pi|G∥∥∥∞)
≤ 2

(
c2 + C

−1/αΨ

Ψ (2K)1−1/αΨ

)
vĜn .
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Let c∞ = 2
(
c2 + C

−1/αΨ

Ψ (2K)1−1/αΨ

)
. It comes from this last inequality that,

on Ω∗, {
j ∈ VM , ωGi,j(P ) ≥ (c+ c∞)vĜn

}
⊂ ĜĜi (c) ⊂

{
j ∈ VM , ωGi,j(P ) ≥ (c− c∞)vĜn

}
.

7.5. Proof of Theorem 4.5:

In all the proof, for all subsets V , V ′ of G such that V ∩V ′ = ∅, for all (x, y) in
X (V )× X (V ′), let x(V )⊕ y(V ′) be the configuration on X (V ∪ V ′) such that,
for all j in V x(V )⊕y(V ′)(j) = x(j) and for all j in V ′, x(V )⊕y(V ′)(j) = y(j).
Let V be a finite subset of G and let x be a configuration on X (G).

Pi|G(x)−Pi|V (x) =

∫
(Pi|G(x)− Pi|G(x(V )⊕ y(G/V )))dP (y(G/V )|x(V/{i}))

(20)

From the definition of a Gibbs measure, we have

Pi|G(x)− Pi|G(x(V )⊕ y(G/V ))

=
e−
∑
j∈G gi,j(x(i),x(j))

(
e
∑
j /∈V (gi,j(x(i),x(j))−gi,j(x(i),y(j))) − 1

)
(

1 + e−
∑
j∈G gi,j(x(i),x(V )⊕y(G/V )(j))

)(
1 + e−

∑
j∈G gi,j(x(i),x(j))

) (21)

Hence,

|Pi|G(x)− Pi|G(x(V )⊕ y(G/V ))|

≤ e2r

(1 + e−2r)2

∣∣∣e∑j /∈V (gi,j(x(i),x(j))−gi,j(x(i),y(j))) − 1
∣∣∣ .

Let us now give the following lemma, whose proof is immediate from the con-
vexity of x 7→ ex.

Lemma 7.4. For all real numbers r > 0, for all x in [−4r, 4r], we have

1− e−4r

4r
|x| ≤ |ex − 1| ≤ e4r − 1

4r
|x|.

We deduce from Lemma 7.4 that

|Pi|G(x)− Pi|G(x(V )⊕ y(G/V ))|

≤ (e4r − 1)e2r

4r(1 + e−2r)2

∣∣∣∣∣∣
∑
j /∈V

(gi,j(x(i), x(j))− gi,j(x(i), y(j)))

∣∣∣∣∣∣ .
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It is clear that, for all x in X (G),∫ ∣∣∣∣∣∣
∑
j /∈V

(gi,j(x(i), x(j))− gi,j(x(i), y(j)))

∣∣∣∣∣∣dP (y(G/V )|x(V/{i}))

≤
∑
j /∈V

ωi,j(f)P (y(j) 6= x(j)|x(V/{i})).

The upper bound comes then from the inequality P (y(j) 6= x(j)|x(V/{i})) ≤ 1.
For the lower bound, let, for all a in A, xamax be the configuration such that,

for all j in G, gi,j(a, x
a
max(j)) =

∥∥gai,j∥∥ and let xamin be the configuration such
that, for all j in G, gi,j(a, x

a
min(j)) = infb∈A gi,j(a, b). From Lemma 7.4, we have

e
∑
j /∈V

∥∥∥gx(i)
i,j

∥∥∥−gi,j(x(i),y(j)) − 1 =

∣∣∣∣e∑j /∈V

∥∥∥gx(i)
i,j

∥∥∥−gi,j(x(i),y(j)) − 1

∣∣∣∣
≥ 1− e−4r

4r

∑
j /∈V

∥∥∥gx(i)
i,j

∥∥∥− gi,j(x(i), y(j)). (22)

Finally, we have∫ ∥∥∥gx(i)
i,j

∥∥∥− gi,j(x(i), y(j))dP (y(G/V )|x(V/{i}))

≥ P (y(j) = x
x(i)
min(j)|x(V/{i}))ωi,j(f) ≥ ωi,j(f)

1 + e2r
. (23)

Using successively inequalities (20), (21), (22) and (23) with x = x
x(i)
max, we obtain

sup
x∈X (G)

Pi|G(x)− Pi|V (x)

≥
∫

(Pi|G(xx(i)
max)− Pi|G(xx(i)

max(V )⊕ y(G/V )))dP (y(G/V )|x(V/{i}))

=
e−2r

1 + e−2r

∫
e
∑
j /∈V

∥∥∥gx(i)
i,j

∥∥∥−gi,j(x(i),y(j)) − 1

1 + e
−
∑
j∈V

∥∥∥gx(i)
i,j

∥∥∥−∑j /∈V gi,j(x(i),y(j))
dP (y(G/V )|x(V/{i}))

≥ e−2r

(1 + e2r)2

∫ (
e
∑
j /∈V

∥∥∥gx(i)
i,j

∥∥∥−gi,j(x(i),y(j)) − 1

)
dP (y(G/V )|x(V/{i}))

Hence,

sup
x∈X (G)

Pi|G(x)− Pi|V (x)

≥ (1− e−4r)e−2r

4r(1 + e2r)2

∫ ∑
j /∈V

∥∥∥gx(i)
i,j

∥∥∥− gi,j(x(i), y(j))

 dP (y(G/V )|x(V/{i}))

≥ (1− e−4r)e−2r

4r(1 + e2r)3

∑
j /∈V

ωi,j(f).
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Let us now check that P satisfies assumption H1. Let x in X (V ). Using suc-

cessively inequalities (20), (21), (22) and (23) with x = x(V )⊕ xx(i)
max(G/V ), we

obtain, as in the previous proof,

Pi|G(x(V )⊕ xx(i)
max(G/V ))− Pi|V (x) ≥ (1− e−4r)e−2r

4r(1 + e2r)3

∑
j /∈V

ωi,j(f).

Taking x such that Pi|V (x) =
∥∥Pi|V ∥∥∞ and using that Pi|G(x(V )⊕xx(i)

max(G/V )) ≤∥∥Pi|G∥∥∞, we obtain

∥∥Pi|G∥∥∞ − ∥∥Pi|V ∥∥∞ ≥ (1− e−4r)e−2r

4r(1 + e2r)3

∑
j /∈V

ωi,j(f).

This yields the theorem thanks to inequality (6).

8. Proof of Theorem 4.6:

|p̂(i, j)− p̂(i)p̂(j)− (P (x1(i, j))− P (x1(i))P (x1(j)) )|

≤
∣∣∣P̂ (x1(i, j))− P (x1(i, j))

∣∣∣+
∣∣∣P̂ (x1(j))− P (x1(j))

∣∣∣+
∣∣∣P̂ (x1(i))− P (x1(i))

∣∣∣
We use Hoeffding’s inequality (see for example [16] Proposition 2.7) to the func-
tions t = 1x1(i,j), 1x1(i), 1x1(j), for all x > 0, we have

P

(
|(Pn − P )t| >

√
x

2n

)
≤ 2e−x.

Hence, a union bound gives that, on a set Ω(δ) satisfying P (Ω(δ)c) ≤ δ−1, for
all j in VM∣∣∣P̂ (x1(i, j))− P (x1(i, j))

∣∣∣+
∣∣∣P̂ (x1(j))− P (x1(j))

∣∣∣
+
∣∣∣P̂ (x1(i))− P (x1(i))

∣∣∣ ≤ 3

√
ln(6Mδ)

2n
.

Moreover, we have

Pi|j(x1)− P (x1(i)) =
(
Pi|j(x1)− Pi|∅(x1)

)
= (24)∫

Pi|G(x1(i, j)⊕ y(G/{i, j}))− Pi|G(x1(i)⊕ y(G/{i}))dP (y(G/{i})|x1(i)).

From the definition of a Gibbs measure, we have

Pi|G(x1(i, j)⊕ y(G/{i, j}))− Pi|G(x1(i)⊕ y(G/{i})) (25)

=
e−
∑
j∈G gi,j(x1(i),y(j))

(
e(gi,j(x1(i),x1(j))−gi,j(x1(i),y(j))) − 1

)(
1 + e−

∑
j∈G gi,j(x1(i),x1(i,j)⊕y(G/{i,j}))

)(
1 + e−

∑
j∈G gi,j(x1(i),y(j))

) .
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We can assume that, without loss of generality that gi,j(x1(i), x1(j)) = ‖gi,j‖
and therefore that

egi,j(x1(i),x1(j))−gi,j(x1(i),y(j)) − 1 =
∣∣∣egi,j(x1(i),x1(j))−gi,j(x1(i),y(j)) − 1

∣∣∣ .
It comes then from Lemma 7.4 that

1− e−4r

4r
|gi,j(x1(i), x1(j))− gi,j(x1(i), y(j))|

≤ egi,j(x1(i),x1(j))−gi,j(x1(i),y(j)) − 1

≤ e4r − 1

4r
|gi,j(x1(i), x1(j))− gi,j(x1(i), y(j))|

Hence

1− e−4r

4r
|ωi,j(f)| 1y(j)6=x1(j)

≤ egi,j(x1(i),x1(j))−gi,j(x1(i),y(j)) − 1 ≤ e4r − 1

4r
|ωi,j(f)| (26)

Using successively (24), (25), (26), we deduce that

e−2r(1− e−4r)

4r(1 + e2r)3
|ωi,j(f)| ≤ e−2r(1− e−4r)

4r(1 + e2r)2
P (y(j) 6= x1(j)|x1(i)) |ωi,j(f)|

≤ |P (x1(i, j))− P (x1(i))P (x1(j))| ≤ e2r(e4r − 1)

4r(1 + e−2r)2
|ωi,j(f)| .

We conclude that, on Ω(δ),

e−2r(1− e−4r)

4r(1 + e2r)3
|ωi,j(f)| − 3

√
ln(6Mδ)

2n

≤
∣∣∣P̂ (x1(i, j))− P̂ (x1(i))P̂ (x1(j))

∣∣∣ ≤ e2r(e4r − 1)

4r(1 + e−2r)2
|ωi,j(f)|+ 3

√
ln(6Mδ)

2n

All the sites j such that

|ωi,j(f)| ≥ 4r(1 + e2r)3

e−2r(1− e−4r)

(
η + 3

√
ln(6Mδ)

2n

)
(27)

belong to V̂ (η). All the sites such that

|ωi,j(f)| < 4r(1 + e−2r)2

e2r(e4r − 1)

(
η − 3

√
ln(6Mδ)

2n

)
(28)

do not belong to V̂ (η).
We use then Theorem 3.2 with the collection G = {V ⊂ V (ηms)}. Its cardinality
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is bounded by nκ. There exist a constant K and an event Ω2(δ), with probability
1− δ, such that, on Ω2(δ),

∥∥∥P̂i|Ĝ − Pi|G∥∥∥ ≤ K inf
V ∈G

{∥∥Pi|V − Pi|G∥∥+

√
ln(nκδ)

np̂V−

}
.

We use Theorem 4.5 to say that

∥∥Pi|V − Pi|G∥∥ ≤ Cr∑
j /∈V

|ωi,j(f)| = Cr

 ∑
j /∈V̂ (η)

|ωi,j(f)|+
∑

j∈V̂ (η)/V

|ωi,j(f)|

 .

We deduce from (27) that, on Ω(δ),∑
j /∈V̂ (η)

|ωi,j(f)| ≤
∑

j∈V (η,δ,M)

|ωi,j(f)| .

We choose Ω∗(δ) = Ω(δ) ∩ Ω2(δ) to conclude the proof.

9. Appendix

In this Appendix, we recall the bound given by Bousquet [6] for the deviation
of the supremum of the empirical process.

Theorem 9.1. Let X1, ..., Xn be i.i.d. random variables valued in a measurable
space (A,X ). Let F be a class of real valued functions, defined on A and bounded
by b. Let v2 = supf∈F P [(f − Pf)2] and Z = supf∈F (Pn − P )f . Then, for all
x > 0,

P

(
Z > E(Z) +

√
2

n
(v2 + 2bE(Z))x+

bx

3n

)
≤ e−x. (29)

Let us recall some well known tools of empirical processes theory.

Definition 9.2. The covering number N(ε, T, d) is the minimal number of balls
of radius ε with centers in T needed to cover T . The entropy is the logarithm of
the covering number H(ε, T, d) = ln(N(ε, T, d)).

Definition 9.3. An ε-separated subset of T is a subset {tk} of elements of T
whose pairwise distance is strictly larger than ε. The packing number M(ε, T, d)
is the maximum size of an ε-separated subset of T .

Those quantities are related by the famous following lemma.

Lemma 9.4. (Kolmogorov and Tikhomirov [13]) Let (T, d) be a metric space
and let ε > 0,

N(ε, T, d) ≤M(ε, T, d) ≤ N(ε/2, T, d).

The following result can be derived from classical chaining arguments (see
for example [6]).



M. Lerasle and D. Y. Takahashi/Interaction Neighborhood Estimation 35

Lemma 9.5. Let F be a class of functions, let d2,Pn(t, t′) =
√
Pn[(t− t′)2] and

Dn =
√

supt∈F Pn(t2) then

E
(

sup
t∈F
|(Pn − P )t|

)
≤ 16

√
2√
n

E

(∫ Dn/2

0

H1/2(u,F , d2,Pn)du

)
.

The next result was used to obtain our concentration inequalities.

Lemma 9.6. Let (Ai)i∈I be a collection of sets such that, for all i, j ∈ I,
Ai ∩ Aj = ∅ and let (αi)i∈I be a collection of positive real numbers. Let ZI =
supt∈FI |(Pn − P )t|, where FI = {ti = αi1Ai} and Pn is the empirical measure.
Let α∗ = supi∈I αi, p∗ = supi∈I α

2
iP (Ai). We have

E
(

sup
t∈FI
|(Pn − P )t|

)
≤ 64√

n

√
p∗ ln

(
4α∗√
p∗

)
+

2048

n
α∗ ln

(
4α∗√
p∗

)
. (30)

In order to apply Lemma 9.5 to F = FI , we compute the entropy of FI . For all
i 6= j, since Ai ∩Aj = ∅,

(ti − tj)2 =
(
αi1Ai − αj1Aj

)2
= α2

i 1Ai + α2
j1Aj .

Hence d2,Pn(ti, tj) =
√
α2
iPn(Ai) + α2

jPn(Aj).

Consider an ε-separated set Tε = {ti1 , ..., tiN } in (FI , d2,Pn) (see also the def-
inition in the appendix), it comes from the previous computation that, for all
k 6= k′,

α2
ik
Pn(Aik) + α2

ik′
Pn(Aik′ ) ≥ ε

2.

Hence, there is at least N−1 indexes k ∈ {1, ..., N} such that α2
ik
Pn(Aik) ≥ ε2/2.

It follows that

1 =
∑
i∈I

Pn(Ai) ≥
N∑
k=1

Pn(Aik) ≥ ε2(N − 1)

2(α∗)2
.

Hence N ≤ 1+2(α∗)2ε−2, thus H(ε,FI , d2,Pn) ≤ ln
(
1 + 2(α∗)2ε−2

)
. We deduce

from this inequality and Lemma 9.5 that

E
(

sup
t∈FI
|(Pn − P )t|

)
≤ 16

√
2√
n

E

(∫ √p̂∗n/2
0

√
ln (1 + 2(α∗)2ε−2)dε

)

≤ 32√
n
E

(∫ √p̂∗n/2
0

√
ln (2α∗ε−1)dε

)
, (31)

where p̂∗n = supi∈I α
2
iPn(Ai). Now, let us recall the following elementary lemma.
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Lemma 9.7. For all positive real numbers K,A such that K/A > e, we have

∫ A

0

√
ln(Kx−1)dx ≤ 2A

√
ln

(
K

A

)
Actually,∫ A

0

√
ln(Kx−1)dx = K

∫ ∞
K/A

√
ln(x)

x2
dx = A

√
ln

(
K

A

)
+
K

2

∫ ∞
K/A

1

u2
√

lnu
du.

Since K/A > e, 1
u2
√

lnu
≤
√

lnu
u2 on [K/A,∞[. The result follows.

By definition, p̂n ≤ (α∗)2, hence 2α∗/(
√
p̂∗n/2) ≥ 4 > e, we deduce from Lemma

9.7 that

E
(

sup
t∈FI
|(Pn − P )t|

)
≤ 32√

n
E

√p̂∗n
√√√√ln

(
4α∗√
p̂∗n

) .
Let us now give another simple lemma.

Lemma 9.8. The function f : x 7→ x
√

ln(K/x), defined on (0,K) is positive,
non decreasing on (0,K/e1/2) and strictly concave.

The proof of the lemma is straightforward from the computations

f ′(x) =
√

ln(K/x)− 1

2
√

ln(K/x)
, f”(x) = − 1

2x
√

ln(K/x)
− 1

4x(
√

ln(K/x))3
.

Applying Lemmas 9.8, 9.7, and Jensen’s inequality to the right hand side of (31)
we have that

E
(

sup
t∈FI
|(Pn − P )t|

)
≤ 32√

n
E
(√

p̂∗n

)√√√√ln

(
4α∗

E
(√

p̂∗n
)).

Now it comes from Jensen inequality that

E
[√

p̂∗n

]
≤
√
E [p̂∗n] ≤

√
p∗ +

√
α∗E

(
sup
t∈FI
|(Pn − P )t|

)
.

It is clear from its definition that p∗ ≤ (α∗)2. Moreover, as Pn and P are
probability measures, we have, for all t in FI , |(Pn − P )t| ≤ 2α∗. Hence,√
α∗E

(
supt∈FI |(Pn − P )t|

)
≤
√

2α∗. We deduce from these inequalities that

√
p∗ +

√
α∗E

(
sup
t∈FI
|(Pn − P )t|

)
≤ (1 +

√
2)α∗ ≤ (4α∗)/e1/2.
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Hence, it comes from Lemma 9.8 that, if E = E
(
supt∈FI |(Pn − P )t|

)
E ≤ 32√

n

(√
p∗ +

√
α∗E

)√
ln

(
4α∗

√
p∗ +

√
α∗E

)

≤ 32√
n

(√
p∗ +

√
α∗E

)√
ln

(
4α∗√
p∗

)
.

It is then straightforward that (30) holds.
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