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Simultaneous High Dynamic Range and Super-Resolution Imaging Without

Regularization

Yann Traonmilin† and Cecilia Aguerrebere† ‡

Abstract. Modern digital cameras sensors only capture a limited amplitude and frequency range of the irradi-
ance of a scene. A recent trend is to acquire and combine multiple images to raise the quality of the
final image. Multi-image techniques are used in high dynamic range processing, where multiple ex-
posure times are used to reconstruct the full range of irradiance. With multi-image super-resolution,
the difference between sampling grids caused by the motion of the camera is used to generate a high
resolution image. It is possible to combine these two processes into one to generate a super-resolved
image with a full dynamic range. In this paper, we study the reconstruction error of high dynamic
range super-resolution imaging without regularization, under affine motion hypothesis. From this
study, we deduce a strategy for the choice of the number of images and the exposure times which
makes the unregularized problem well conditioned. With these acquisition parameters, if the affine
motion hypothesis holds and sufficiently long exposure time is available, the recovery of all the
amplitude and frequency content of the scene irradiance is guaranteed.

Key words. super-resolution, high dynamic range, regularization

1. Introduction. Limitations of digital cameras sensors restrict the information that a
single image can possibly gather. In particular, the spatial sampling and the dynamic range
of an image are limited. Restrictions on spatial sampling result in aliased images. Scenes
with high dynamic range have over or under-exposed image regions because of the sensor’s
limited potential well capacity. A way to overcome these two problems is to improve spatial
and dynamic range sampling by acquiring and combining several images of the scene. Motion
between shots gives a spatial sampling diversity that allows for a high resolution reconstruc-
tion of the scene. The process of recovering a high resolution (HR) image from several low
resolution (LR) ones is called super-resolution imaging (SR). The dynamic range limit can be
extended by using different exposure times or gains between images. This process is called
high dynamic range imaging (HDR). These two processes need to be combined in order to
recover the high frequency and high dynamic range information of the scene.

Super-resolution algorithms have been reviewed in several works [10,20,33]. Most of them
can be summarized with a variational approach. The HR image is recovered by minimizing a
regularized data-fit functional. This data-fit is usually an Lp norm fit. From Tychonov to total
variation, many regularization functionals are available. Such regularization is necessary when
little information is available (i.e., a small number of images). The resulting interpolation must
be considered as an inpainting using a regularity model and not as the recovery of missing
high frequency information as the scene might not verify the regularity hypothesis. It has
been shown [7,35] that regularization becomes less useful when a large number of images are
available. It is then possible to reconstruct the real high frequency content of the acquired
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scene by minimizing only the L2-norm data-fit.

Several HDR image generation algorithms have been proposed since the seminal work by
Mann and Picard [19]. For static scenes, when the input images can be perfectly registered,
the irradiance at each pixel is computed as a weighted average of the corresponding samples
acquired with different exposure times or gains. Based on this idea, several methods have
been proposed following different weighting schemes [2,9,12,16,18,21,26]. However, accurate
realignment of aliased images is difficult because it is impossible to correctly apply a geometric
transformation to well-sampled details and aliased patterns at the same time. Thus a joint
HDR-SR method is needed.

In recent years, some algorithms have been proposed to perform SR and HDR simultane-
ously. The most conventional approach is to use a weighted least squares scheme, as normally
done for SR, but on the irradiance [8, 14] or transformed irradiance domain [6]. A different
approach [38] is to align LR images using optical flow and minimize a regularized energy to
achieve the combined HDR-SR reconstruction. Rad et al. [4] propose to first align the in-
put images and then use a Delaunay triangulation and bi-cubic interpolation to perform the
HDR-SR estimation on the irradiance domain. The combined problem has also been stud-
ied from a sensor design perspective, with proposed solutions based on specifically adapted
sensors [23,24].

An aspect common to all these methods is the use of a regularization term, which threatens
multi-image super-resolution in terms of high frequency recovery capability. The recovery of
the spectrum of the real HR scene cannot be guaranteed. Moreover, the latest results for
HDR image generation [2], such as the near optimality of the weighting scheme proposed by
Granados et al., are not exploited. To the best of our knowledge, the theoretical background of
this problem, necessary to ensure the recovery of HDR and HR content, has not been studied
in depth.

1.1. Contributions. In this paper, we study the HDR-SR imaging problem from the fol-
lowing perspective: which image acquisition configuration, i.e. number of acquired images and
exposure times, guarantees that the high frequencies and the full dynamic range of a scene
will be recovered? We use a realistic camera acquisition model with affine motion hypothesis
and propose an image reconstruction method that includes the weighting scheme shown to
be nearly optimal for HDR information recovery [2]. We study theoretical bounds for the
joint HDR-SR reconstruction error and find that a trade off must be made between the to-
tal exposure time and the number of images. This result is illustrated with synthetic and
real data experiments. Moreover, we show how exposure times can be selected and that this
selection can be decoupled from the SR problem to fulfill our objective. This analysis leads
to the proposal of an acquisition strategy which, if the affine motion hypothesis holds and
sufficiently long exposure time is available, guarantees the recovery of the full dynamic range
and high frequency content of the scene irradiance. Finally, experiments with real data show
that our HDR-SR strategy manages to recover this information.

The article is organized as follows. Section 2 introduces the image acquisition model and
the reconstruction method. In section 3, the strategy for the choice of exposure times and
number of images is presented. Section 4 is devoted to the study of the reconstruction error
bounds. In Section 5, we show how exposure times can be selected. An optimal acquisition
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strategy and its corresponding experimental validation are presented in Section 6. Finally,
conclusions are stated in Section 7.

2. HDR-SR acquisition and reconstruction.

2.1. Acquisition model. We consider a monochromatic irradiance acquisition model with
different exposure times for each raw low resolution image wi (we suppose that they are square
of size l × l). The acquisition operator A is defined as

A : R
Ml×Ml → R

N×(l×l)

u → (wi)i=1,...,N = (ΩiGiSQiu)i=1,...,N ,
(2.1)

where N is the number of LR images, u ∈ R
Ml×Ml is the HR irradiance of size Ml × Ml,

Qi ∈ R
(Ml×Ml)×(Ml×Ml) are the affine motions associated with each LR image (Qiu is the

irradiance reaching the sensor), S ∈ R
(l×l)×(Ml×Ml) is the sub-sampling by a factor M (M can

be called the super-resolution zoom or factor) and Gi ∈ R
(l×l)×(l×l), Gi = gti is the overall

acquisition gain, including the camera gain g (without loss of generality, we take g = 1 to
simplify expressions) and the exposure time ti for the i-th LR image. Several images may be
acquired with the same exposure time. Ωi ∈ R

(l×l)×(l×l) is a diagonal matrix taking value 1 if
pixel j does not become saturated or under-exposed for the exposure time ti and 0 otherwise.
We suppose Ω = (Ωi)i=1,...,N to be full rank (every pixel is at least illuminated once). This
model is close to the one introduced in [14]. We use a simplified version of it in order to
facilitate the study. Unlike [14], the camera response function is here considered to be linear,
which is a realistic model for raw images [12]. Our model does not take into account the point
spread function of the camera, which can be deconvolved afterward if motion is small [34].
The quantization error is neglected as, except in very low light conditions, it is small compared
to the readout noise variance nR [2]. As we consider a monochromatic acquisition model, the
Bayer pattern is ignored. With our model, the production of a demosaicked color HR image
without regularization, would take the form of a separate inversion of the 3 color channels.
Only the motion due to the shift in the grid would have to be included in Qi. Note that the
green channel would have 2 times more LR images than red and blue channels. The digital
LR images w = (wi)i=1,...,N are contaminated by additive noise n:

(2.2) w = Au+ n.

A Poisson noise model with Gaussian approximation [1] leads to the spatially varying Gaussian
noise

(2.3) n = nu + nR,

where nu is a Gaussian noise with covariance matrix Σu proportional to the irradiance (Σu =
diag(Au)) and nR is a Gaussian readout noise with constant variance σ2

R. Thus the covariance
matrix of n is Σ = diag(Au) + σ2

RI (I = identity matrix). The objective is to recover u from
w.
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2.2. Image reconstruction. It has been shown in [35] that M2 images are necessary to
perfectly recover the HR image in the case of constant exposure times. Because we supposed
that the HDR acquisition model is a full rank linear map, the composition of the two processes
is invertible with M2 LR images. We minimize the L2 data-fit to recover an estimate of u

(2.4) ũ = argminu‖W 1/2(Au− w)‖22.

Multiplying byW 1/2 = Σ−1/2 normalizes the noise to have constant variance, thus the solution
to (2.4) gives the minimum variance linear unbiased estimator of the irradiance. Practically,
this problem is solved with a linear conjugate gradient calculation of (W 1/2A)†W 1/2w =
(AHWA)−1AHWw. Since the weights W depend on the irradiance u, an iterative procedure
is needed to complete the estimation. The weights can be initialized with a smoothed version
of the LR images. In practice, it is found that one iteration yields good results, and the
irradiance remains almost unchanged after the first iteration. The iterative computation of
this estimator for the HDR image generation in the case of perfectly registered images, is
introduced by Granados et al. [12] and shown to be nearly optimal in [2].

If Ωi = I, Gi = I and W = I (no HDR in the model), Equation 2.4 is the conventional L2

super-resolution reconstruction procedure.
An experiment is conducted to evaluate the benefit of using the weights W . For this

purpose, synthetic samples are generated from a ground-truth HDR image according to
model (2.2), and the reconstruction is performed solving (2.4), with W 1/2 = Σ−1/2 andW = I.
The experiment is repeated 100 times, with randomly chosen affine transformations and noise
realizations. The signal-to-noise ration (SNR) for each reconstructed pixel is computed from
the ground-truth value and the mean square error (MSE) at that pixel (MSE computed from
the 100 experiments). Figure 2.1 shows the SNR images in decibels for each weighting type.
The results greatly improve when the weights W 1/2 = Σ−1/2 are included. The improvement
(gain in SNR) is more remarkable in the darker regions of the scene where the input samples
are noisier. An average gain of 3.9 dB (average SNR for all pixels) is found comparing the
cases with weights (32.5 dB) and without weights (28.6 dB).

2.3. Image registration. Image registration is a critical part of SR as the quality of the
result will be directly linked to the precision of motion estimation. With low resolution images,
registration can be inaccurate [29]. For super-resolution, high resolution motion estimation is
often performed with the variable projection method [11, 28, 31, 37]. It has been shown that
this method gives good results when enough images are available [34]. We adapt this method
to our joint HDR-SR reconstruction problem. For a given HDR setting (Ωi and Gi known),
let A(θ) be a SR operator parametrized by the affine motion parameter θ ∈ R

6N and ũ(θ) the
solution of (2.4) with operator A(θ). The variable projection aims at finding the minimizer

(2.5) θ̃ = argminθ‖W 1/2 (A(θ)ũ(θ)− w) ‖22.

It is a non-linear non convex functional having local minima. From an initial solution, we
perform a conjugate gradient descent of functional (2.5).

The initial solution is calculated as follows. We calculate the cross-correlation of each LR
images pair for different translations and find the translation maximizing the cross-correlation.
We remark that the translation τij between images i and j should be the sum of the translation
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Figure 2.1. Result of optimal reconstruction for HDR-SR. SNR for each pixel obtained from 100 experi-
ments with randomly chosen affine transformations and noise realizations. Left: Ground-truth image from [15].
Center: SNR obtained without weights (W = I). Right: SNR obtained using W 1/2 = Σ−1/2. The improve-
ment is more remarkable in the darker regions of the scene where the input samples are noisier. An average
gain of 3.9 dB (average SNR for all pixels) is found comparing the cases with weights (32.5 dB) and without
weights (28.6 dB).

τik between images i and k and translation τkj between k and j. Then, to obtain the final
translation to the reference image, we average all the available τ1k + τkj. We then scan for
initial rotation and zoom to avoid local minima.

3. Strategy for the choice of acquisition parameters. In order to establish an HDR-SR
reconstruction strategy, we must define the set of exposure times and the number of images
(per exposure time) to acquire. Given a set of exposure times t1, . . . , tN , the reconstruction
error can be arbitrarily large because the condition number of the acquisition operator A
cannot be bounded. For instance, it is infinite if the camera does not move (Qi = I). Therefore,
it is not possible to find the exposure times minimizing the reconstruction error for the HDR-
SR combined problem without knowledge of the camera motion. In practice, the motion is
seldom known. In particular, it is unknown for images acquired with a hand-held camera.

Performing a joint optimization of exposure times and number of images for HDR-SR
would require a precise statistical model describing camera motion. Even with this informa-
tion, calculating precise estimates of the reconstruction error would be difficult because we
would have to estimate the interaction between the local conditioning of super-resolution [35]
and the spatial variations of the SNR. Moreover, this joint problem is a highly dimensional
non-convex problem, which would be hard to embed in a camera.

Hence, we propose to define a reconstruction strategy combining the optimality results
for each separate problem, HDR and SR, so as to minimize the worst case reconstruction
error of the combined problem. With HDR processing, we know that parts of the images are
illuminated by few images. From SR theory, these parts must be covered by enough images
to enable a reconstruction without regularization. Consequently, we proceed as follows.

Proposed strategy. For the HDR reconstruction problem, an optimal HR HDR image is
obtained if p HR images with exposures t1, . . . , tp are combined, these exposures being chosen
to minimize the HDR reconstruction error (c.f. Section 5). Hence, we propose to consider the
SR conditions which best estimate each of these p HR images. This will guarantee that the
joint HDR-SR reconstruction performs well.

Suppose that, for each t1, . . . , tp, we find a set of motions for the N images acquired
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with that exposure that lead to a good SR reconstruction of the p HR images. Then a
naive linear HDR-SR method would be to perform a classical HDR technique, with these p
reconstructed HR images, thus limiting the final reconstruction noise. But we know that our
joint method (minimization (2.4)) leads to the optimal L2 reconstruction error, given this
dataset. Consequently, by minimizing the reconstruction error of the separate HDR and SR
problems, we guarantee a good reconstruction error for the joint HDR-SR problem.

Given a set of exposure times t1, . . . , tp that minimize the HR HDR reconstruction error,
two cases are to be considered. First, if the total exposure time and the total number of images
are not limited, the best strategy for each exposure (ti)i=1,...,p is to take as many LR images as
possible with this exposure in order to improve the SR reconstruction. With equal exposure
times, the problem becomes a pure super-resolution problem where more images improve the
quality of the reconstruction [7,35]. Longer exposures are not desirable since they increase the
number of saturated pixels thus increasing the reconstruction error. Secondly, a more realistic
case, is that of a limited total exposure time (e.g. because of scene motion). In order to ensure
a correct HR reconstruction with a super-resolution factor (or zoom) M , the minimum total
exposure time for frames acquired with time ti is M

2ti. However, as it will be shown in the
following section, there is an optimal number of LR images N > M2 for a fixed total exposure
time.

4. Reconstruction error bound for HDR-SR. In the following section we study the recon-
struction error bounds for the HDR-SR estimation problem for a fixed total exposure time T
and N images acquired with equal exposure T/N , i.e. the reconstruction of the HR irradiance
frame.

4.1. Optimal number of images for a fixed total exposure time. In a HDR context,
when neglecting motion blur, the longer the exposure time without saturation, the better.
We show here that when we must perform SR at the same time (i.e. compute the pseudo-
inverse of A), taking more images with a shorter exposure can be better. We study the case
of HDR-SR for a given total exposure time T without saturation, i.e. Ωi = I. N images are
acquired with a total exposure time T , each with equal exposure time t = T/N . Because
the overall acquisition gain is linear, the problem is equivalent to the acquisition of N LR
irradiances v with A′ = G−1A, with a noise n′ with covariance matrix:

(4.1) Σ′ = diag(A′u/t+ σ2
R/t

2).

Then,

(4.2) v = A′u+ n′.

A′ is the conventional super-resolution modeling operator, i.e. a super-resolution operator
where acquisition gain is not considered. Thanks to this normalization, we will be able to use
results from the super-resolution literature directly.

The super-resolution of N images with exposure T/N can be done solving the problem

(4.3) ũ = argminv‖W ′1/2(A′u− v)‖22,

with W ′ = Σ′−1.
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Reconstruction error bound. The noise in the reconstructed image nrec is thus bounded by
(c.f. Appendix A)

(4.4) ‖nrec‖22 ≤
κ(N)2

σ2
max(A

′)

m2l2

m̃
(1 + rN)N2,

where κ(N) is the conditioning of A′HA′ (ratio of extremal eigenvalues of A′HA′), σmax(A
′)

is the maximum singular value of A′, m = sup(u) ⋍ sup(A′u), m̃ = inf(u) ⋍ inf(A′u),
r = σ2

R/(Tm), r̃ = σ2
R/(Tm̃) and l is the size of the input images. Hence, the optimal number

of images for a fixed total time T is the one that minimizes ‖nrec‖2.
In [35], it was shown that κ(N) can be bounded in probability by a decreasing function of

the number of images N . Moreover, it can be shown [36] thatN/M2 ≤ ‖A′‖22 = σ2
max(A

′) ≤ N .
Hence, to optimize the reconstruction error bound, we minimize the function

(4.5) f(N) = κ(N)2(1 + rN)N,

with respect to N . When N is close to the critical case M2, κ(N) can be large but decreases
to 1 with N [35]. The conditioning of the SR operator has been also studied extensively
in [7, 30]. Consequently, f will have a minimum. Notice that the r factor is proportional to
σ2
R and cannot be neglected in low light conditions. If we added saturation for a particular

time T/N0 with N0 ≥ M2, the bound would still be valid for N > N0. For N ≤ N0, matrix
A′ is not invertible, thus the error is not bounded.

4.1.1. Experimental study of f(N).

Synthetic data. To illustrate the behavior of f(N), we compute the curve for the case
of 2D translational super-resolution. For each number of images N , we randomly simulate
100 translation parameters and compute the corresponding f(N) by explicitly calculating
κ(N) (which can be done because the SR is then a 2D Vandermonde system in the frequency
domain [3, 25]). With the same procedure, we generate the f(N) curve for the affine super-
resolution case. Here κ(N) is approximated by the ratio ‖nrec‖2/‖nin‖2. Figure 4.1 shows the
results obtained with M = 2 and r = 0.03 (chosen with realistic values: σ2

R = 30, T = 1/10,
m = 104).

It can be verified that the minimum of f is not reached at the critical case (N = M2 = 4),
meaning that it is better to take more than M2 images with shorter exposure times. This fact
shows that a compromise must be made between the number of images needed to perform
super-resolution (more thanM2) and the noise level on those images. Given the total exposure
time T , a degradation of the performance can be observed for large N . This can be explained
by the fact that each image has a shorter exposure time. For short enough exposures, the
variance σ2

R of the readout noise becomes prominent. The amount of noise in LR images
becomes too big to be compensated by the averaging effect of super-resolution, thus increasing
the reconstruction error.

This can be verified with the results obtained for various r values in Figure 4.1. The
r factor can be thought of as the inverse of the dynamic range of the acquired scene, since
it is equal to the ratio between the constant noise variance σ2

R and the maximum acquired
irradiance mT (up to the factor N). As the value of r decreases, the minimum of f(N) is
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Figure 4.1. Plot of log(f(N)) versus N (M = 2). (a) Result for 100 experiments (blue) and average
(red) of 2D translational SR for each N with r = 0.03 . The minimum is reached at N = 12 . (b) Plot of
the average log(f) for different values of r for translational SR. Minimum at 12 (r=0.3), 13 (r=0.03) and 30
(r=0.003). (c) Affine super-resolution, 20 experiments for each N . The minimum is reached at N = 19, (d)
Plot of average log(f(N)) versus N for different values of r for affine SR. Minimum at 14 (r=0.3), 19 (r=0.03)
and 34 (r=0.003).

reached at a larger N . This is due to the fact that both, decreasing σ2
R or increasing T ,

improves image quality and thus allows the use of shorter exposure times. Moreover, notice
that the error bound increases quite slowly after its minimum. Hence, whether we choose a
number of images at the minimum or slightly above will have little impact on the results.
Curves of similar shape are obtained for larger M values, with the minimum reached for a
larger N . This is caused by the larger conditioning of the SR problem for larger M [5].

Real data. In order to experimentally verify the previous results, we take pictures of a
planar surface using a hand held camera (c.f Figure 4.2). The small hand motion gives the
sampling diversity needed for HDR-SR and guarantee that motion blur is not too large. The
goal is to compare the HDR-SR reconstruction error (M = 2) obtained with a constant total
exposure time T , but with two different exposure times, t1 = 1/41 and t2 = 1/64, i.e. with a
different number of images, N1 = T/t1 and N2 = T/t2. In the same way, the HDR-SR results
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Figure 4.2. Reconstruction error with respect to total exposure time and number of images (M = 2). (a)
Reconstruction error with respect to total time. (b) Reconstruction error with respect to number of images. (c)
SR result with 7 images at 1/41s. (d) One LR image with exposure 1/41s. (e) SR result with 10 images at
1/64s. (f) one LR image at with exposure 1/64s.

are compared for the two different exposure times when fixing the total number of images N ,
i.e. for a different total exposure time Nt1 and Nt2 in each case. The reconstruction error
(estimated from the variance of gray parts) with respect to the total exposure time and the
number of images, for the two different exposure times, is shown in figures 4.2 (a) and (d)
respectively. In this example, for a fixed number of images, it is better to take pictures at
1/41 seconds. However, for a fixed total exposure time, it is better to combine more images
with the shorter exposure 1/64 seconds. The same behavior can be observed in the extracts of
the reconstructed images shown in figures 4.2 (b) and (c). Hence, we verify that the longest
exposure time is not necessarily optimal.

4.2. Discussion and practical consequences. In this section, we explain the trade off
that must be made when performing HDR and SR simultaneously: in an HDR setting, we
look for the biggest exposure times which do not saturate (or saturate for the fewest images
possible) while with SR, more images are generally better. This leads to the following remarks
depending on the acquisition setup:

• With a fixed total exposure time, the number of images must be above the critical



10 Y. Traonmilin and C. Aguerrebere

case for SR (M2), thus with a shorter exposure. However, it must not exceed by much
the critical case since for very short exposures the reconstruction noise increases with
N .

• With a fixed number of images, the more images with the longest possible exposure
time the best. However, the previous remark give us the knowledge that if this number
of images is the optimal one from the previous section, then it is not possible to do
better with the same total exposure time.

• With any exposure time / number of images, the best strategy is taking as
much images as possible of the longest exposure time. Taking a lot of images with
very short times is not a good strategy.

5. Exposure times selection for HDR reconstruction. The selection of the exposure
times is a key aspect of the HDR imaging problem. Several approaches can be found in
the literature that tackle this problem from different perspectives. Some of the proposed
methods look for the optimal times set that ensures that a predefined dynamic range will
be captured [13, 22]. Another group of methods focuses on the quality of the reconstructed
HDR image and optimizes a risk function that depends on the mean squared error [17] or
the signal to noise ratio of the reconstruction [12,16]. These methods need a prior estimation
of the scene irradiance, which is assumed to be available for instance through the irradiance
histogram.

In this work, we focus on the minimization of the HDR-SR reconstruction error, and
we seek for the exposure times set that minimizes the HDR reconstruction error for a given
number of exposures N ′. The determination of the number of different exposure times N ′

is an important problem in HDR imaging, since it has a major impact on the quality of the
results and on the practical constraints of the acquisition. Given that it is not the goal of this
work to study this problem, we consider instead the value N ′ as a given parameter, which
might eventually be set from the known irradiance histogram. An histogram of the scene
irradiance is assumed known. In this section we concentrate on the extension of the dynamic
range of the image (M = 1, Qi = I, S = I) and propose an algorithm to find this exposure
times set.

In this case, the solution to equation (2.4) gives the following estimator of the irradiance
at position j:

(5.1) ũj =

∑N ′

i=1
tiΩijwij

ujti+σ2

R

∑N ′

h=1
t2hΩhj

ujth+σ2

R

.

Thus the irradiance estimator variance in this case is given by

(5.2) ‖nrec‖22 =
l2M2∑

j=1

1
∑N ′

h=1
t2hΩhj

ujth+σ2

R

.

Then, we consider the optimal set of times as the one that minimizes (5.2).
If we neglect the readout noise variance σ2

R, the irradiance estimator variance expressed
in (5.2) depends on the square root of the signal

√
uj . Thus, the minimization of (5.2) pri-

oritizes noise reduction in bright regions. We opt to normalize the estimator variance by the
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Figure 5.1. Inverse of the normalized reconstruction error (inverse of Equation (5.3)) for the first example
scene of Section 6.

signal as a way to counter this dependence and prioritize noise reduction in low light pixels,
since noise is generally amplified in those pixels by post-processing tone mapping techniques
used to display HDR images. Several tone mapping techniques perform a contrast reduction
of the irradiance image that magnifies the noise visibility mainly in dark regions [27]. Nev-
ertheless, this is clearly one possible option among multiple valid options. Other approaches
are also valid (e.g. normalization by the squared signal u2j so as to minimize the squared sig-
nal to noise ratio) and may be incorporated into the proposed HDR-SR acquisition strategy
by modifying (5.2) accordingly. Therefore, we consider the normalized irradiance estimator
variance

(5.3) ‖n′
rec‖22 =

l2M2∑

j=1

1
uj

∑N ′

h=1
t2hΩhj

ujth+σ2

R

=
l2M2∑

j=1

1
∑N ′

h=1
t2hΩhj

th+σ2

R/uj

,

and the set of exposure times

(5.4) t̃1, . . . , t̃N ′ = arg min
t1,...,tN′

‖n′
rec‖22.

To minimize the non-convex function (5.3), we propose to use an exhaustive evaluation
method. First, the shorter exposure time is determined by the fact that all irradiance values
must be correctly acquired for at least one exposure time (matrix A is full rank). For the same
reason, a lower bound is determined for the longer exposure. Then, given the number N ′ of
exposure times to acquire (which might be automatically extracted from the scene histogram),
we need to minimize function (5.3) with respect to the remaining N ′ − 1 times. We find this
minimum by evaluating all combinations of available times. This methodology is feasible and
fast in practice since N ′ is usually in the order of 2 to 4 and the number of available exposures
in the camera is about 50 (e.g. 55 for the Canon 7D).

Figure 5.1 shows the inverse of function (5.3) for the example scene presented on the
first experiment of Section 6 with N ′ = 2. The large flat region for the longer exposure times
represents the large error caused by the saturation of most (or all) pixels in the image. A large
error is also found for very short exposure times, since the readout noise becomes important
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for all irradiance values. The maximum of the function (minimum of (5.3)) is reached between
these two extremes, as a compromise between saturation and noise level. This compromise is
determined from the proportion of pixels belonging to each irradiance range, which is derived
from the irradiance histogram of the scene.

6. Acquisition strategy. From the results presented in previous sections we derive the
following strategy for the a regularized HDR-SR reconstruction that guarantees the recovery
of the amplitude and frequency content of the scene irradiance. The exposure times are first
selected following the procedure introduced in section 5. For this purpose, two images are
taken to compute the histogram of the scene irradiance and find the optimal exposure times
for the HDR reconstruction. One image must capture bright regions (no saturated pixels)
and the other must capture dark regions (no under-exposed pixels). From the concatenated
histograms of the two exposures, the high dynamic range histogram of the irradiance is built.
With this histogram, the minimization from equation (5.4) is performed for the given number
of exposure times.

The number of images to take for each exposure time is thus defined from the study
presented in section 4. It should be taken as the minimum of function f according to the
second remark in section 4.2. The function f , thus the optimal N , depends on the scene
irradiance. However, for M = 2, we find in practice that it is reached at about N = 20 for a
large range of irradiances. It can be larger for smaller r values, but in those cases the function
is quite flat and the result is not greatly affected by this choice. Because N = 20 is a feasible
number of shots for burst acquisition with a hand-held camera, it can be taken as the reference
number of images needed for each exposure time. Hence, 20 hand-held pictures are taken for
each of the selected exposures and the joint HDR-SR is performed solving (2.4) with all images.
As stated in Section 3, the joint HDR-SR reconstruction gives the minimum L2 reconstruction
error and is thus preferable over the separate reconstruction (super-resolution for each HDR
exposure and then HDR imaging to combine the HR frames). Moreover, separate registration
for times which saturate a large part of the image can fail (e.g. the series of images from 6.4
(c) (f)).

6.1. Experiments. The following experiments were conducted in order to test the capacity
of the proposed strategy to recover the dynamic and frequency information lost by a single
image acquisition without the need of regularization hypothesis on the scene. To be as close
as possible to our model we used the raw images from a high end commercial camera for real
data experiments (second and third experiments)

Synthetic data. In the experiment of Figures 6.2 and 6.3, we illustrate how taking the
advocated number of images yields a better reconstruction than a total variation (TV) regu-
larization [32] with less images. We generate synthetic LR images, according to Model (2.2),
from an HR irradiance map (extracted from a real scene). For TV regularization, we generate
2 LR images at the three exposure times 1

64 ,
1
41 and 1

32 seconds. We add a total variation
regularization term to minimization (2.4) and choose the regularization parameter giving the
best PSNR. For the unregularized case, we generate 20 images for each of these times, and
perform minimization (2.4). The difference in reconstruction quality can be noticed both
qualitatively, and in terms of PSNR. The unregularized version has a 6dB PSNR improve-
ment, and the content of the image is not altered (frequencies are not distorted). The TV
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Figure 6.1. A picture of the practical set-up of our first experiment

regularized method alters edges, as for example in the small text areas.

High dynamic range planar surface. We use a planar surface half illuminated by a strong
source, thus generating two levels of irradiance. The scene is shown in Figure 6.1. Acquiring a
plane matches the hypothesis of affine motion (small homography). In a more complex scene,
segmenting the image in parts where the affine motion hypothesis is valid might be necessary.

The strategy introduced in section 6 is used first to find the 3 optimal exposure times
(which are enough to capture the two different illumination levels of the scene) for the scene:
1

100 ,
1
80 and 1

32 seconds. Then, 20 hand-held pictures are taken for each of the three selected
exposures (total exposure time is approximately 1.1 second). Finally, the joint HDR-SR is
performed solving (2.4) for all images.

Figure 6.4 shows example images for each exposure time in the irradiance domain (i.e. at
the same scale) along with the corresponding saturation masks. We observe the increasing
saturation for increasing exposure time. In Figure 6.5, the result of the HDR-SR reconstruction
with factor M = 2 is displayed along with the result of a bi-cubic interpolation of the reference
image for comparison purposes. All images are at the appropriate scale for a fair comparison.
As expected, the HR image resulting from HDR-SR reconstruction is sharper and less noisy
than the bi-cubic interpolation. In this practical case, the intrinsic frequency content of the
scene is not very rich because the camera has a physical anti-aliasing filter that cuts much
of the high frequencies. However, the recovery of higher frequency information (which does
not rely on any regularity model of the scene) is visible, especially on the plot of frequency
spectra.

Complex scene. An HDR-SR experiment was conducted in the scene shown in Figure 6.6.
The strategy introduced in section 6 is used to find 3 optimal exposure times for the scene:
1
64 ,

1
41 and 1

32 seconds. Then 20 hand-held pictures are taken for each of the three selected
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(a) (b)

(c) (d)

Figure 6.2. Comparison between regularization with few 6 images and without regularization with 60
images, (a) One of the LR images, (b) HR image, (c) optimal TV regularization with 6 images, (d) SR without
regularization and 60 images. See details in Figure 6.3.

exposures. The total exposure time is approximately 1.4 seconds. In order to apply (2.4), the
HDR-SR reconstruction must be performed in sub-regions of the images verifying the affine
motion hypothesis. The joint HDR-SR for each region is performed solving (2.4) from the
corresponding regions of all input images. Figure 6.7 shows the HDR-SR reconstruction for a
bright and a dark region of the scene. The recovery of high resolution content is particularly



Simultaneous HDR and SR Imaging Without Regularization 15

(a) (b)

(c) (d)

Figure 6.3. Detail of Figure 6.3. (a) One of the LR images, (b) HR image, (c) optimal TV regularization
with 6 images, PSNR=43.48dB, (d) SR without regularization and 60 images, PSNR=49.92dB.

visible in the focused part of the image (see figures 6.7(d) and 6.8 ). In particular, the
aliasing in the LR image (noticeable on the text) is greatly reduced in the reconstruction.
The improvement is less noticeable in the bright region (see figure 6.7(b)) since that part of
the image is out of focus.
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Figure 6.4. Acquired LR irradiance images with different exposure times with their respective saturation
masks (saturated parts are in black) (a) reference image at 1

100
, (b) image at 1

80
, (c) image at 1

30
, (d) saturation

mask for image (a), (e) saturation mask for image (b), (f) saturation mask for image (c).

7. Conclusions. In this work, we exposed how the HDR-SR problem can be set-up as a
minimization problem including state of the art techniques from both sides of the problem.
We showed that particular care is necessary when choosing acquisition parameters for high
dynamic range super-resolution. A balance between noise generation due to the conditioning
of super-resolution and the noise intensity corresponding to the length of exposure times
should be found. We also showed how exposure times for HDR-SR can be chosen. The main
conclusion of this work is the suggested strategy which ensures that, if the affine motion
hypothesis holds and sufficiently long exposure time is available then all the information
contained in the irradiance scene (both in amplitude and in frequency) is recovered.

A. Reconstruction error bound. Computation of the reconstruction error bound for the
weighted least squares solution of (2.4). First, using operator norm inequalities:

‖nrec‖22 = ‖(A′HW ′A′)−1A′HW ′nin‖22(A.1)

≤ ‖(A′HW ′A′)−1‖22‖A′HW ′1/2‖22‖W ′1/2nin‖22(A.2)

≤ σ2
max(A

′)σ2
max(W

′1/2)

σ4
min(A

′)σ4
min(W

′1/2)
l2N(A.3)
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Bicubic interpolation HDR-SR
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Figure 6.5. Result of HDR-SR with 60 images (a) bi-cubic interpolation of the first LR image, (b) our
result of HDR-SR, (c) scaled and zoomed version of (a), (d) scaled and zoomed version of (b), (e) 2D frequency
spectrum of (a), (f) 2D frequency spectrum of our result (b)
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(a) (b)

Figure 6.6. Scene at two different exposure times for our second experiment.

where σmin(A
′) and σmax(A

′) are the minimum and maximum singular values of A′ (respec-
tively for W ′) and l is the size of input LR images. Let κ(N) be the conditioning of A′HA′, i.e.

κ(N) = σ2
max(A

′)
σ2

min(A
′)
. Using the fact that W ′ is diagonal and its definition from equation (4.1),

‖nrec‖22 ≤ κ(N)2

σ2
max(A

′)

(mN/T + σ2
cN

2/T 2)2

m̃N/T + σ2
cN

2/T 2
l2N(A.4)

≤ κ(N)2

σ2
max(A

′)

m2l2(1 + rN)

m̃(1 + r̃N)
(1 + rN)N2(A.5)

where m = sup(u) ⋍ sup(A′u), m̃ = inf(u) ⋍ inf(A′u), r = σ2
R/(Tm), r̃ = σ2

R/(Tm̃).

Finally, making use of the inequality (1+rN)
(1+r̃N) ≤ 1 we have

‖nrec‖22 ≤ κ(N)2

σ2
max(A

′)
,
m2l2

m̃
(1 + rN)N2.(A.6)
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