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Simultaneous High Dynamic Range and Super-Resolution Imaging Without

Regularization

Yann Traonmilin† and Cecilia Aguerrebere† ‡

Abstract. Modern digital cameras sensors only capture a limited amplitude and frequency range of the irradi-
ance of a scene. A recent trend is to acquire and combine multiple images to raise the quality of the
final image. Multi-image techniques are used in high dynamic range processing, where multiple ex-
posure times are used to reconstruct the full range of irradiance. With multi-image super-resolution,
the difference between sampling grids caused by the motion of the camera is used to generate a high
resolution image. It is possible to combine these two processes into one to generate a super-resolved
image with a full dynamic range. In this paper, we study the reconstruction error of high dynamic
range super-resolution imaging without regularization. From this study, we deduce a strategy for
the choice of the number of images and the exposure times which makes the unregularized problem
well conditioned. With these acquisition parameters, the recovery of all the amplitude and frequency
content of the scene irradiance is guaranteed.

Key words. super-resolution, high dynamic range, regularization

1. Introduction. Limitations of digital cameras sensors restrict the information that a
single image can possibly gather. In particular, the spatial sampling and the dynamic range
of an image are limited. Restrictions on spatial sampling result in aliased images. Scenes
with high dynamic range have over or under-exposed image regions because of the sensor’s
limited potential well capacity. A way to overcome these two problems is to improve spatial
and dynamic range sampling by acquiring and combining several images of the scene. Motion
between shots gives a spatial sampling diversity that allows for a high resolution reconstruc-
tion of the scene. The process of recovering a high resolution (HR) image from several low
resolution (LR) ones is called super-resolution imaging (SR). The dynamic range limit can be
extended by using different exposure times or gains between images. This process is called
high dynamic range imaging (HDR). These two processes need to be combined in order to
recover the high frequency and high dynamic range information of the scene.

Super-resolution algorithms have been reviewed in several works [10,18,27]. Most of them
can be summarized with a variational approach. The HR image is recovered by minimizing a
regularized data-fit functional. This data-fit is usually an Lp norm fit. From Tychonov to total
variation, many regularization functionals are available. Such regularization is necessary when
little information is available (i.e., a small number of images). The resulting interpolation must
be considered as an inpainting using a regularity model and not as the recovery of missing
high frequency information as the scene might not verify the regularity hypothesis. It has
been shown [7,29] that regularization becomes less useful when a large number of images are
available. It is then possible to reconstruct the real high frequency content of the acquired
scene by minimizing only the L2-norm data-fit.
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Several HDR image generation algorithms have been proposed since the seminal work by
Mann and Picard [17]. For static scenes, when the input images can be perfectly registered,
the irradiance at each pixel is computed as a weighted average of the corresponding samples
acquired with different exposure times or gains. Based on this idea, several methods have
been proposed following different weighting schemes [2,9,12,15,16,19,23]. However, accurate
registration of aliased images is sometimes impossible and a joint HDR-SR method is thus
needed.

In recent years, some algorithms have been proposed to perform SR and HDR simultane-
ously. The most conventional approach is to use a weighted least squares scheme, as normally
done for SR, but on the irradiance [8, 13] or transformed irradiance domain [6]. A different
approach [32] is to align LR images using optical flow and minimize a regularized energy to
achieve the combined HDR-SR reconstruction. Rad et al. [4] propose to first align the in-
put images and then use a Delaunay triangulation and bicubic interpolation to perform the
HDR-SR estimation on the irradiance domain. The combined problem has also been stud-
ied from a sensor design perspective, with proposed solutions based on specifically adapted
sensors [20,21].

An aspect common to all these methods is the use of a regularization term, which threatens
multi-image super-resolution in terms of high frequency recovery capability. The recovery of
the spectrum of the real HR scene cannot be guaranteed. Moreover, the latest results for
HDR image generation are not exploited [2]. To the best of our knowledge, the theoretical
background of this problem, necessary to ensure the recovery of HDR and HR content, has
not been studied in depth.

1.1. Contributions. In this paper, we study the HDR-SR imaging problem from the fol-
lowing perspective: which image acquisition configuration, i.e. number of acquired images and
exposure times, guarantees that the high frequencies and the full dynamic range of a scene
will be recovered? We use a realistic camera acquisition model and propose an image recon-
struction method that includes the weighting scheme shown to be nearly optimal for HDR
information recovery [2]. We study theoretical bounds for the joint HDR-SR reconstruction
error and find that a trade off must be made between the total exposure time and the number
of images. This result is illustrated with synthetic and real data experiments. Moreover, we
show how the exposure times can be selected and that this selection should be decoupled
from the SR problem. This analysis leads to the proposal of an acquisition strategy which
guarantees the recovery of the full dynamic range and high frequency content of the scene
irradiance. Finally, experiments with real data show that our HDR-SR strategy manages to
recover this information.

The article is organized as follows. Section 2 introduces the image acquisition model and
the reconstruction method. In section 3, the strategy for the choice of exposure times and
number of images is proposed. Section 4 presents the study of the reconstruction error bounds.
In Section 5, we show how exposure times can be selected. An optimal acquisition strategy
and its corresponding experimental validation are presented in Section 6. Finally, conclusions
are stated in Section 7.

2. HDR-SR acquisition and reconstruction.
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2.1. Acquisition model. We consider an irradiance acquisition model with different ex-
posure times for each low resolution image wi:

(2.1) A : u → (wi)i=1,...,N = (ΩiGiSQiu)i=1,...,N ,

where N is the number of LR images, u is the HR irradiance, Qi are the affine motions
associated with each LR image (Qiu is the irradiance reaching the sensor), S is the sub-
sampling by a factor M and Gi = giti is the overall acquisition gain, including the camera
gain g (without loss of generality, we take g = 1 to simplify expressions) and the exposure
time ti for the i-th LR image. Several images may be acquired with the same exposure time.
Ωi is a diagonal matrix taking value 1 if pixel j does not become saturated or under-exposed
for the exposure time ti and 0 otherwise. We suppose Ω = (Ωi)i=1,...,N to be full rank (every
pixel is at least illuminated once). This model does not take into account the point spread
function of the camera, which can be deconvolved afterwards if motion is small [28]. The
digital LR images w = (wi)i=1,...,N are contaminated by additive noise n:

(2.2) w = Au+ n.

A Poisson noise model with Gaussian approximation [1] leads to the spatially varying Gaussian
noise

(2.3) n = nu + nR,

where nu is a Gaussian noise with covariance matrix Σu proportional to the irradiance Σu =
diag(Au) and nR is a Gaussian readout noise with constant variance σ2

R. The readout variance
is zero for saturated samples only. Thus the covariance matrix of n is Σ = diag(Au) + σ2

R.
The objective is to recover u from w.

2.2. Image reconstruction. It has been shown in [29] that M2 images are necessary to
perfectly recover the SR image in the case of constant exposure times. Because the HDR
acquisition model is a full rank linear map, the composition of the two processes is invertible
with M2 LR images. We minimize the L2 data-fit to recover an estimate of u

(2.4) ũ = argminu‖W
1/2(Au− w)‖22.

Multiplying byW 1/2 = Σ−1/2 normalizes the noise to have constant variance, thus the solution
to (2.4) gives the minimum variance linear unbiased estimator of the irradiance. Also, given
that the noise is Gaussian, this estimator is also the maximum likelihood estimator (MLE) of
the irradiance. Practically, this problem is solved with a linear conjugate gradient calculation
of (W 1/2A)†W 1/2w = (AHWA)−1AHWw. Since the weights W depend on the irradiance u,
an iterative procedure is needed to complete the estimation. The weights can be initialized
with a smoothed version of the LR images. In practice, it is found that one iteration yields
good results, and the irradiance remains almost unchanged after the first iteration. The
iterative computation of the MLE for the HDR image generation in the case of perfectly
registered images, is introduced by Granados et al. [12] and shown to be nearly optimal in [2].

An experiment is conducted to evaluate the benefit of using the weights W . For this
purpose, synthetic samples are generated from a ground-truth HDR image according to
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Figure 2.1. Result of optimal reconstruction for HDR-SR. SNR for each pixel obtained from 100 experi-
ments with randomly chosen affine transformations and noise realizations. Left: Ground-truth image from [14].
Center: SNR obtained without weights (W = Id). Right: SNR obtained using W 1/2 = Σ−1/2.

model (2.2), and the reconstruction is performed solving (2.4), with W 1/2 = Σ−1/2 and
W = Id. The experiment is repeated 100 times, with randomly chosen affine transforma-
tions and noise realizations. The signal-to-noise ration (SNR) for each reconstructed pixel is
computed from the ground-truth value and the mean square error (MSE) at that pixel (MSE
computed from the 100 experiments). Figure 2.1 shows the SNR images in decibels for each
weighting type. The results greatly improve when the weights W 1/2 = Σ−1/2 are included.

2.3. Image registration. Image registration is a critical part of SR as the quality of the
result will be directly linked to the precision of the motion estimation. With low resolution
images, registration can be inaccurate [25]. For super-resolution, high resolution motion es-
timation is often performed with the variable projection method [11, 24, 26, 31]. It has been
shown that this method gives good results when enough images are available [28]. We adapt
this method to our joint HDR-SR reconstruction problem. For a given HDR setting (Ωi and
Gi known), let A(θ) be a SR operator parameterized by the affine motion parameter θ ∈ R

6N

and ũ(θ) the solution of (2.4) with operator A(θ). The variable projection aims at finding
the minimizer

(2.5) θ̃ = argminθ‖W
1/2 (A(θ)ũ(θ)− w) ‖22.

It is a non-linear non convex functional having local minima. From an initial solution, we
perform a conjugate gradient descent of functional (2.5).

The initial solution is calculated as follows. We calculate the cross-correlation of each LR
images pair for different translations and find the translation maximizing the cross-correlation.
We remark that the translation τij between images i and j should be the sum of the translation
τik between images i and k and translation τkj between k and j. Then, to obtain the final
translation to the reference image, we average all the available τ1k + τkj. We then scan for
initial rotation and zoom to avoid local minima.

3. Strategy for the choice of acquisition parameters. In order to establish an HDR-SR
reconstruction strategy, we must define the set of exposure times and the number of images
(per exposure time) to acquire. Given a set of exposure times t1, . . . , tN , the reconstruction
error can be arbitrarily large because the condition number of the acquisition operator A
cannot be bounded. For instance, it is infinite if the camera does not move (Qi = Id).
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Therefore, it is not possible to find the exposure times minimizing the reconstruction error
for the HDR-SR combined problem without knowledge of the camera motion. In practice, the
motion is seldom known. In particular, it is unknown for images acquired with a hand-held
camera.

Performing a joint optimization of exposure times and number of images for HDR-SR
would require a precise statistical model describing camera motion. Even with this informa-
tion, calculating precise estimates of the reconstruction error would be difficult because we
would have to estimate the interaction between the local conditioning of super-resolution [29]
and the spatial variations of the SNR. Moreover, this joint problem is a highly dimensional
non-convex problem, which would be hard to embed in a camera.

Hence, we propose to define a reconstruction strategy combining the optimality results for
each separate problem, HDR and SR, so as to minimize the worst case reconstruction error
of the combined problem. With HDR processing, we know that some part of the images are
illuminated by few images. From SR theory, these parts must be covered by enough images
to enable a reconstruction without regularization. Consequently, we proceed as follows.

Proposed strategy. For the HDR reconstruction problem, an optimal HR HDR image is
obtained if p HR images with exposures t1, . . . , tp are combined, these exposures being chosen
to minimize the HDR reconstruction error (c.f. section 5). Hence, we propose to consider
the SR conditions which best estimate each of these p HR images. This will guarantee that
the joint HDR-SR reconstruction performs well. Suppose that we found a set of motions
associated with each t1, . . . , tp leading to a good SR reconstruction of the p HR images. Then
a naive linear HDR-SR method would be to perform a classical HDR technique, with these
p reconstructed HR images, thus limiting the final reconstruction noise. But we know that
our joint method (minimization (2.4)) leads to the optimal L2 reconstruction error, given this
dataset. Consequently, by minimizing the reconstruction error of the separate HDR and SR
problems, we guarantee a good reconstruction error for the joint HDR-SR problem.

Two cases are to be considered. First, if the total exposure time and the total number
of images are not limited, the best strategy is to take as many LR images as possible for
exposure tp in order improve the SR reconstruction. Secondly, a more realistic case, is that of
a limited total exposure time (e.g. because of scene motion). In order to ensure a correct HR
reconstruction of factor M , the minimum total exposure time for frames acquired with time
tp is M2tp. However, as it will be shown in the following section, there is an optimal number
of LR images N > M2 for a fixed total exposure time.

4. Reconstruction error bound for HDR-SR. In the following section we study the recon-
struction error bounds for the HDR-SR estimation problem for a fixed total exposure time T
and N images acquired with equal exposure T/N , i.e. the reconstruction of the HR irradiance
frame.

4.1. Optimal number of images for a fixed total exposure time. In a HDR context,
when neglecting motion blur, the longer the exposure time without saturation, the better.
We show here that when we must perform SR at the same time (i.e. compute the pseudo-
inverse of A), taking more images with a shorter exposure can be better. We study the case
of HDR-SR for a given total exposure time T without saturation, i.e. Ωi = Id. N images
are acquired with a total exposure time T , each with equal exposure time t = T/N . Because
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the overall acquisition gain is linear, the problem is equivalent to the acquisition of N LR
irradiances v with A′ = G−1A, with a noise n′ with covariance matrix:

(4.1) Σ′ = diag(A′u/t+ σ2
R/t

2)

Then,

(4.2) v = A′u+ n′.

A′ is the conventional super-resolution modeling operator, i.e. a super-resolution operator
where acquisition gain is not considered. Thanks to this normalization, we will be able to use
results from the super-resolution literature directly.

The super-resolution of N images with exposure T/N can be done solving the problem

(4.3) ũ = argminv‖W
′1/2(A′u− v)‖22,

with W ′ = Σ′−1.

Reconstruction error bound. The noise in the reconstructed image nrec is thus bounded by
(c.f. Appendix A)

(4.4) ‖nrec‖
2
2 ≤

κ(N)2

σ2
max(A

′)

m2l2

m̃
(1 + rN)N2,

where κ(N) is the conditioning of A′HA′ (ratio of extremal eigenvalues of A′HA′), σmax(A
′)

is the maximum singular value of A′, m = sup(u) ⋍ sup(A′u), m̃ = inf(u) ⋍ inf(A′u),
r = σ2

R/(Tm), r̃ = σ2
R/(Tm̃) and l is the size of the input images. Hence, the optimal number

of images for a fixed total time T is the one that minimizes ‖nrec‖
2.

In [29], it was shown that κ(N) can be bounded in probability by a decreasing function of
the number of images N . Moreover, it can be shown [30] thatN/M2 ≤ ‖A′‖22 = σ2

max(A
′) ≤ N .

Hence, to optimize the reconstruction error bound, we minimize the function

(4.5) f(N) = κ(N)2(1 + rN)N,

with respect to N . When N is close to the critical case M2, κ(N) can be large but decreases to
1 with N [29]. Consequently, f will have a minimum. Notice that the r factor is proportional
to σ2

R and cannot be neglected in low light conditions.

4.1.1. Experimental study of f(N).

Synthetic data. To illustrate the behavior of f(N), we compute the curve for the case
of 2D translational super-resolution. For each number of images N , we randomly simulate
100 translation parameters and compute the corresponding f(N) by explicitly calculating
κ(N) (which can be done because the SR is then a 2D Vandermonde system in the frequency
domain [3, 22]). With the same procedure, we generate the f(N) curve for the affine super-
resolution case. Here κ(N) is approximated by the ratio ‖nrec‖

2/‖nin‖
2. Figure 4.1 shows the

results obtained with M = 2 and r = 0.03 (chosen with realistic values: σ2
R = 30, T = 1/10,

m = 104).
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Figure 4.1. Plot of log(f(N)) versus N (M = 2). (a) Result for 100 experiments (blue) and average
(red) of 2D translational SR for each N with r = 0.03 . The minimum is reached at N = 12 . (b) Plot of
the average log(f) for different values of r for translational SR. Minimum at 12 (r=0.3), 13 (r=0.03) and 30
(r=0.003). (c) Affine super-resolution, 20 experiments for each N . The minimum is reached at N = 19, (d)
Plot of average log(f(N)) versus N for different values of r for affine SR. Minimum at 14 (r=0.3), 19 (r=0.03)
and 34 (r=0.003).

It can be verified that the minimum of f is not reached at the critical case (N = M2 = 4),
meaning that it is better to take more than M2 images with shorter exposure times. This fact
shows that a compromise must be made between the number of images needed to perform
super-resolution (more thanM2) and the noise level on those images. Given the total exposure
time T , a larger N implies a shorter exposure time per image. For short enough exposures,
the variance σ2

R of the readout noise becomes prominent, thus increasing the reconstruction
error.

This can be verified with the results obtained for various r values in Figure 4.1. The
r factor can be thought of as the inverse of the dynamic range of the acquired scene, since
it is equal to the ratio between the constant noise variance σ2

R and the maximum acquired
irradiance mT (up to the factor N). As the value of r decreases, the minimum of f(N) is
reached at a larger N . This is due to the fact that both, decreasing σ2

R or increasing T ,
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improves image quality and thus allows the utilization of shorter exposure times. Moreover,
notice that the error bound increases quite slowly after its minimum. Hence, whether we
choose a number of images at the minimum or slightly above will have little impact on the
results. Curves of similar shape are obtained for larger M values, with the minimum reached
for a larger N . This is caused by the larger conditioning of the SR problem for larger M [5].

Real data. In order to experimentally verify the previous results, we take pictures of a
planar surface using a hand held camera (c.f Figure 4.2). The small hand motion gives the
sampling diversity needed for HDR-SR and guarantee that motion blur is not too large. The
goal is to compare the HDR-SR reconstruction error (M = 2) obtained with a constant total
exposure time T , but with two different exposure times, t1 = 1/41 and t2 = 1/64, i.e. with a
different number of images, N1 = T/t1 and N2 = T/t2. In the same way, the HDR-SR results
are compared for the two different exposure times when fixing the total number of images N ,
i.e. for a different total exposure time Nt1 and Nt2 in each case. The reconstruction error
(estimated from the variance of white parts) with respect to the total exposure time and the
number of images, for the two different exposure times, is shown in figures 4.2 (a) and (d)
respectively. In this example, for a fixed number of images, it is better to take pictures at
1/41 seconds. However, for a fixed total exposure time, it is better to combine more images
with the shorter exposure 1/64 seconds. The same behavior can be observed in the extracts of
the reconstructed images shown in figures 4.2 (b) and (c). Hence, we verify that the longest
exposure time is not necessarily optimal.

4.2. Discussion and practical consequences. In this section, we explain the trade off
that must be made when performing HDR and SR simultaneously: in an HDR setting, we
look for the biggest exposure times which do not saturate (or saturate for the fewest images
possible) while with SR, more images are generally better. This leads to the following remarks
depending on the acquisition setup:

• With a fixed total exposure time, the number of images must be above the critical
case for SR (M2), thus with a shorter exposure. However, it must not exceed by much
the critical case since for very short exposures the reconstruction noise increases with
N .

• With a fixed number of images, the more images with the longest possible exposure
time the best. However, the previous remark give us the knowledge that if this number
of images is the optimal one from the previous section, then it is not possible to do
better with the same exposure time.

• With any exposure time / number of images, the best strategy is taking as
much images as possible of the longest exposure time. Taking a lot of images with
very short times is not a good strategy.

5. Exposure times selection for HDR reconstruction. As stated in section 4, an optimal
exposure times set for the HDR reconstruction can be obtained minimizing the HDR recon-
struction error. In this section we focus on the extension of the dynamic range of the image
(M = 1, Qi = Id, S = Id) and propose an algorithm to find this exposure times set.

In this case, the solution to equation (2.4) gives the following estimator of the irradiance
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Figure 4.2. Reconstruction error with respect to total exposure time and number of images (M = 2). (a)
Reconstruction error with respect to total time. (b) Reconstruction error with respect to number of images. (c)
SR result with 7 images at 1/41s. (d) One LR image with exposure 1/41s. (e) SR result with 10 images at
1/64s. (f) one LR image at with exposure 1/64s.

at position j:

(5.1) ũj =

∑N
i=1

tiΩijwj

ujti+σ2

R

∑N
h=1

t2hΩhjwj

ujth+σ2

R

.

Thus the reconstruction error in this case is given by

(5.2) ‖nrec‖
2
2 =

l2M2∑

j=1

1
∑N

h=1
t2hΩhjwj

ujth+σ2

R

.

Then, we consider the optimal set of times as the one that minimizes (5.2). Given the depen-
dence of the reconstruction error on the irradiance value, minimizing (5.2) favors the noise
reduction in bright regions. Therefore, in order to assign equal importance to all irradiance
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Figure 5.1. Inverse of the normalized reconstruction error (inverse of Equation (5.3)) for the first example
scene of Section 6.

levels, we consider instead the normalized reconstruction error

(5.3) ‖n′
rec‖

2
2 =

l2M2∑

j=1

1
uj

∑N
h=1

t2hΩhjwj

ujth+σ2

R

=

l2M2∑

j=1

1
∑N

h=1
t2hΩhjwj

th+σ2

R

,

and the set of exposure times

(5.4) t̃1, . . . , t̃N = arg min
t1,...,tN

‖n′
rec‖

2
2.

To minimize the non-convex function (5.3), we propose to use an exhaustive evaluation
method. First, the shorter exposure time is determined by the fact that all irradiance values
must be correctly acquired for at least one exposure time (matrix A is full rank). For the same
reason, a lower bound is determined for the longer exposure. Then, given the number N of
exposure times to acquire (which might be automatically extracted from the scene histogram),
we need to minimize function (5.3) with respect to the remaining N − 1 times. We find this
minimum by evaluating all combinations of available times. This methodology is feasible and
fast in practice since N is usually in the order of 2 to 4 and the number of available exposures
in the camera is about 50 (e.g. 55 for the Canon 7D).

Figure 5.1 shows the inverse of function (5.3) for the example scene presented on the
first experiment of Section 6 with N = 2. The large flat region for the longer exposure times
represents the large error caused by the saturation of most (or all) pixels in the image. A large
error is also found for very short exposure times, since the readout noise becomes important
for all irradiance values. The maximum of the function (minimum of (5.3)) is reached between
these two extremes, as a compromise between saturation and noise level. This compromise is
determined from the proportion of pixels belonging to each irradiance range, which is derived
from the irradiance histogram of the scene.

6. Acquisition strategy. From the results presented in the previous sections we derive
the following strategy for the non-regularized HDR-SR reconstruction that guarantees the
recovery of the amplitude and frequency content of the scene irradiance. The exposure times
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Figure 6.1. A picture of the practical set-up of our first experiment

are first selected following the procedure introduced in section 5. For this purpose, two images
are taken to compute the scene irradiance histogram and find the optimal exposure times for
the HDR reconstruction. One image must capture bright regions (no saturated pixels) and the
other must capture dark regions (no under-exposed pixels). From the concatenated histograms
of the two exposures, the high dynamic range histogram of the irradiance is built. With this
histogram, the minimization from equation (5.4) is performed for the given number of exposure
times.

The number of images to take for each exposure time is thus defined from the study
presented in section 4. The function f , thus the optimal N , depends on the scene irradiance.
However, for M = 2, we find in practice that it is reached at about N = 20 for a large range
of irradiances. It can be larger for smaller r values, but in those cases the function is quite flat
and the result is not greatly affected by this choice. Because N = 20 is a feasible number of
shots for burst acquisition with a hand-held camera, it can be taken as the reference number
of images needed for each exposure time. Hence, 20 hand-held pictures are taken for each of
the selected exposures and the joint HDR-SR is performed solving (2.4) with all images.

6.1. Experiments. The following experiments were conducted in order to test the capacity
of the proposed strategy to recover the dynamic and frequency information lost by a single
image acquisition without the need of regularization hypothesis on the scene.

High dynamic range planar surface. We use a planar surface half illuminated by a strong
source, thus generating two levels of irradiance. The scene is shown in Figure 6.1. Acquiring a
plane matches the hypothesis of affine motion (small homography). In a more complex scene,
segmenting the image in parts where the affine motion hypothesis is valid might be necessary.

The strategy introduced in section 6 is used to firstly find the 3 optimal exposure times
(which are enough to capture the two different illumination levels of the scene) for the scene:
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Figure 6.2. Acquired LR irradiance images with different exposure times with their respective saturation
masks (saturated parts are in black) (a) reference image at 1

100
, (b) image at 1

80
, (c) image at 1

30
, (d) saturation

mask for image (a), (e) saturation mask for image (b), (f) saturation mask for image (c).

1
100 ,

1
80 and 1

32 seconds. Secondly, 20 hand-held pictures are taken for each of the three
selected exposures (total exposure time is approximately 1.1 second). Then, the joint HDR-
SR is performed solving (2.4) for all images.

Figure 6.2 shows example images for each exposure time in the irradiance domain (i.e. at
the same scale) along with the corresponding saturation masks. We observe the increasing
saturation for increasing exposure time. In Figure 6.3, the result of the HDR-SR reconstruction
with factor M = 2 is displayed along with the result of a bicubic interpolation of the reference
image for comparison purposes. All images are at the appropriate scale for a fair comparison.
As expected, the HR image resulting from HDR-SR reconstruction is sharper and less noisy
than the bicubic interpolation. In this practical case, the intrinsic frequency content of the
scene is not very rich because the camera has an anti-aliasing filter that cuts much of the high
frequencies. However, the recovery of higher frequency information (which does not rely on
any regularity model of the scene) is visible, especially on the plot of frequency spectra.

Complex scene. An HDR-SR experiment was conducted in the scene shown in Figure 6.4.
The strategy introduced in section 6 is used to find 3 optimal exposure times for the scene:
1
64 ,

1
41 and 1

32 seconds. Then 20 hand-held pictures are taken for each of the three selected
exposures. The total exposure time is approximately 1.4 seconds. In order to apply (2.4), the
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Bicubic interpolation HDR-SR
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Figure 6.3. Result of HDR-SR with 60 images (a) bicubic interpolation of the first LR image, (b) our
result of HDR-SR, (c) scaled and zoomed version of (a), (d) scaled and zoomed version of (b), (e) 2D frequency
spectrum of (a), (f) 2D frequency spectrum of our result (b)
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(a) (b)

Figure 6.4. Scene at two different exposure times for our second experiment.

HDR-SR reconstruction must be performed in sub-regions of the images verifying the affine
motion hypothesis. The joint HDR-SR for each region is performed solving (2.4) from the
corresponding regions of all input images. Figure 6.5 shows the HDR-SR reconstruction for a
bright and a dark region of the scene. The recovery of high resolution content is particularly
visible in the focused part of the image (see figures 6.5(d) and 6.6 ). The improvement less
noticeable in the bright region (see figure 6.5(b)) since that part of the image is out of focus.

7. Conclusions. In this work, we exposed how the HDR-SR problem can be set-up in
a variational context including state of the art techniques from both sides of the problem.
We showed that particular care is necessary when choosing acquisition parameters for high
dynamic range super-resolution. A balance between noise generation due to the conditioning
of super-resolution and the noise intensity corresponding to the length of exposure times
should be found. We also showed how exposure times for HDR-SR can be chosen. The main
conclusion of this work is the suggested strategy which ensures that all of the information
contained in the irradiance scene (both in amplitude and in frequency) is recovered. Finally,
we showed that this strategy is valid in a controlled real situation.

A. Reconstruction error bound. Computation of the reconstruction error bound for the
weighted least squares solution of (2.4). First, using operator norm inequalities:

‖nrec‖
2
2 = ‖(A′HW ′A′)−1A′HW ′nin‖

2
2(A.1)

≤ ‖(A′HW ′A′)−1‖22‖A
′HW ′1/2‖22‖W

′1/2nin‖
2
2(A.2)

≤
σ2
max(A

′)σ2
max(W

′1/2)

σ4
min(A

′)σ4
min(W

′1/2)
l2N(A.3)
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Reference LR HDR-SR

(a) (b)

(c) (d)

Figure 6.5. Result of HDR-SR with 60 images (a) LR image, (b) our result of HDR-SR, (c) LR image,
(d) our result of HDR-SR, (e) detail of (c), (f) detail of (d)

where σmin(A
′) and σmax(A

′) are the minimum and maximum singular values of A′ (respec-
tively for W ′) and l is the size of input LR images. Let κ(N) be the conditioning of A′HA′, i.e.
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(a) (b)

Figure 6.6. Detail of HDR-SR with 60 images (a) detail of Figure 6.5(c), (b) detail of Figure 6.5 (d)

κ(N) = σ2
max(A

′)
σ2

min(A
′)
. Using the fact that W ′ is diagonal and its definition from equation (4.1),

‖nrec‖
2
2 ≤

κ(N)2

σ2
max(A

′)

(mN/T + σ2
cN

2/T 2)2

m̃N/T + σ2
cN

2/T 2
l2N(A.4)

≤
κ(N)2

σ2
max(A

′)

m2l2(1 + rN)

m̃(1 + r̃N)
(1 + rN)N2(A.5)

where m = sup(u) ⋍ sup(A′u), m̃ = inf(u) ⋍ inf(A′u), r = σ2
R/(Tm), r̃ = σ2

R/(Tm̃).

Finally, making use of the inequality (1+rN)
(1+r̃N) ≤ 1 we have

‖nrec‖
2
2 ≤

κ(N)2

σ2
max(A

′)
,
m2l2

m̃
(1 + rN)N2.(A.6)
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[29] Yann Traonmilin, Säıd Ladjal, and Andrés Almansa, On the amount of regularization for Super-

http://people.csail.mit.edu/hasinoff/hdrnoise/


18 Y. Traonmilin and C. Aguerrebere

Resolution interpolation, in 20th European Signal Processing Conference 2012 (EUSIPCO 2012),
Bucharest, Romania, Aug. 2012.
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