Laura Giambruno
email: giambruno@lipn.univ-paris13.fr

Sabrina Mantaci
email: sabrina@math.unipa.it

Jean Néraud

Carla Selmi
email: carla.selmi@univ-rouen.fr

A Generalization of Girod's Bidirectional Decoding Method to Codes with a Finite Deciphering Delay

In this paper we generalize an encoding method due to Girod (cf. [6]) using prefix codes, that allows a bidirectional decoding of the encoded messages. In particular we generalize it to any finite alphabet A, to any operation defined on A, to any code with finite deciphering delay and to any key x ∈ A + , on a length depending on the deciphering delay. We moreover define, as in [4], a deterministic transducer for such generalized method. We prove that, fixed a code X ∈ A * with finite deciphering delay and a key x ∈ A * , the transducers associated to different operations are isomorphic as unlabelled graphs. We also prove that, for a fixed code X with finite deciphering delay, transducers associated to different keys have an isomorphic non trivial strongly connected component.

Introduction

Coding methods that allow bidirectional decoding of messages are used in order to guarantee data integrity. When we use a variable length code for source compression (cf. [START_REF] Salomon | Variable-Length Codes for Data Compression[END_REF], Chapter 3), a single bit error in the transmission of the coded word may cause catastrophic consequences during decoding, since the wrongly decoded symbol generate loose of synchronization and the error is propagated till the end of the file. In order to limit this error propagation, the compressed file is usually divided into records. If just one error occurred in the coding of the record and we are able to decode in both directions, it is possible to check the error position, isolate it and then avoid the error propagation. For this purpose, bifix codes, that allows instantaneous bidirectional decoding, are generally used but they are usually too big (so do not guarantee compression), and they are difficult to construct (cf. [START_REF] Fraenkel | Bidirectional Huffman Coding[END_REF]). Prefix codes are usually very small instead, but in spite they allow an instantaneous left-to-right decoding, the right-to-left decoding requires some deciphering delay. Due to a Schützenberger famous result (cf. [START_REF] Berstel | Codes and Automata[END_REF], Chapter 3) such a delay is even infinite for maximal finite prefix codes that are not suffix. In 1999 B. Girod (cf. [START_REF] Girod | Bidirectionally decodable streams of prefix code words[END_REF]) introduced a encoding/decoding method, that, even if it makes use of prefix codes, it allows an instantaneous decoding also from right to left by paying just few additional memory bits. In previous papers (cf. [START_REF] Giambruno | Transducers for the bidirectional decoding of prefix codes[END_REF], [START_REF] Giambruno | On the size of transducers for bidirectional decoding of prefix codes[END_REF]) a bideterministic transducer is defined for the bidirectional deciphering of words by the method introduced by Girod [START_REF] Girod | Bidirectionally decodable streams of prefix code words[END_REF]. A generalization of this method and the corresponding transducer are also introduced.

In this paper we consider two different generalizations of the Girod's method. The first one concerns the cardinality of the code alphabet, realized by replacing the bitwise sum with a reversible operation defined by a latin square map. The second one concerns codes with finite deciphering delay (f.d.d.). The prominent part played by these codes is largely illustrated by deep combinatorial results, such as the two famous theorems of Schützenberger concerning their minimality [cf. [START_REF] Berstel | Codes and Automata[END_REF], Chapter 5]. For this reason, it is natural to wonder what happens when, in a Girod's encoding/decoding suitable generalization, the prefix code is replaced by a code with some f.d.d. Our results allow to get a bidirectional f.d.d. equal to the minimal f.d.d. between the code and its reverse. We also show that the transducers for the same code associated to different keys have an isomorphic non trivial strongly connected component. This property emphasizes the deep connections between variable lengths codes and irreducible shifts (cf. [START_REF] Lind | An introduction to Symbolic Dynamics and Coding[END_REF]).

In Section 1 we introduce some preliminary notions on codes and transducers. In Section 2 we define latin square maps and we describe the generalization of Girod's method to f.d.d. codes. In Section 3 we give the algorithm for constructing the deterministic transducer that realizes the left-to-right and the right-to-left decoding by the generalized method. We show that the transducers realizing left-to-right and right-to-left decoding of the same inputs are isomorphic as graphs. We moreover show that the transducers over a given f.d.d. code X ⊂ A + and key x ∈ A * , are isomorphic as unlabeled graphs, independently from the latin square maps used for encoding. In Section 4 we show that, for a given f.d.d. code X over a fixed alphabet A, the transducers associated to different keys have an isomorphic non trivial strongly connected component.

Preliminaries: Codes and Transducers

Let B and A be two alphabets, that we call respectively source alphabet and channel alphabet. Let γ : B → A * be a map that associates to each element b in B a nonempty word over A. We extend this map to words over B by γ

(b 1 . . . b n) = γ(b 1) . . . γ(b n). We say that γ is an encoding if γ(w) = γ(w) implies that w = w . For each b in B, γ(b)
is said a codeword and the set of all codewords is said a variable length code, or simply a code. In what follows we denote by x i = γ(b i) and by X = {x 1 , . . . , x m } the code defined by γ. A decoding is the inverse operation than encoding i.e. the decoding of γ is the function γ -1 restricted to γ(B *). A set Y over A * is said a prefix set (resp. suffix set) if no element of Y is a prefix (resp. a suffix) of another element of Y . Since one can prove that any prefix and any suffix set different from {ε} is a code, we call them prefix and suffix codes, respectively. Words obtained by encoding a word in the source alphabet by a prefix code, can be decoded without delay in a left-to-right parsing.

Let X ⊂ A * be a code and let d be a nonnegative integer. X is a code with finite deciphering delay (f.d.d. in short) d if for any x, x ∈ X, x = x , we have

xX d A * x X * = ∅.
The delay of X is the smallest integer d for which this property is verified. If such an integer does not exist we say that X has infinite deciphering delay.

For instance any prefix code is a code with a f.d.d. d = 0. As another example, the code

X d = {01, (01) d 1} ⊂ A * , A = {0, 1} is a code with f.d.d. d for any d ≥ 0. In fact, (01)X d A * (01) d 1X * = ∅. The code X = {0, 01, 11} ⊂ A * is a code with infinite deciphering delay. In fact, 0(11) d 1 ∈ 0X d A * 01X * for all d ≥ 1.
For u in A * we denote by u the reverse of u. For X = {x 1 , x 2 , . . . , x n }, we define the set X = { x 1 , x 2 , . . . , x n }. We denote by Pref (X) (Suff (X)) the set of prefixes (suffixes) of words in X. For u ∈ A * , for k ≤ |u|, we denote by pref k (u) (suff k (u)) the prefix (suffix) of u of length k and by suff -k (u) the suffix of u of length |u|-k.

A finite sequential transducer T (cf. [START_REF] Sakarovitch | Éléments de théorie des automates[END_REF], [START_REF] Lothaire | Applied combinatorics on words[END_REF] Chapter 1) is defined over an input alphabet A and an output alphabet

B. It consists of a quadruple T = (Q, i, F, δ), where Q is a finite set of states, i is the unique initial state, δ is a partial function Q × A -→ B * × Q which breaks up into a next state function Q × A -→ Q and an output function Q × A -→ B * . The elements (p, a, δ(p, a)) = (p, a, v, q), with p, q ∈ Q, a ∈ A and v ∈ B * ,
are called edges. In this case we call a the input label and v the output label. F is a partial function F : Q -→ B * called the terminal function.

Generalization of Girod's Method to f.d.d. Codes

It is well known that a prefix code can be decoded without delay in a left-to-right parsing while it can not be as easily decoded from right to left. In 1999 B. Girod (cf. [START_REF] Girod | Bidirectionally decodable streams of prefix code words[END_REF]) introduced a very interesting alternative coding method using finite prefix codes on binary alphabets. It applies a transformation to a concatenation of codewords in a prefix code X that allows the deciphering of the coded word in both directions, by adding to the messages just as many bits as the length the longest word in X. We generalize this method to codes over alphabets with cardinality greater than two and with a f.d.d.

Let A = {0, . . . , n} and f be a map from A × A into A. For all a ∈ A, we denote by

f (a,•) (resp. f (•,a)) the map from A into A defined by f (a,•) (x) = f (a, x) (resp. f (•,a) (x) = f (x, a)), ∀x ∈ A.
They are called the components of f . A map f : A×A -→ A is said a latin square map on A if, for each a ∈ A, its components f (a,•) and f (•,a) are bijective. A latin square map on A is defined by a square array of size n+1 where each line and each column contain one and only one occurrence of i, for all 0 ≤ i ≤ n.

Example 1. If A = {0, 1, 2}, the following matrix defines a latin square map:

g 0 1 2 0 0 2 1 1 1 0 2 2 2 1 0
We remark that the bijectivity of the components of a latin square map f implies that there exists only one solution to the equation f (a, b) = c, when one element among a, b or c is unknown. We can define two different "inverse" latin square maps associated to a given map f . For a, b, c ∈ A such that f (a, b) = c, we define the inverse maps Let f be a latin square map on A. We extend f to the elements of

f -1 1 , f -1 2 as f -1 1 (c, b) = a and f -1 2 (a, c
A k × A k , k ≥ 1, by f (a 1 . . . a k , a 1 . . . a k) = f (a 1 , a 1) . . . f(a k , a k).
Let l be the length of the longest word in X and let x L be a word in

A + of length L = (d + 1)l. Let b = b i1 . . . b it ∈ B * and let y = γ(b) = x i1 . . . x it , with x ij ∈ X,
its encoding. Consider y = x i1 . . . x it where x ij represents the reverse of x ij . Consider the word z = f (yx L , x L y). We define an encoding δ from B * to A * by δ(b) = z. We can realize a left-to-right decoding of z by proceeding in the following way:

1. We first consider the words v := x L and t := z, t := pref L (t).

The word u

= f -1 1 (t , v
) is a prefix of y with length L, then has a prefix which is product of at least (d + 1) codewords of X, that is u = x i1 . . . x i d+1 u , with x ij ∈ X, u ∈ A * . Since X is a code with a f.d.d. d, we can state that the factorization of u begins with x i1 . Then the decoding of z begins with b i1 . 3. Let v :=suff L (v x i1) and let t :=suff -|xi 1 | (t) and t =pref L (t). Back to step 2 we compute u = f -1 1 (t , v), and since u has length L, we are able to recognize the first codeword of u, x i2 . Then the decoding of z begins with b i1 b i2 . 4. The algorithm stops when |t| = L.

For instance consider the code X = {01, 012} with f.d.d. d = 1 encoding B = {b 1 , b 2 }. We use the latin square map g of Example 1 and its inverse g -1 1 and we choose as key x L = 011011. Let y = (012)(01)(01)(012)(012) and y = (210)(10)(10)(210)(210). The encoding, performed by applying g to the pair (yx L , x L y), gives the sequence z = 2022002211002101101.

In order to decode z from left to right, we first consider u = g -1 1 (202200, 110110) = 012010. Since u has length 6, we are able to recognize the first codeword 012: the decoding of z begins with b 2 . After, we consider v = 110210 and t = 200221 and u = g -1 1 (110210, 200221) = 010101 = (01)0101: the decoding of z begins with b 2 b 1 . By proceeding this way we get the entire decoding of the message.

We remark that, by reversing the roles of yx L and x L y , we can decode the word form right to left, just by using the information that the first word ends with x L and that the inverse latin square map g -1 2 allows to get b from c and a.

Transducers for Decoding

Let X = {x 1 , . . . , x m } ∈ A + be a code with f.d.d. d encoding the alphabet

B = {b 1 , . . . , b m }. Let x L ∈ A * with |x L | = L = (l + 1)d,
where l is the length of the longest word in X, and let f be a latin square map on A. For any sequence z of codewords in X, consider the encoding δ given by the generalization of Girod's method. The left-to-right decoding method given in the previous section can be described by the transducer, T (X) f,xL = (Q, i, δ, F) defined as follows:

1. Q contains pairs of words (u, v) such that: Analogously can define the transducer T (X) f,xL for the right-to-left decoding.

a) u ∈ Pref (X d+1) \ X d+1 ; b) v is a a word in Suf f (x L)Suf f (X d+1) of length L -|u|. 2. The initial state i = (ε, x L). 3. δ is defined as: a) δ((u, av), c) = (ε, (ub, v)) if b = f -1 1 (c, a), ub ∈Pref (X d+1) and ub / ∈ X d+1 ; b) δ((u, av), c) = (b i1 , (x i2 . . . x i d+1 , v x i1)) if b = f -1 1 (c,
Proposition 31 Let T (X) f,xL (resp. T (X) f,xL) be the transducers defined as above. The following results hold: 1. T (X) f,xL (resp. T (X) f,xL) realizes the left-to-right (resp. right-to-left) decoding δ -1 on the encoded word z, by reading the prefix (resp. the suffix) of length |z| -L of z. Moreover this transducer is deterministic. 2. T (X) f,xL and T (X) f,xL are isomorphic as unlabelled graphs. If f is a commutative latin square map then they are also isomorphic as transducers.

3. T (X) f,xL and T (X) g,xL are isomorphic as unlabelled graphs, for all pair of latin square maps f and g on A.

A Remarkable Strongly Connected Component

In this section we examine from the graph theory point of view the transducer T (X) f,xL = (Q, i, F, δ) defined in the previous sections. According to the results of Section 3, given two edges ((u, v), i, c, (u , v)), ((u, v), j, d, (u", v")) in T (X) f,xL , if i = j, then (u , v) = (u", v"). Then the graph G(X) xL , obtained by removing the labels from the transitions of T (X) f,xL is well defined, i.e. there do not exist two different arrows connecting two fixed nodes.

We define C(G(X) xL) as the subgraph of G(X) xL whose vertices are elements of X d (Pref (X) \X)× (Suff (X +)\{ε}), and whose edges are those in G(X) xL connecting vertices in the subgraph. It can be proved that given a vertex (u, v) of C(G(X) xL), any vertex accessible from (u, v) is a vertex of C(G(X) xL).

Proposition 41

The following facts hold: Theorem 42 Given a code X with a f.d.d., a unique graph C(X) exists such that C(X) = C(G(X) xL), for any key x L .

) = b. The corresponding square arrays can be easily computed in this way: -for each c, b ∈ A, we define a = f -1 1 (c, b) as the index of the row in the b-th column that contains the element c; -for each c, a ∈ A, we define b = f -1 2 (a, c) as the index of the column in the a-th row that contains the element c; Let X = {x 1 , . . . , x m } be a code with f.d.d. d on an alphabet A, encoding the alphabet B = {b 1 , . . . , b m } by γ(b i) = x i . The words of X are named codewords.

1 :Fig. 1 .

 11 Fig. 1. Transducer T for the left-to-right decoding of X = {0, 01} for xL = 0101 over B = {b1, b2}

1 .

 1 C(G(X) xL) is a strongly connected component of G(X) xL .2. Given a code with a f.d.d. X, and a key x L , C(G(X) xL) is the unique non trivial strongly connected component of G(X) xL which is accessible from any vertex of G(X) xL .