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Abstract:

We build confidence balls for the common density s of a real valued sample
X1, ..., Xn. We use resampling methods to estimate the projection of s onto
finite dimensional linear spaces and a model selection procedure to choose an
optimal approximation space. The covering property is ensured for all n > 2
and the balls are adaptive over a collection of linear spaces.
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1 Introduction

In this paper, we discuss the problem of adaptive confidence balls, from a non-asymptotic point
of view, in the particular context of density estimation. Let S be a set of densities with respect
to the Lebesgue measure p on R. Given an i.i.d sample X;., = (Xi,..., X,,) and a confidence
level 5 € (0,1), a confidence set (hereafter CS) BB(Xl:n) on S is a subset of S satisfying the
following covering property:

Vs e S, P, (s € Bﬁ(xm)) >1-5 (1)

where, for all s in S, Ps denotes the distribution of Xi., when the marginals have common
density s. All the CS considered in this paper are L2-balls, centered on estimators § of s, and
with random radius pg. The quality of a CS is measured with the quantiles of pg. We are
looking for adaptive CS, which means that, given a collection (Sp,)menm, of subsets of S, pg
should be as small as possible over all the sets (Sp,)mem,, -

This problem was mostly considered in regression frameworks, see among others Li [26], Lepski
[24], Juditski & Lepski [21], Hoffmann & Lepski [15], Juditski & Lambert-Lacroix [20], Baraud
[], Beran [5], Beran & Diimbgen [6], Cai & Low [10], Genovese & Wassermann [I3] 14]. Robins
& van der Vaart [29] considered a more general Hilbertian framework that includes in particular
density estimation and some regression frameworks.

Our adaptive balls are derived from a model selection procedure, which is essentially the one
of Baraud [4]. We start with a collection of linear spaces (Sy,)menm, and associate to each of
these, the projection estimator §,, of s and some positive number p(m). The p(m)’s are suitably
calibrated to satisfy the property that, with probability close to one the distance between s and
its projection estimator §,, is not larger than p(m). We then select 7 as the minimizer of p(m)
and define the confidence ball as the L?-ball centered at 3, of radius p(mh).

We use two different ingredients to compute p(m). The first one is a resampling estimator of
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|5 — 8m||?, where s, denotes the projection of s onto S,,. It is naturally derived from Efron’s
heuristic (see Efron [I1]), in the same way as Arlot, Blanchard & Roquain [2]. This allows us
in particular to keep all the sample to build §,,. This is an improvement compared with Robins
& van der Vaart [29] or Cai & Low [10], who cut the sample into two parts, the first one being
used to build an estimator 3 of s and the other to evaluate the distance || — s||2.

The second ingredient is an estimator of ||s — s,,||?, based on U-statistics, as in Laurent [22] 23].
The proofs are handled thanks to a concentration inequality for U-statistics, derived from
Houdré & Reynaud-Bouret [16]. The main advantage of a model selection’s approach is that
the resulting CS are non asymptotic, i.e. (I]) holds for all n. Moreover, the CS behaves well
even if s does not belong to S, which outperforms, in that case, the result of Li [26].

Let S be a linear space with dimension d and let (S,,;)menm, be a collection of linear subspaces
of S, with respective dimensions (d,;)men, - The diameter of our CS on S is upper bounded,
for any s in S, by C(vV/dVd,,)/n, where C is a constant, free from d, d,,, and n. This bound is
optimal in the minimax sense. Hence, adaptation is possible over collections of subspaces with
dimension d,, > v/d for L?-balls. This positive result does not hold in general, in particular,
adaptation is impossible for L>-balls (Low [27]). However, the adaptation property is strongly
limited since it is impossible over spaces with dimension d,, < v/d. This negative result was
already proved asymptotically in Li [26], Hoffmann & Lepski [15], Juditski & Lambert-Lacroix
[20], Robins & van der Vaart [29]. It was proved non-asymptotically in a regression framework
in Baraud [4]. We use the method of Baraud [4] and extend his result to the density estimation
framework.

The paper is decomposed as follows. Section [ introduces the notations and the main assump-
tions. Section [] presents the technical tools required for the construction of our CS. Section [
gives the main results, we build our CS, give upper bounds on their size and prove their opti-
mality in the minimax sense. Section [Bl presents a short simulation study, where we illustrate
the behavior of our resampling-based estimators. All the proofs are postponed to Section[6l We
add in an Appendix the proofs of some technical lemmas.

2 Notations and assumptions

2.1 Notations

Hereafter, L?(11) denotes the space of all measurable functions ¢ : R — R such that [; t?(2)du(z) <
oo. It is endowed by its classical scalar product defined, for all ¢, #' in L?(u) by < t,t/ >=
Jg t(@)t (z)dp(z) and by the associated L:-norm defined, for ¢ in L?(u) by ||t|| = /<, >.

For any density s, we denote by Py the distribution of an iid sample X;., = (X, ..., X},) with
common marginal density s and by E; the expectation with respect to Ps.

Hereafter, S, with various subscripts, denotes a linear subspace of L?(u) and S* the set of
densities in S. For all sets F in L?(u), the L2-diameter of F is defined by

A(F)= sup [t—1].
(t,t')eF?

For a random set B in L? (1), a linear space S of measurable functions and a real number « in
(0,1), we define the (S, «)-size of B as

A(s,0)(B) = inf {5 >0, sup P, (A(B) > 68) < a} . (2)

For all indexes sets A, (1))aea Will always denote an orthonormal system in L?(u).



2.2 Efron’s resampling heuristic

Let X, X1, ..., X,, beii.d random variables with common density s, let P; and P,, denote the fol-
lowing processes defined respectively for all functions ¢ in L?(12) and for all measurable functions
t by

1
Pt =< s,t >= / t(z)s(x)du(x) = E(t(X)), Pyt = - Zt(Xi).
R i=1
Hereafter, a resampling scheme (W7, ..., W,,) is a vector of real valued random variables, inde-
pendent of (X7, ...., X;,) and exchangeable, which means that, for all permutations 7 of 1,...,n,

(Wr(1ys s Wr(n)) has the same law as (W71, ..., Wy,).

Let (Wy,...,W,) be a resampling scheme, let W, = > W;/n and let P}V denotes the
resampling-based empirical process defined, for all measurable functions ¢, by

1 n
PVt = - > Wit(X,).
i=1

For all random variables F(Xy, ..., X,,, W1, ..., W,,), we denote by
Ew (F(X1, .o, X, Wi, oo, W) = E(F (X1, oo, X, W, oo, W) | X1, o, X))
Let F' be a known functional and F,, = F(P,, Ps), we define the resampling estimator of F,, by
EV = CwEw (F(P)Y , W,P,)),

where Cyy is a constant depending only on the functional F' and the law of the resampling
scheme. Efron’s heuristics states that F,‘;V provides a sharp estimator of F,, when the constant
Cy is well chosen.

2.3 Balls in functional spaces

Our method is strongly based on empirical process methods, in particular on Talagrand’s con-
centration inequality. This inequality involves some L°°-norms, this is why we introduce the
following notations. Let S be a linear space of measurable functions. For any function ¢ in
L2(u) N L% (), let ms(t) denote its orthogonal projection onto S, let ||t/ be its L>°-norm. For
all C, C’, nin Ry, for all t in L?(u), let

By(t,C,8)={t'e S, |t' —t]| <C}, B(S) = B2(0,1,8) ={te S, ||t| <1}. (3)

B,oo(C,C",, 8) = {t € L (1) N L= (), |1t < C, Nitlloe < Cs It =75 <} (4)

2.4 Basic definitions

Definition 2.1. (Confidence Sets)

Let (X1,...,X,) be an i.i.d. sample of real valued random variables, let S C L?(u) and let 3
be a real number in (0,1). The set C'S(S, ) of (1 — B)-confidence balls on S is defined as the
collection of all subsets Bg = By(8,pp,5) of L?(u), where § and pg are measurable with respect
to o(X1, ..., X)) such that

Vs € §*, PS<SEBB)21—5.



Definition 2.2. (Minimaz rate of convergence for confidence sets)
Let (X1, ..., X,) be an i.i.d. sample of real valued random variables, let S’ C S C L*(n) and let
a, B be real numbers in (0,1). The (a, B)-minimaz rate of convergence over S' for CS on S is
defined as

bn(,8,8,8) = inf Ay a)(Bs).

BseCS(S,8)

Definition 2.3. (Adaptive confidence sets)
Let (X1, ..., X,,) be an i.i.d. sample of real valued random variables, let S C L*(i1), let (Sm)mem,,
be a collection of subsets of S and let o, B be real numbers in (0,1). A CS Bﬁ in CS(S,B) is
said to be optimal, or adaptive over (Spm)mem, , if the following condition holds.
For all fized o in (0,1), there exists a constant c(«, ) > 0 free from n, S and (Spm)mem, such
that, for all m in M,

ASm,a(Bﬁ) < C(Oé, ﬁ)gbn(a, 5, S’ Sm)

Definition 2.4. (Test)

Let (X1,...,X5,) be an i.i.d. sample of real valued random variables. Let S be a family of
densities on R. Let Sy, S1 be two disjoint subsets in S. A test T of the assumption Hy: s € Sy
against the alternative Hy : s € Sy is a function T : R™ — {0,1}. The test T is said to have a
confidence level 1 —a € (0,1) when

Vs € Sp, Py (T(X1,.... Xp) =0) > 1 -«
It is said to have a power 1 — 3 € (0,1) when

Vs € S, Py (T(X1, ... Xp) = 1) > 1— 4.

2.5 Main Assumptions

Let (Sm)mem, be a collection of linear subspaces of L?(j), with finite dimensions respectively
denoted by (d;,)mem,, . We make the following assumptions on this collection.

H1: There exists m,, in M, such that S,,, = Span (UmeMn Sm).

H2: There exists a constant C7 such that, for all m in M,,, for all ¢ in S,,

[tlloe < Crv/dml[t]-

The last assumption is only technical and let us simplify the results. Let 8 be a real number in
(0,1).
H3(M, 3): For all n > 2 N,, = Card(M,,) is finite and there exists a constant Crq such that,
for all n > 2,

2v/d, In(6N,,/3) < COu

n

Four examples are usually developed as fulfilling this set of assumptions:

[Hist] regular histogram spaces: for all m in N*, S,, is the space of all the functions constant
on the partition (I[/m, (k+1)/m))k=0,...m—1 of [0,1], dp, = m.

[T] trigonometric spaces: Sy, is the linear span of the functions g o(x) = 1p1), Yj1(z) =
V2cos(2mja) 1) 1 () and ¥;a(z) = v2sin(2mjz) 1o 1) (@) for all 1 < j < Jpp. dpy = 2Jp + 1.

[P] regular piecewise polynomial spaces: Sy, is the linear span of the functions (v;) for j =
L...,dm, k=0,...,7 — 1, where, for all j = 1,..., J,,, and k = 0,...,7 — 1, ¢; 1, is a polynomial of
degree kon [(j — 1)/ Jm,J/Im]. dm = 1Im.

[W] spaces spanned by dyadic wavelets with regularity .

We have to choose d,,,, < Cn?/(Inn)? and 8 > n~" for some r > 0 in order to fulfill Assumption



H3(M, ). For a description of those spaces and their properties, we refer to Birgé & Massart
[8]. Hereafter, in order to simplify the notations, we will often write Sy, d,, Sp,... instead of

Sty Qs Sy see

3 Technical tools

This section presents the results required in Section M to build our adaptive confidence sets. Let
s be a density in L?(u) and let s, and s, denote respectively its orthogonal projections onto
the linear spaces S, and S,,, where S,,, C S,,. We recall the definition and some basic properties
of the projection estimator §,, of s on S, in Section B.Il From Pythagoras theorem, it satisfies

Is = 3mll* = lls = sall® + llsn = small® + lIsm — 3ml|*. ()

Section 3.2 deals with the estimation of ||s,, —§,,||?. We introduce our resampling estimator and
state a very important concentration inequality (Theorem B3]). In Section B3] we introduce
our estimator of ||s,, — s,,||> based on U-statistics.

3.1 Projection estimators

Definition 3.1. (projection estimators)
Let Xq,..., X, be i.i.d random variables with common density s in LQ(,u). Let Sy, be a linear
subspace of L*(1). The projection estimator of s on Sy, is defined by

5, = inf ||t||> — 2P,t.
Sm tg;m\l H n

Classical computations show the following Lemma:

Lemma 3.2. Let X1, ..., X,, be i.i.d random variables with common density s in L*(u). Let Sy,
be a linear subspace of L?(u) and let (¥))ren,, be an orthonormal basis of Sy,. Let sy, be the
orthogonal projection of s onto S,, and let §,, be the projection estimator of s onto Sy,. Then,

sm= Y (P 3m= D (Pahn)tn, llsm = 3ml> = D [(Po— P)a]”.

AEA, AEAMm AEA

3.2 Estimation of ||s,, — 4, by resampling methods

Let s be a density in L?(u). Let S,, be a finite dimensional linear subspace of L?(u), let
(¥A)aen,, be an orthonormal basis of S,,. Let s,, denote the orthogonal projection of s onto
S, and let 8, denote the projection estimator of s onto Sy,. ||$m — 8m||? is a functional of P,
and Py, therefore, it can be estimated by resampling. Indeed, let (W7,...W,,) be a resampling
scheme and let W,, = > | W;/n. The resampling estimator of ||s,;, — 3,,]|* given by Efron’s
heuristic (see Section 2.2]) is defined for this resampling scheme and a suitably chosen constant
Cw by:

pw(Sm) =Cw Y Ew ((PY = WaP,)¥a]?) . (6)

AEA,

pw (Sm,) is well defined since we can check with Cauchy-Schwarz inequality that

2

pW(Sm) = CWEW sup (PXV - WnPn)t
tESm,|It||<1

The deviations of py (S,,) are given by the following theorem.



Theorem 3.3. Let S,, be a linear subspace of L?(p) with finite dimension dy,, satisfying H2
and let C5 > 0. Let X1,..., X, be an i.i.d. sample, let (W1,...W,,) be a resampling scheme and
let pw(Sm) be the associated random variables defined in (@) for Cyw = (Var(W — W,)) .
There exists a constant k,(C1,C3) such that, for all 2 < x < C3n/\/dy,, for all densities s in
L2() 1 L),

N dmx —x
P, <||sm 2 > pw(Sm) + u(Cr, Ca) (1 + [l A 15l 42 A dm)—vn> P

Comments:

e This theorem is one of the main contributions of the article. It provides a sharp control
of the variance term. It is the main difference with the article of Baraud who worked
in a Gaussian framework and handled this term with a concentration inequality for y2-
statistics of Birgé [7]. Our new construction is more general and can be easily adapted to
other frameworks, which is not the case in Baraud [4].

e It is proved thanks to a technical lemma (Lemmal6.1]) and a sharp concentration inequality
(Lemma [6.2]). Lemma shows that, with our choice of Cy, || — éml|? — pw (Sm) is
a totally degenerate U-statistics of order 2. Lemma is a concentration inequality for
U-statistics of order 2.

e The proof of Lemmal[6.2lis derived from Houdré & Reynaud-Bouret [16], it follows mainly
the one of Fromont & Laurent [I2]. The main improvement compared with Fromont &
Laurent [12] is that we work with general linear spaces Sp,.

e The bound involves a term /||s|| ., A v/ Hst%4 A Vdy,. From a theoretical point of view,

the term +/||s]] YA Vdy s useless asymptotically when ||s||, is finite. In practice the
L?-norm of s is often much smaller than its L>-norm. Moreover, our control can also
be used when |[s|| ., ||s|| or both of these quantities are unknown, since &, (C1,C3) is free
from |[s[], [l

e The condition on z is not a problem in practice. We are interested in cases where 1 — e~ %/2

is large, therefore, 2 < x will always be satisfied. Moreover, we will see in Section @ that the
assumptions H3(M, () are designed to ensure that the interesting x satisfy @ < Csn/+/d,,
provided that Cjs is sufficiently large.

e This theorem can be used to build a model selection procedure of density estimation.
Actually, an ideal penalty in this problem is given by 2||s;, — 5, |> and the aim of model
selection is to evaluate this ideal penalty as precisely as possible. Theorem [B.3] provides
such a control. This important application is discussed in detail in [25]. For an introduc-
tion to model selection, we refer to Massart [28]. The concept of ideal penalty is defined
in Arlot [1].

e In order to keep the result as readable as possible, we only give the explicit form of the
constant k,(C1,C3) in the proof of Theorem B.3

Corollary 3.4. Let Xq,...,X,, be i.i.d. real valued random wvariables. Let (Sp)mem, be a
collection of finite dimensional linear spaces satisfying H1, H2. Let € (0,1) such that this
collection satisfies also H3(M, B) and let My > 0, My > 0. Let (W1,...,W,,) be a resampling
scheme and let py (Sy,) be the associated resampling estimator defined in Theorem [3.3. Let



Ky (C1,Cr) be the constant defined in Theorem[3.3 for Cs5 = Cpy, let z, = 2In (2N, /5) V2 and
let

Yinin ()

V(0,5 X1 ) = 0 (S) 4 0(Ch Co) (14 M A M 1, )

Then, for all densities s in L*(u) N L™ () such that ||s|| < My and ||s||, < Mo,

N

Py (3m € My, [[sm — $ml> > V(m, B, X1, ..., X)) <

Comments:
e This corollary gives a uniform upper bound V(m, 5, X1, ...X,,) on the variance term.
e The size of this uniform bound, in the sense of [@)), is given by the following Theorem.

Theorem 3.5. Let Xq,...,X,, be i.i.d. real valued random wvariables. Let (Spy)mem, be a
collection of linear spaces satisfying H1, H2. Let o, B be real numbers in (0,1) such that
this collection satisfies also H3(M, o) and H3(M, 3). Let My > 0, My > 0 and let V,, 3 =
V(m,B,X1,...,Xy) be the associated random variables defined in (7). There exists a constant
K, free from dy,, Ma, My, «, 3, such that, for all m in M,

d Vim . [N,
2 m 1/2 m n
BBy oo (M, Mo 0.L2(0)).00 (Vim.5) < 5 [7 " <1 * \/MOO Mo dm) n [@” '

Comments:

e For fixed confidence level a, 3, the asymptotic order of magnitude of V,,, 5 is d,,, /n for all
models with dimension d,,, > (In N,,)%.

3.3 Estimation of ||s, — s,

The simple following lemma is important to understand our procedure.

Lemma 3.6. Let Xq,..., X, be i.i.d. real valued random variables with common density s in
L?(p). Let Sy, C S, be two linear subspaces of L?(u), with respective finite dimensions d,, and
dy. Let sy, and s, be the orthogonal projections of s respectively onto Sy, and S,. Let ({¥x)xea,
be an orthonormal basis of Sy, such that (Y¥x)xea,, @5 an orthonormal basis of Sy,, with Ay, C Ay,
Then

[[sn — smH2 = Z (PST/’A)Z = E; Z Z PYa(X X;) (8)

AEA—Am l;éj 1XeA,—Am

Based on this kind of lemma, Laurent [22] 23] introduced the estimators based on U-statistics
to estimate quadratic functionals of a density. These estimators were successfully used by
Fromont & Laurent [I2] for goodness of fit tests in a density estimation model, and by Robins
& van der Vaart [29] to build adaptive confidence sets. We follow the same steps here and
define, for any observation Xj,...X,, for all finite dimensional linear spaces S,, C Sy, for all
orthonormal basis (1))xea, of S, such that (¢x)xea,, is an orthonormal basis of S,,, with

Ay C Ay,
Po(Sm: 5n) = 7oy Z > OaX)ea(X;). (9)

z;é] 1 eA,—Am

7



Pb(Sm, Sp) is well defined since we can prove with Cauchy-Schwarz inequality that, if Sﬁm
denotes the orthogonal of S, in S,

pb(sm, Sn) = ! n Sup (Pnt)2 - b, sup £ .
n =1\ ieBy(sim) teBy(Sikm)

The deviations of py(Sp,, Sy) are given by the following result:

Lemma 3.7. Let Xq,..., X, be i.i.d. real valued random wvariables. Let S, C S, be two
linear subspaces of L?(u), with respective finite dimensions d,, and d, and let py(Spm,Sn) be
the estimator defined in (). For any density s in L*(u), let s, and s,, denote its orthogonal
projections respectively onto Sy, and Sy,. For all C3 > 0 and all € in (0,1), there exists a real
constant ry(e,C3) such that, for all 2 < x < Csn/\/d,, for all densities s in L?(u) N L>®(p),
with Pg-probability larger than 1 — 3e~%/2,

Vd,x
[P6(Sims Sn) = llsn = smll*] < ellsn = swll” + (e, Cs) (1 /sl A HsHQd%/z) =

Thanks to this Lemma, we can derive the following corollary that gives our estimation of

55 — smll-

Corollary 3.8. Let Xi,...,X,, be i.i.d. real valued random wvariables. Let (Sp)mem, be a
collection of linear spaces satisfying assumptions H1, H2. Let 8 be a real number in (0,1) such
that this collection satisfies also H3(M, ). Let My > 0, My > 0, x,, = 2In (6N,,/5) V 2. Let
po be defined in (9) and, for all € in (0,1), let ky(e,Crq) be the constant defined in Lemma[3.7]
for C3 = Cpq. For allm € M., let

K(m,B,X1,...,Xn) = inf pb(f’”’s") + “b(f’ Cat) (1 + 4/ My AMML”) Vintn g
— € — € n

€€(0,1)

Then, for all densities s in By oo(Ma, My, 0, L2(1)),

P, (3m € M, lsn = smll” > K(m, B8, X1, X)) <

o] @

Comments:

e This corollary gives a sharp estimation of the bias term. In particular, we will see in the
following section that the term \/d,,x, /n is essentially necessary.

e We obtain a bound valid for all the models in the collection M,,. Combined with Corollary
3.4 it gives all the tools required to apply our method of selection.

4 Main results

4.1 Adaptive Confidence Balls

We can now easily present our model selection procedure to obtain CS.



Construction of the adaptive CS

Let 5 be a real number in (0, 1), let My > 0, My > 0, let (Sy)menm,, be a collection of finite
dimensional linear spaces and let S,, = Span (UmEMn Sm). Let (V(m, B, X1, ..., X1))mem, be
the collection defined in (@), let (K (m, 3, X1, ..., X»))mem,, be the collection defined in (I0]) and
let  be a positive real number. For all m in M,,, let

ﬁ(m77775) = \/772 + K(m757X17 7Xn) + V(maﬁaXla 7Xn)

Recall the definition of the L?-ball centered in an element t of L?(u) with radius C in R given
in ([@)). Our final CS is defined by

Bﬁ,n - B2(§ﬁ’wﬁ(m’n’ﬁ)a LQ(IU’))’ where m = argmrg/i\I/tl {ﬁ(mﬂ%ﬁ)} . (11)

Performances of our CS

Theorem 4.1. Let X3, ..., X,, be i.i.d real valued random variables. Let (Sp)mem, be a collec-
tion of models satisfying assumptions H1, H2. Let 8 be a real number in (0,1) such that this
collection satisfies also H3(M, B). Let My > 0, Mo > 0, n > 0 and let By oo (Mo, Moo, 1, Sp)
be the ball defined in ().

Then Bﬁ,n’ defined in (1), belongs to CS(Ba,oo(Ma2, Moo, n,Sy), B).

Moreover, there exists a constant k such that for all m in My, for all n, > 0 and all o such
that (Sm)mem,, satisfies also H3(M, )

o) < 0 (1 2y 2 V(00 )

ABQ,oo(M27M00777m75m)70f(B6777) S K 7) v ( n (12)

Comments:

o Theorem BTl gives CS over By (M2, M, 1, Sy), with prescribed confidence level 3, valid
for all n > 2.

e The size of these CS is upper bounded by the maximum of two terms. 7% + /d,/n is
the minimax separation rate for the tests Hy : s = sg against the alternative Hy : s €
By oo(Ma, Moo, m, Sy) — {so}, where s is some element in S},. n2, + dm/n is the minimax
estimation rate over By oo (M2, Moo, N, Sm)-

e Robins & van der Vaart [29] proved that these rates are optimal asymptotically. We will
show in Theorem below that this property holds also non asymptotically.

e p(m,n, ) has basically the following form

P2(m, 0, B) = 1% + po(Sms Sn) + pw (Sim) + K (Ma, Moo) \/ﬁln(i\jn/(ocﬁ))_

It depends in practice on two unknown constants, n and x(Ma, My,). We believe that
some ”slope heuristic” (see Birgé & Massart [9], Arlot & Massart [3] or [25]) method
can be developed for CS in order to obtain a data driven estimate of x(Ms, My,). This
estimate would probably be more reasonable than the upper bound given in our proof. On
the other hand, we believe that the constant n can only be handled with suitably chosen
assumptions. For example, some regularity assumption as in Section 3] bellow.



e Baraud [4] used a procedure almost similar in a regression framework. He defined, for all m
in M, a test T}, to test the null hypothesis s,, € S,,, against the alternative s,, € S, — S,
and some positive number p(m). His p(m)’s are calibrated to satisfy the property that,
if T}, accepts the null, then, with probability close to one, the distance between s and
its projection estimator $,, is not larger than p(m). He selected r as the minimizer of
p(m) among those m for which T, accepts the null and defined the confidence ball as
the L2-ball centered at 8y, of radius p(ri). The main difference with this general scheme
is that our procedure does not require a series of tests to work as the bound given in
Corollary [3.8 holds for all m.

4.2 Optimality of our balls

In this section we prove that the rate given in (I2]) can not be improved in general, from a
minimax point of view. The result is stated in the following theorem:

Theorem 4.2. Let S, be the set of histograms on {[k/d,, (k+1)/d,), k =0,...,d, — 1} and let
Sy be the linear subspace of Sy, of histograms on {[k/dp, (k +1)/dn), k=0,...,dy, —1}. Let
a, B be real numbers in (0,1) such that 2a + 5 < 1. There exists a constant C(«, 3), such that

T ).

n n

62(, B, S, Sm) > Clev B) (

Comments:

e Theorem gives the optimality of the rate given in (I2), since the terms 7 and 7,, can
obviously not be avoided also.

e The key point of the proof (Lemma [6.8]) is that we can not build a test of null hypothesis
Hy : s € S, against the alternative Hy : s € S, s ¢ S, with separation rate smaller
than C, 3v/d,/n. This extends the result of Ingster [17, I8, [19] to a non asymptotical
framework and the result of Baraud [4] to density estimation. For a definition of the
separation rate, we refer to Ingster [17, 18] [19].

e The proof follows the methodology described in Baraud [4].

4.3 Application to regular density

This section presents the application of Theorem [£1] to regular densities. In particular, we
extend the result of Robins & van der Vaart [29] since () is obtained for all n.

Fourier spaces:
For all k£ in N*, for all z in R, let

Y1 p() = \/5005(2”“)—7[0,1] (x), Yor(x) = \/ESiD(QWkl“)I[o,l] (7).

For all d in N, let Fy be the linear space spanned by the functions Ijg 1], 1k, Yo, for all k in
{1,...,d}. Fjis a subspace of L?(u). It is a classical result (see for example Birgé & Massart
[8]) that any sub-collection of (Fy,, Jo<d,, <n2(nn)-2 satisfies H1, H2 with C; = 1. We can also
easily check that, for all 3 > n~2, it satisfies also H3(M, 8) with Cy = 4.

Sobolev Spaces:
For all functions ¢ in L?(u), let

1
o= [ Ho) o (@inta) = [ ta)dnto)

10



and for all k € N*, let
= [ Hahina@dno). tas = [ H@)ane)du(o)
For all v € R%, for all M in R, we denote by S(v, M), the set of functions ¢ in L?(y) such that
to+ Y (8, +13,;) %" < M.

1EN*

It is clear that for all ¢ in S(y, M), ||t|| < M and for all d in N, if 7, () denotes the orthogonal
projection of ¢ onto Fy,

1 , M?
1t = 7r, (D] = Z (t1i+13,) < (d+1)2r Z (1 +13;) i < A+

i>d i>d

We can also use Cauchy-Schwarz inequality to prove that, when v > 1/2, for all = in [0, 1],

cos2(2mix) + sin?(2miz
)] < o] + z(Z@;ﬁtgi)Q(iH)zy) <Z i) )>.

1€EN Sh

Hence, when v > 1/2, for all t in S(y, M), ||t|,o < 2M /> ;cn(i +1)727. When v > 1/2, let
Mo = 2M />, cn(i +1)727 and when v < 1/2, let Mo, denote a positive real number. We
have obtained that

S(y, M, M) := {t € S(v, M), ||tllo. < Moo} C Baoo (M, Moo, M(d+1)"",Fy).  (13)

Hence, the following proposition holds.

Proposition 4.3. We keep the previous notations. Let v, M, My, be strictly positive real
numbers, let d, denotes the integer part of n@HY27 A n2(Inn)~2 and let My, = {1, ...,dy,}.
Let Bg pr(d,+1)-+ be the set defined in Theorem [f.1] for the collection (Fy,,)d,em,- Then,
BB,M(dnJrl)—'Y belongs to CS(S(vy, M, M), ).

There exists a constant k free from n such that, for all v > 7,

Ag(y M, M) 0 (Bﬁ,M(dn+1)*7> <K <n*’7’/(2w'+1) V (In n)n*%f/(‘”“)) .

Comments:

e This result can be compared with the one of Robins & van der Vaart [29]. Our balls
satisfy the covering property (Il) for all n and not asymptotically as in their paper. They
proved that the rate =Y /@YD)y =2/ (D) g asymptotically optimal.

o It is a straightforward consequence of Theorem [4.1] applied with 7, = M(d,, + 1)77
= M(d, +1)77 and the previous computations, therefore, the proof is omitted.

5 Simulation study.

In this section, our first goal is to illustrate Theorem B3l We proved that the difference
[$m — 8mll3 — pw(Sm) is upper bounded by v/d,/n, we will show that this bound is sharp
on some simulations. Then, we will consider a more general version of Efron’s heuristics, which
states that, for a good choice of the constant Cyy, the distribution of ||s,, — 4,3 is close to the
conditional distribution DV (Cyy ZAeAm[(PXV — Wa)¥a]?). The quantiles of ||s,, — 4m|2 must
then be close to their resampled counterpart. In a second simulation, we test this method and
remark that it gives very good practical results.

11



5.1 Illustration of Theorem [3.3

In this simulation, s is the uniform density on [0, 1], S,, is the set of histograms on the par-
tition ([(k — 1)/dm,k/dw))k=1....dn- (Wi,...,Wy) are Efron’s weights, i.e. the distribution
D(Wh,...,W,,) is the multinomial distribution M(n,1/n,...,1/n). In order to compute pw (Sy,),
we estimate the conditional expectation EW (3, A [(PW — W,,)¢5]?) by a Monte Carlo method
with n repetitions. Finally, we repeat p = 1000 times the experiment. We plot the histograms
of the p values of the normalized difference 1(|[s — 8|3 — Pw (Sm))/v/dm. The first histogram
is obtained with n = 50, d,,, = 10,n; = 100 and the second for n = 200, d,,, = 50, n = 500.

300 T T T T 300

250} 2501

2001 2001
1501 150
1001 100

501 50}

_n_

. 212
Figure 1: m(”sm — Smll3 — pw (Sm))-

Comments:

e The distribution of n(|[sm — 5|3 — pw (Sm))/V/dm does not change with n or d,,. This
shows that the result of Theorem [B.3lis sharp in this example, at least, up to the constant
in front of the remainder term.

5.2 Illustration of the second Efron’s heuristic

In this simulation, we keep the same s and the same resampling scheme. S, is the set of
functions constant on the partition ([(k — 1)/dm,k/dm))k=1,...dn, With dp, = 50. n = 100,
N = 100 and ((XZ-J)Z‘:L___’”)J:L___,N are N independent samples with common law P,. For all
J =1,...,N, we compute the projection estimator é;{1 on S,, with the sample (X;])Zzln
Then, we take n, = 10000 resampling schemes (W7, ...,W,,). For all resampling schemes, we
compute the quantity

S = o (Z[(B{W - wnp,fw)
AEA

and we obtain an approximation of the (1 — a)-quantiles g/ of its conditional distribution
DY (pi},(Sm)). We plot the frequency of J such that || s, — 57{1“2 < ¢ and the function f(a) =
when « varies in (0.5,1) in the following curves.

12



0.91

frequency
o o
~ [e¢]

o
o)

0.5

level

Comments

e The covering property of this empirical ball is very close to the one we would like to
obtain. Hence, this method seems to give sharp confidence balls for s,,. The computation
time is the same as in the first method.

e We do not prove any theoretical evidence of this covering property. In particular, we
cannot guarantee that Py([|sm — $ml|3 < da) > 1 — a occurs for any n.

Acknowledgements: The author would like to thank gratefully Béatrice Laurent and Clémentine
Prieur for many fruitful advices.

He also would like to thank the reviewers and the associated editors who helped to improve a
first version of the article.

6 Proofs.

6.1 Proof of Theorem [3.3

The theorem can easily be deduced from the following Lemmas, whose proofs are postponed to
the appendix.

Lemma 6.1. Let X1, ..., X,, be an i.i.d sample with common density s in L*(u) and let (1)) ren

be an orthonormal system in L?(p). Let Wy, ...W,, be a resampling scheme, let W,, = n~" S Wi
and let Cyy = Var(Wy — W,,)~L.
Let Ts(A) = 3 _sea(on — Papy)?,

ps(A) = Z [(Pn - Ps)w)\]Q 9 pw(A) = C’WEI/V (Z [(PZV - Wnpn)wA] 2) 5

AEA AEA

V() = mmgs D0 SO0 = Paia) (0a(X) = Pat).

i£j=1 \eA

n—1

US(A)7 pW(A) - %PnTs(A) - %US(A)a ps(A) —pw(A) = US(A)

13



Lemma 6.2. Let X1, ..., X,, be an i.i.d sample with common density s in L?(u) and let (1)) ren
be an orthonormal system in L*(u). Let Dsn = >, cp Ps ((0x — Psthy)?)

VD) = s 3 S0 — i) () = Pat).

i#j=1 \eA

B(A) = {Z a)iy; Za%\ < 1}, U?,A = sup P, ((t —Pt)2) , ba = sup ||t -

AEA AEA teB(A) teB(A)
For all € in {—1,1}, for all z > 0, we have

X
n

V' Ds 3/2 2
P, <£US(A) > 5.71)5,AT’A:C +802 A% + 384v/2v, pba ( ) + 204062 (%) ) < ee .

Lemma 6.3. Let S be a linear space with finite dimension d satisfying assumption H2. Let s
be a density in L2(u) N L= (1), let (¥a)ren be an orthonormal basis of S. Let

B(A) = {Z axiy; Zai < 1} ,viA = sup P ((t— Pt)2) , by = sup ||t],

AEA AEA teB(A) teB(A)

Dgn = Z Py ((hx — Pstpy)?) = P < sup (t— Pst)2> .

NeA teB(A)

We have
V2 < lslloo A Chlls|| Vd, v2 4 < Dya < b3 < Cid.

Let us now explain briefly the proof of Theorem B3l Let Xi,..., X,, be an i.i.d sample with
common density s in L?(u) N L>(u). Let (1x)xea,, be an orthonormal basis in S,,. It comes
from Lemmas and that, using the notations of these lemmas, for all x > 0, there exists
an absolute constant x = 2040 such that, with probability larger than 1 — e=+!

. Dy p,, @ x T\ 3/2 N 2
s = $mll> < pw (Sm) + 5 (vs,Am;—n 02 T sanba, (2) 40, ()

Since x > 2, /x <z and x — 1 > x/2. We have
x)3/2

T T\ 2
205 A, DA (— <v?, 2483 <—) v2 < Dgp, .
S,Am m n — S,Amn Am n ? S,Am — S,Am

Hence, from (Id)), with probability larger than 1 — e~%/2,
R Dsamz 3 z\2
s = Smll® < P (Sm) + (vs,AmsT + 5% () ) -
Since vd,x/n < C3, dpz?/n? < C3v/dpmx/n, from Lemma [6.3]

VDs AT 3 T\2 3 Vdnx
Vs A~ + §b?\m <E) < (\/HSHOO INGRIED Vid A C2d + §C’1C'3> b (15)

n

This concludes the proof of Theorem B.3], with x,, = 2040C1 (1 V Cy Vv 3C1C5/2).
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6.2 Proof of Corollary [3.4

We use a union bound to obtain that

Py (Im € My, || — m|* > V(m, B8, X1, ..., X3))
< Ny max P, ([I8m = 8ml|* > V(m, B, X1, ..., Xp)) -

All the models satisfy H2. From assumption H3(M, ), x,, satisfies 2 < x,, < C3n/+/d,, with
C3 = Cpy, thus, from Theorem B.3] for all m in M,,,

Py (5m — $ml)> > V(m, 8, X1, .., Xp)) < e7*n/2,
Finally, Card(M,,)e™""/2 < g, which concludes the proof of Corollary B.41

6.3 Proof of Theorem

Let s be a density in L?(u) N L>(u), we only have to prove that there exists a constant x such
that, with Ps-probability larger than 1 — «,

dm V. [N,
Vm € My, pw(Sm) < K (7 + (1 + \/Hsuw A llsl|di? A dm> In [—D .

n «
Let (¢¥x)xen,, be an orthonormal basis of \S,,, from Lemma and using the notations of this
lemma,

pw(A) = %PnTs(Am) - %Us(Am).

We follow the proof of Theorem B3l From Lemmas and and assumptions H1, H2,
H3(M, «), there exists a constant x such that

Vo In[N,
P, <3m € M, Us(Am) > 1/ 18], A [15lld2 A dm+/0‘]> <

Moreover, it is easy to check, with Cauchy-Schwarz inequality, that, using the notations of
Lemma [6.3]

Ty(Ay) = sup (t— Pst)?
teB(Am)

Hence, using assumptions H2, we obtain
PuTs(Am) < [ Ts(Am) ]l < 2CT din-

This conclude the proof of Theorem

6.4 Proof of Lemma 3.7

Let X1,..., X;, be an i.i.d sample with common density s in L?(u) N L>®°(u). Let (x)xea, be
an orthonormal basis of S, such that (¢y)xea,, is an orthonormal basis of S,,, with A, C A,,.
The Hoeffding’s decomposition of the U-statistic py(Sy,, Sp) can be written

Po(SmsSn) = Us(hn—=Am)+2P | Y (P)@a—Pin) |+ D ()’

AeAn—Am AeA—Am
= Us(An — Am) +2(P — Ps) (80 — 8m) + [[sn — 5m‘|2a
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where, as usually, for all indexes sets A,

V() = mms D0 SO0 (K) = Paia) (0 () — Put).

i#j=1 AeA

It comes from Lemmas and that, for all 2 < x < C3n/v/d,,

< 2e7%/2,

dy,
P. (10408 = A > (1. Co) (1ol sl /%) Y222

If 8, = S, this concludes the proof. Else, let € in (0,1), the inequality 2ab < ea® + ¢~ 1b? gives

2Py = P.) (50 = 5| < llsn = sl + 7 (7= P2 (J»

|80 — smll

The function sy, , = (Sp — sm)/||Sn — sm|| satisfies ||s;,n|| < 1 and, from Bernstein’s inequality,
for all x > 0,

T x _
P (1B = P ) [ 2P (5 = Pesmn ) 4 ol 5 ) 267
Since s, belongs to S, which satisfies H2, it comes from Lemma [6.3] that
P, [(smn — Pasmn)?] < (sl AC IS AY?) . sl o < O/

We conclude the proof of Lemma [B7 saying that = > 2 implies 2¢ =% < ¢~*/2. In this Lemma,
we proved that we can choose (€, C3) = k,,(C1, C3) + 2~ 1(2 Vv 2C; Vv C30%/9).
6.5 Proof of Corollary 3.8

Let Xi,...,X,, be an iid sample with common density s in By (Ma, Moo, 0, L?(1)). Let € in
(0,1) and let Q,(e) denote the event

{Vm € Mu, [po(Srms Sn) = l5n — 52| < ellsm = sm?

1/2 \/axn
e, Cr)V ol sl di>¥222

A union bound gives that P4(,,(¢)¢) is upper bounded by the sum over M,, of

1/2 \/@xn
n n .

Py <{pb(5m, Sn) = llsn = sml|*| > ellsn — sml|* + ko (e, CM)\/HSHOO Allslld

Assumption H3(M, 3) ensures that x, satisfies 2 < x, < C3n/v/d,, with C3 = Oy, thus,
Lemma 7 gives that this last probability is upper bounded by 3e~*7/2. Our choice of z,
ensures that 3N,e *»/2 < 3/2 and thus that Py(Q,(€)¢) < g The proof of Corollary 3.8 is
concluded because, on €, (¢),

dnTn,
(1= lsw = sl < 2u(Si S2) + e, Can) sl A ] /L0220,

6.6 Proof of Theorem [4.1]

The theorem is a straightforward consequence of Corollaries [3.4] and [3.8]
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6.7 Proof of Theorem

We begin the proof with the following proposition, which shows that ¢, (c, 8, Sy, Sm) > dp,/(12n).
Since ¢, (e, B, Spy Sm) = dn (e, B, Sm, Sm), the same bound holds also for ¢, («, 3, Sy, Sm).

Proposition 6.4. Let S be the set of histograms on the partition,

k k+1
- — k=0,..,d—1%.
{[552) k=0a-1]

Let X1, ..., X, be an i.i.d sample. Let cv, B be real numbers in (0,1) such that a+ < 1. Assume
that d > 3 + 181log(v/2/(1 — a — B)), then

d
> —.
o (@, 5,5,8) = 75—

The proof is decomposed in two lemmas.

Lemma 6.5. Let Bg = B, $,p8,5) in CS(S,B) and let po g be a real number such that
B Ps Pa,s

Vs €S, Ps (/35 Spaﬁ) >1-a.

Then,
Vs e S, Ps(||s — 8| > pap) < a+p. (16)
Proof. of Lemma [6.5
Bylls — 3l > pugl = Bollls = 8l > ps 1 pugs 2 4]

+Ps [lls = 5|l > pa,s N pa,s < Pgl
Ps [lls — 8|l > pg) + Ps [pas < ) < a+ B.

IN

Lemma 6.6. Let § = a+ 8 and let ps be any real number satisfying (16). Then we have

d—1 1
2>~ 12(d+1)1
rs = —5- - (d+1)In

1+ (d+ 1)n-T
1-6 '

Remark: When d > 3 + 181log(v/2/(1 — §)) and n > d + 1, we have

2(d+1)In 3

1 _
1+ d+1)n ]Sd 1

thus p? > (d —1)/(6n) > d/(12n).
Proof: We prove that if

2 — — = 2d+1)1
Ps (d+1)In 1-35

1+w+1m1]

]‘nfp S_SA <05<|_6‘
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Let so = 10,1), A = {1,...,[d/2]} and for all A in A, let

d
(N 2 (Ypor—1)/a,20-1)/d) = Li@r—1)/d25/a)) -

It is easy to check that (1))xea is an orthonormal system in S, orthogonal to sy such that, for
all X in A, |||l < /d/2. Let 8o = [ 8spdp and for all X in A, let

S\ = / Syndp.
Let (£x)xea be independent Rademacher random variables, independent of X7, ..., X,,, let p be

some real number to be chosen later and let s¢ = sg 4+ p > ycp E3%a. The 1)y have distinct
support, thus HZ)\EA |¢)\|HOO < 4/d/2 and s¢ is a density if

—\/gépé\/g (17)

Assume that (7)) holds, then

nf By [lls — 8l < ps] < Po llse — 81 < pl. (18)
We have
Ise — 8> = (1+s0)°+ Z (pEx — 82)°
AEA
= Y PP =208+ 8 = N9, (19)

AEA, p€r52<0

where N(,3) = Card({\ € A, pady < 0}) = > \cp Lpersn<oy- If we plug (I0) in ([IS), we

obtain )
inf P, [HS — §H2 < pg] < / 1p2N(£,§)§p53£d:“'
seS 0
We integrate with respect to & and we apply Fubini’s theorem to obtain
1
inf P s — 8ll, < p3] < Py [0°N(€,8) < p3] =< /O Ee (Leniegse) dn. (20)
From Cauchy-Schwarz inequality,
E¢ <1p2N(5,§)§p§S£) <Pe (p*N(£,3) < p§) Ee (s7) (21)

and Egsg =2+ p* > ep V3. For all Xin A, fol ¥3 =1, thus

! d
/ Egsgd,u =1+p° [5} . (22)
0

Moreover, conditionally to §, N (¢, §) is a sum of [d/2] independent random variables valued in
{0,1}. Thus, from Hoeffding’s inequality,

Vit > 0, Pe (N(f, 3 < E¢ (N(,8)) — |:g:| t) < e 2t (23)
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In 23)), we have E¢ (N(£,5)) = > yen Ee (1¢,5,<0) > [d/2]/2 and we choose

P, o222

1+ (d+1)/n
1-6

t=1In

Since (d —1)/2 < [d/2] < (d+1)/2,

B (NEg) > L

t<l1

Thus
{P°N(€,3) < p3} C{N(&,8) < E¢ (N(€,9) — VId/2]t}.
Hence, from (23)),

Pe (0*N(£,8) < pj) < 1:;7[2)/2]

We plug inequalities ([22) and ([24) in ([2I)) to obtain

(24)

1
/0 B2 (Lypnieaspse) < (-9
Thus, from (20)) and Jensen inequality,

it P, s = 3ll, < ps] <16,

We already know thanks to Proposition [6.4] that ¢,,(«, 8, Sn, Sm) > dm/(12n) therefore, it
remains to prove that ¢(, 8, Sn, Sm) > Vdn/n. Let so = Ijg ), let Bg = By(8,pp,5n) be a
confidence ball in C'S(Sy, 3) and let p, g > 0 such that for all densities s in Sy,

Ps (pp < pap) 21— a.

We will prove that p, 3 > ¢v/dyp/n, which is sufficient to prove Theorem We decompose
the proof into two lemmas.

Lemma 6.7. Let S, (pag) = {t € Sn; ||t — solly > 2pa,p}. There exists a test T' of null hypoth-
esis Hy : s = so against the alternative Hy : s € Sp(pa,p) with confidence level more than 1 —
and power more than 1 — o« — (3, ie such that

Py (T=0)>1-8, inf PyT=1)>1-(a+8).
SESn(pawg)

Proof. of Lemma, Let T = 150€BB' Since sg belongs to S,, and E’g belongs to C'S(S,, ),
Py, (T'=0) > 1 — . Moreover, for all s in Sy, (pa,8),

Ps(T'=0) = Py(so € BB) =Ps(|[so — 3] < ﬁﬁ)
Ps(llso — sll — [Is — 8[| < pg) < Ps([|s — 8[| = 2pa,p — pp)-

IN

This last probability is equal to

Ps(lls = 8l = 2pa,p — £5 N Ps > pap) + Ps(lls =3Il = 2pas = PN pp < pap)
<Pu(pp > pa,p) +Ps(lls =3l = pg) < B+ .00
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The second lemma gives the separation rate for the test of null hypothesis Hy : s = sg

Lemma 6.8. Let n = 2(1 — 2o — ), let p > 0. Let ©, be the set of tests T, with confidence
level o, of null hypothesis Hy : s = so against the alternative Hy : s € Sy,(p), where Sy, (p) is the
set of all densities s in Sy, such that ||s — so|| > p.

Let B (Sn(p)) = infTaeG)a Supsesn(p) PS(Ta - 0)
If dp, > 10 and p? < \/In(1 +n?)/3.2(v/d,, — 1/n) then B(S(p)) > B + a.

Comments: From Lemmas [6.7 and 6.8, we deduce that
9 In(1+n?) Vd, — \/ 1+77 Vd
Pasf = 3.2 in
Thus the proof of Lemma concludes the proof of Theorem

Proof. of lemma The function 8 (S,(p)) is non-increasing with p. Thus we take

p? =+/In(1 +12)/3.2/d, — 1/n

and we will to prove that 5 (S,(p)) > a + . Let u, be a probability measure on S,(p), let
Py, = [ Pudp,.

B(Sulp)) = inf P, (To =0)

Ta€Oq
— Tairelg (Pu,(To = 0) — Py (To = 0) + Ps, (T, = 0))
> 1-—a+ Tairel(ga (P, (To = 0) — Py (To, = 0)) (25)
> l—a—  sup [P, (4) —Py(4)]
APy (A)<a
> 1—a—1/2||Py, — Pl (26)

where |||y, denote the total variation distance. Assume that I, is absolutely continuous with
respect to Py, Let L,, = dP,,/dPs,, then

1/2
By, = Pially = Bro Ly (K1, Xo) =1 = (B (25,) ~ 1)

Es (Ll%p > B

2

and then

B(Sn(p) 21 —a—

(27)

From 7)), 8 (Sn(p)) > a+ 5 if E,, <sz> < 1+n? Let us now give a probability measure on

Sn(p), absolutely continuous with respect to Ps,, such that Eg, (sz> <1+

Let (1#)\))\:1,__,[%/2] be the following orthonormal system. Let o = s0, ¢ = 1j0,1/2) — 1j1/2,1) and
for all A =1, ..., [dn /2], Y5 = \/dn/2¢(dnz/2 — (A= 1)). Let £ = (&x)r=1... ,[dn/2} be independent
Rademacher random variables and let 1, be the dlstrlbutlon of s¢ = s0+p Z p "/ 2 Exthr/ \/n—/Q
Let us check that y, satisfies the required properties. The functions (¢ ) Afl,...,[dn /2] have distinct

support, thus
[dn /2]

STl < V2

A=1
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s¢ is a real density if p < 1. Since 2+ 8 < 1, n? < 4 and In(1 + n?) < In(5). V/d, < n, hence
9 In(5) vd, — 1
PPN\ oy

3.2 n

Since (Yx)a=1,..,[d,/2) I8 an orthonormal system, ||s¢ — so|| = p, thus s¢ belongs to Sy, (p) and p,
is a law on Sy, (p). Moreover

<1

dP [dn/2]

o @ H( mZ§AwA )

n [dn /2]
1
Ly, (@1,..;2n) = oldn /2] Z H (1 d /2 Z EUA(Ta ) .

ge{-1,1}ldn/2 a=1

Thus

Hereafter, in order to symplify the notations, we write Zg instead of de (=1,1}1dn/2) and ),
instead of ZE\Q{Q] Let ¢(p,&) = pY_&¥a/+/[dn/2], we have

L2, (1, ) = mgﬂumms)(%)) (1+ 0(p.€)(za)

Ey (L) = 22[dn/2 Z > H Py, (14 0(p,€) + ¢(p, &) + d(p,€)d(p,£)) -

¢ a=1

For all A 7é N = 1, veey [dn/Q], ’l/})\lb)\/ = O, thus

2
0, E)0l0,€) = (Z sm) (Z 5;%) = g L6
A " A

For all A =1,...,[d,, /2] and all a = 1,...,n, Py, (¢y) =0, Py, (¢3) = 1, thus

1
Es(Ly,,) < WZZ (1 NG Zsm)
[dn /2] 2 n
= dn/Q] Z Z Z [1 + [dn/Q] (2l - [dn/Q])

1=0 &Card(), £,=6)=l
[dn/2] 2 n

L ! p2l 2

9ldn /2] ; Cla./2 [1 + [dy/2] -

For all real numbers u > —1, we have 0 < 1 4+ u < e, thus (1 + u)™ < e™. Since p2 <1, we
can apply this inequality to all the u; = (21/[d,, /2] — 1)r? and we obtain

1 [dn/2]

_ [dn /2]
) Pl L\ e p*2n

Thus, E,, (Lip) <1+n?if

exp (222
nf+wmmm<l%mm>u)<mu+ﬁ.

2
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For all positive u, In(1 4+ u) < u, thus, we only have to prove that

2, ldn/2] p*2n 2
— —1| <In(1 .
o g gg) ) S
[dn/2] > (d, —1)/2 and d,, > 10, thus
22n / n(1+ n?) \/d —1_ 4071 <1
For all real numbers z in [0,1], we have e* < 1+ x + 3.2x2, thus exp (p?2n/([dn/2])) — 1 <
2

p?2n/([dn/2]) + 3.2 (p?n/([dn/2]))". Hence

2 n n —
—np? /2 <exp <[§n2/2]> - 1) < 1.6p4n2/([dn/2]) < Qd[dn/;] In(1 + %) < In(1 + ).

7 Appendix

7.1 Proof of Lemma

S (Wi —W,,) =0, thus, for all X in A, (PY — W, P,)(Pstb)) = 0. Moreover, since the weights
are exchangeable,

= Y E(Wi=Wo)?) + D E(W; — Wo)(W; — Wy,)
‘ i#j=1
= nE (W1 = W,)?) +n(n — DE(Wy — W,,)(Wa — Wy).

Thus,
vy =E (W1 = W,)?) = —(n — DE(Wy — W,,)(Wa — W,,).
Hence,
pe(d) = 3B (e —v?/nPn)(%)P) v Ew (B - anljn)(w — Paby)2)
AeA w AEA w
~ Y Ew (; S W Wl = W), () — P n(,) - Psw)
AEA ij=1 w
pw(d) = — 5% Z W) (g (52) — Put)?
AEA i=1 W
=D Z W05 = W) (4, (5,) — P (a(X) — Poti)
AEN i#£j= W
= (BTN - Ui(A)). (28)
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On the other hand, easy algebra leads to

sm = mll3 = 37 ([P = PY@AIE) = - (PT(A) + (0 = DU (A)).

A€A

Thus, we have |[s,, — 8m||5 — pw(A) = Us(A).

7.2 Proof of Lemma
We apply Theorem 3.4 in Houdré & Reynaud-Bouret [16]. For all z > 0

1
P, <§U(A) > = (5.731\/5 + 8Boa + 3848322 + 102034352)) <ee®, (29)
n
where
U(x’ y) = ZAeA(wk(x) - PswA)(wA(y) - PST/U\),
B} =n?E [(U(Xy, X2))?] , B} = nsup, E[(U(z, X2))°] , By = sup,, U(,y),
n i—1
By =supX{ |E ZU X1, X2)ai(X1)B;(X2) EZQ (X1) <1, E252 (X1)
i=1 j=1

From Cauchy-Schwarz inequality, for all real numbers (by)xea

ZbQ = < sup Z%@\) . (30)

AEA > a3<1en

In particular, since the system (ix)xea is orthonormal, for all z in R, T'(A) = (supep(a)(t —
Pt))2. Thus
IT(A)]]o < 203, (31)

Let us now evaluate Bi, By, B3 and Bj.
Evaluation of Bj:

B2
n_21 = Z (Ps ((¢A _Pswk)(lb)\/ _Ps¢)\/)))2
AN EA
2
= Z < sup P ( Yx — Psihy) Z ax¥y — Ps <Z ambx)]))
AEA Zai,gl NeA NeA

2
= Y < sup Py (¢ — Patha)(t — Pst>)> < Dy av3 g,
AEA

teB(A)

where we use successively the independence of X; and X, Inequality ([B0), the orthonormality
of the system (1))aea and Cauchy-Schwarz inequality. Thus we obtain

By < nvga/Ds . (32)

Evaluation of By: For all real numbers ¥, z, we have 2yz < y?+22, thus, for all 4,5 in {1,...,n},

2Ps ((¢A - Pswk)ai)Ps ((wX - Pswk’)ﬁj)
< (P (n — Pbn)ai))? + (Ps (o — Pston)B5))° -
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We apply [B0) with by = Ps ((¢x — Pst)a;), since the system (1)))aea is orthonormal, for all i
in {1,...,n},

2
ST (P (9 — Petb)an))’ = < sup Ps(t—Pst)a@) <2 \Poo?.
vy teB(A)
Since Y"1 | Psa? < 1 we deduce that
n
DD (Pe((Whr — Papa)ew))? < oy

The same inequality holds for 3;, thus we obtain

By < nv . (33)

Evaluation of Bs: For all z in R, E[(U(x, X3))?] is the variance of the function t; = Yo (¥r(z)—
Psipy ). t, is a function in the linear space S spanned by the (¢))rea and, from inequality

(BIID, 2
tall3 = > " (a(x) — Puapa)? = < sup (t(z) — Pst>) < 2b3.

\ea teB(A)

Thus E[(U(z, X2))?] = Var(t,(X)) = 2b% Var(t,(X)/by) < 253\”3,/\- Thus
Bz < V2nbpvs 4. (34)

Evaluation of By: We apply Cauchy-Schwarz inequality and we obtain
By < || T(A)]o < 263 (35)

Let QS be the event defined by inequality (29). From B2), B3), (34) and (B35). On Q,,

5.7vs A/Dsaz 8V, 3/2 2
UL (A) < ZBAV AT A 4 384v/20, aba (%) + 20406, (%)

- n

7.3 Proof of Lemma [6.3]

It comes from Assumption H2 that

b < Ch \/g
It comes from (B0) that

2
sup t| < Cid.
teB(A)

2
Din < 3 Pw}) = P <sup t) <

S teB(A)

UE,A < Supiep(a) P,t?, thus

viy <X < CFd, v2p < |Is]l S;(I;\) £ = 1Is]l o -
te

Finally, for all ¢ in B(A),
Pot? < [tlloo Polt] < [t Il Isl] < CLVls]] -

Thus Uz,/\ < CyVd| s .
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