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SPECTRAL APPROXIMATION OF THE IMSE CRITERION
FOR OPTIMAL DESIGNS

IN KERNEL-BASED INTERPOLATION MODELS

BERTRAND GAUTHIER†∗ AND LUC PRONZATO‡∗

Abstract. We address the problem of computing IMSE-optimal designs for random fields inter-
polation models. A spectral representation of the IMSE criterion is obtained from the eigendecom-
position of the integral operator defined by the random field covariance kernel and the integration
measure considered. The IMSE can this way be approximated by spectral truncation and bounds on
the error induced by truncation are given. We then illustrate how the IMSE and truncated-IMSE
can be easily computed when a quadrature rule is used to approximate the integrated MSE and the
design space is restricted to subset of quadrature points. Numerical experiments are carried out and
indicate (i) that retaining a small number of eigenpairs (in regards of the quadrature size) is often
sufficient to tightly approximate IMSE optimal quadrature-designs when optimizing the truncated
criterion and (ii) that optimal quadrature-designs generally give efficient approximations of the true
optimal designs for the quadrature approximation of the IMSE.

Key words. Random field model, interpolation, design of experiments, IMSE, integral operator,
quadrature approximation.

AMS subject classifications. 62K99, 65C60, 62G08

1. Introduction. This work adresses the problem of designing experiments (i.e.,
of choosing sampling points) in the framework of kernel-based interpolation models
(see for instance [RW06, Wah90]). The integrated mean-squared error (IMSE) cri-
terion is a classical tool for evaluating the overall performance of interpolators (see
for example [SWMW89]). For a fixed class of models and a given design size, it is
therefore natural to try to choose sampling points such that the resulting interpola-
tion minimizes the IMSE criterion among all possible samplings. One then speaks of
IMSE-optimal design of experiments.

IMSE-optimal designs are generally difficult to compute, see, e.g., [SWMW89,
ABM12]. Indeed, the direct evaluation of the IMSE criterion is numerically expensive
(it requires the computation of the integral of the mean-squared prediction error over
the whole space) and its global optimization is often made difficult due to the presence
of many local minima (many evaluations of the criterion are thus required). The
present work aims at investigating an alternative approach to make the computation
of IMSE-optimal designs more tractable by reducing the computational cost of the
criterion evaluation.

The choice of an IMSE criterion for learning a random field naturally leads to the
definition of an integral operator (see Section 3 and, e.g., [ST06]). The interest of such
operators when dealing with kernel-based interpolation models has been discussed for
instance in [CS02, LMK10, GB12], see also [SY66, DPZ13] for applications to optimal
design for linear regression models with correlated errors. The main idea of the present
work is to link the IMSE criterion with the spectral decomposition of its associated
integral operator. We hence obtain a spectral representation of the IMSE criterion
which can be approximated by spectral truncation, and bounds on the error induced
by truncation are given.
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From a numerical point of view, the IMSE and truncated-IMSE criteria can be
easily computed when a (pointwise) quadrature is used to approximate the integral
of the MSE and the design construction is restricted to quadrature-designs (i.e., de-
signs only composed of quadrature points, see Definition 4.2). Numerical experiments
indicate that retaining a small number of eigenpairs (in regards of the quadrature
size) is often sufficient to obtain efficient approximation of IMSE-optimal quadrature-
designs when optimizing the truncated criterion. They also indicate that optimal
quadrature-designs give in general good approximations of the true optimal designs
for the quadrature approximation of the IMSE, so that the restriction to quadrature
points appears to have small impact (this restriction has sometimes no impact at all,
see in particular Remark 5.1).

We have tried to make the paper as self-contained as possible: the definitions of
most concepts are reminded and most proofs are detailed (in the body of the article or,
for the sake of readability, in an appendix). We first describe a general setting in which
the spectral representation of the IMSE is well-defined. We next focus on the classical
IMSE optimal design problem (conditioning by a finite number of evaluations), with
particular attention to the quadrature approximation case.

The paper is organized as follows. Section 2 is devoted to the introduction of
the general framework of conditioning of Gaussian random fields. General results
concerning the IMSE criterion and the associated integral operator are given in Sec-
tion 3, where the spectral representation of the IMSE criterion and its approximation
by spectral truncation are detailed. The computation and the approximation of the
IMSE criterion for designing experiments is considered in Section 4. Numerical exper-
iments are carried out in Section 5. Section 6 concludes and gives some perspectives.

2. General framework and notations.

2.1. Random fields and involved Hilbert structures. Let X be a general
set. We consider a real random field (Zx)x∈X indexed by X . We assume that Z is
centered, second-order, and defined on a probability space (Ω,F ,P). For the sake of
simplicity, we also assume that Z is Gaussian (so that the optimal linear prediction
is the optimal prediction). In what follows, Z will refer to the random field (Zx)x∈X .

We denote by L2 (Ω,P) the Hilbert space of second-order, real random variables
(r.v.) on (Ω,F ,P), where we identify random variables that are equal P-almost surely.
The inner product between two r.v. U and V of L2 (Ω,P) is denoted by E (UV ).

Let K : X × X → R be the covariance kernel of the random field Z. Since, by
assumption, for all x and y ∈ X , E (Zx) = E (Zy) = 0, we have

E (ZxZy) = K(x, y).

We denote by H the Gaussian Hilbert space generated by Z; H is the closed linear
subspace of L2 (Ω,P) spanned by the r.v. Zx, x ∈ X , i.e.,

H = span {Zx, x ∈ X}
L2(Ω,P)

.

The linear space H is endowed with the Hilbert structure involved by L2 (Ω,P). For
the sake of simplicity, we assume that H is separable (see Remark B.2).

In parallel, we denote by H the reproducing kernel Hilbert space (RKHS, see for
instance [BT04]) of real-valued functions on X associated with the kernel K(·, ·). We
use the classical notation, Kx(·) = K(x, ·), for x ∈ X (and Kx ∈ H). We remind that
H is characterized by the representation property,

∀h ∈ H,∀x ∈ X , (h|Kx)H = h(x), (2.1)
2
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with (·|·)H the inner product of H. Also, if {hj , j ∈ J} is an orthonormal basis of H,
we have

∀x and y ∈ X ,K(x, y) =
∑

j∈J
hj(x)hj(y). (2.2)

The two Hilbert spaces H and H are isometric thanks to the relation, for all x and
y ∈ X , (Kx|Ky)H = K(x, y) = E (ZxZy). We denote this isometry by I : H → H,
with I (Kx) = Zx.

2.2. Conditioning. Let HD be a closed linear subspace of the Hilbert space
H. We consider the orthogonal projection PHD

of H onto HD. For x ∈ X , the r.v.
PHD

[Zx] is called the conditional mean of the r.v. Zx relatively to HD. If HD is
spanned by the r.v. ζj , j ∈ J , with J a general index set, the notation

PHD
[Zx] = E (Zx|ζj , j ∈ J)

is often used. The covariance of the random field (Zx − PHD
[Zx])x∈X is called the

conditional covariance of Z relatively to HD. We shall pay particular attention to
subspaces of the evaluation-type, i.e.,

Hev = span {Zx1
, · · · , Zxn} , (2.3)

with n ∈ N∗ (the set of all positive integers) and x1, · · · , xn ∈ X , see Section 4.
Remark 2.1. By isometry, a conditioning problem in the Gaussian Hilbert space H
is associated with an optimal interpolation problem in the RKHS H. To the subspace
HD of H corresponds a subspaceHD ofH and one can define the orthogonal projection
PHD of H onto HD, etc. /

3. IMSE criterion and associated integral operator.

3.1. IMSE criterion and working hypotheses. From now on we suppose
that X is a measurable space and we consider a σ-finite measure µ on X . We denote
by L2 (X , µ) the (not necessarily separable) Hilbert space of square integrable (with
respect to µ) real-valued functions on X . Notice that elements of L2 (X , µ) are in fact
equivalent classes of µ-almost everywhere equal functions; however, when it will not
be source of confusion, we shall assimilate elements of L2 (X , µ) with functions on X .

Throughout the rest of the article, we make the following assumptions:
C-i. any h ∈ H is a measurable function,
C-ii. the kernel K : X × X → R is measurable (for the product σ-algebra),

C-iii. τ =

∫

X
K(x, x)dµ(x) < +∞.

For a given closed linear subspace HD of H, the integrated mean-squared error
criterion associated with HD (IMSE, or when necessary µ-IMSE, to explicitly refer
to the measure µ) is the integral of the conditional variance of Z relatively to HD;
more precisely,

IMSE(HD) =

∫

X
E
[
(Zx − PHD

[Zx])
2
]

dµ(x)

=

∫

X

{
K(x, x)− E

[
(PHD

[Zx])2
]}

dµ(x).

3
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Under the assumptions above, IMSE(HD) is well-defined for any closed linear sub-
space HD of H (see Remark B.1) and we have

IMSE(HD) = τ − CI(HD), with CI(HD) =

∫

X
E
[
(PHD

[Zx])2
]

dµ(x). (3.1)

Since τ does not depend on HD, minimizing the IMSE amounts to maximize CI(HD).
We have CI({0}) = 0 6 CI(HD) 6 CI(H) = τ .

3.2. Integral operator defined by the IMSE. The introduction of an IMSE
criterion for the learning of a random field Z naturally defines, under conditions C-i,
C-ii, C-iii, an integral operator Tµ on L2 (X , µ). We first recall the following lemma;
the proof is in Appendix A.
Lemma 3.1. Under conditions C-i and C-iii, the RKHS H is continuously included
into L2(X , µ), that is, for all h ∈ H, h ∈ L2(X , µ) and

‖h‖2L2 6 τ ‖h‖2H . (3.2)

From Lemma 3.1, we know that Kx ∈ L2(X , µ) for all x ∈ X and we can therefore
define, without any ambiguity,

∀f ∈ L2 (X , µ) ,∀x ∈ X , Tµ [f ] (x) =
(
Kx

∣∣f
)
L2 =

∫

X
f(t)K(x, t)dµ(t).

Let us now recall some of the main properties of the operator Tµ (the proof of
Lemma 3.2 is given in Appendix A).
Lemma 3.2. Under C-i, C-ii and C-iii, we have K(·, ·) ∈ L2(X × X , µ ⊗ µ) and
the operator Tµ is a compact (Hilbert-Schmidt), self-adjoint and positive operator on
L2 (X , µ).

From Lemma 3.2 and the spectral theorem for compact self-adjoint operators on
Hilbert spaces (see for instance [Sch79]), Tµ is diagonalizable and its eigenfunctions
form a complete orthogonal system. We denote by λi > 0 the considered eigenval-
ues (repeated according to their geometric multiplicity) and by φ̃i ∈ L2 (X , µ) their
associated eigenfunctions, with i ∈ I, a general index set. We classically choose the
eigenfunctions

{
φ̃i, i ∈ I

}
so that they form an orthonormal basis of L2 (X , µ). We

also denote by
{
λk, k ∈ I+

}
the set (at most countable) set of all strictly positive

eigenvalues of Tµ, that is λk > 0 for all k ∈ I+.
Proposition 3.1. Let H0 be the linear subspace of H defined by

H0 =
{
h0 ∈ H, ‖h0‖2L2 = 0

}
.

Denote by Hµ the orthogonal of H0 in H (i.e., Hµ = H⊥H0 ) and, for k ∈ I+, consider
the functions φk given by

∀x ∈ X , φk(x) =
1

λk

∫

X
φ̃k(t)K(x, t)dµ(t) =

1

λk

(
φ̃k|Kx

)
L2 =

1

λk
Tµ
[
φ̃k
]
(x). (3.3)

Then H0 is closed in H and
{√

λkφk, k ∈ I+
}
forms an orthonormal basis of Hµ for

the Hilbert structure of H.
The proof is given in Appendix A.

4
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Remark 3.1. We have φk
L2(X ,µ)

= φ̃k (or more precisely, φk belongs to the equiva-
lent class φ̃k). However, as elements of L2 (X , µ), the φ̃k are only defined µ-almost
everywhere whereas the φk are defined on the whole set X .

For all f ∈ L2(X , µ) and h ∈ H, we have (see the proof of Proposition 3.1)

Tµ[f ] ∈ Hµ and (h|f)L2 = (h|Tµ[f ])H .

Therefore, the functions φk ∈ H satisfy the following property:

∀h ∈ H,∀k ∈ I+, (h|φk)H =
1

λk

(
h
∣∣Tµ[φ̃k]

)
H =

1

λk

(
h
∣∣φ̃k
)
L2

and in particular, for k ∈ I+ and x ∈ X ,
(
φk
∣∣Kx

)
L2 = λk

(
φk
∣∣Kx

)
H = λkφk(x).

Notice that τ =
∑
k∈I+ λk, see C-iii. /

3.3. Spectral representation of the IMSE. For k ∈ I+, we introduce the
r.v. ξk = I

(√
λkφk

)
∈ H, where I is the isometry between H and H defined in

Section 2.1, so that the ξk, k ∈ I+, are orthonormal in H. Following Proposition 3.1,
we denote by Hµ the closed linear subspace of H spanned by the r.v. ξk, k ∈ I+ and
by H0 its orthogonal, so that we have the orthogonal decomposition

H = Hµ

⊥
+ H0. (3.4)

Proposition 3.2. Let HD be a closed linear subspace of H, we have

CI (HD) = CI (HD ∩Hµ) ,

where CI is defined in equation (3.1).

Proof. From (3.4), we have the orthogonal decomposition HD = HµD+H0D, where
HµD = Hµ ∩HD and H0D = H0 ∩HD. The orthogonal projection of H onto HD is
then given by PHD

= PHµD
+ PH0D

.
For all x ∈ X , the r.v. PHµD

[Zx] and PH0D
[Zx] are orthogonal, hence

E
[
(PHD

[Zx])2
]

= E
[
(PHµD

[Zx])2
]

+ E
[
(PH0D

[Zx])2
]
,

so that CI (HD) = CI (HD ∩Hµ) + CI (HD ∩H0). To conclude, we consider an
orthonormal basis {gj , j ∈ J} of the RKHS H0D. From (2.2), we have

CI(H0D) =

∫

X
K0D(x, x)dµ(x) =

∑

j∈J

∫

X
g2
j (x)dµ(x) = 0,

since gj ∈ H0 for all j ∈ J , where K0D(·, ·) is the reproducing kernel of H0D (the
interchange between the sum and the integral is justified by Tonelli’s theorem).

Proposition 3.3 (Spectral representation of the IMSE criterion). Let HD be a closed
linear subspace of H and let {ηj , j ∈ J} be an orthonormal basis of HD. Then, we
have

CI(HD) =
∑

k∈I+

∑

j∈J
α2
j,kλk, (3.5)

with, for j ∈ J and k ∈ I+, αj,k = E (ηjξk).

5
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Proof. From Proposition 3.1, {ξk, k ∈ I+} forms an orthonormal basis of Hµ, so that

∀j ∈ J, PHµ [ηj ] =
∑

k∈I+
αj,kξk. (3.6)

For all r.v. U ∈ H, we have

PHD
[U ] =

∑

j∈J
E (ηjU) ηj and E

[
(PHD

[U ])
2
]

=
∑

j∈J

(
E(ηjU)

)2
. (3.7)

Combining relations (3.7) with Proposition 3.2, we obtain

CI(HD) = CI (HD ∩Hµ) =

∫

X
E
[(
PHD

[
PHµ

[Zx]
])2]

dµ(x)

=

∫

X

∑

j∈J

(
E
(
ηjPHµ [Zx]

))2

dµ(x). (3.8)

For all x ∈ X , we have PHµ
[Zx] =

∑
k∈I+ ξkE (ξkZx) =

∑
k∈I+ ξk

√
λkφk(x). Injecting

this expansion in (3.8) and using (3.6), we obtain

CI(HD) =
∑

j∈J

∫

X

[ ∑

k∈I+
αj,k

√
λkφk(x)

]2

dµ(x) =
∑

k∈I+

∑

j∈J
α2
j,kλk,

which completes the proof.

We now recall the following well-known result (Proposition 3.4), which shows the
optimal character of the r.v. ξk, k ∈ I+, in terms of IMSE.
Proposition 3.4. For a fixed n ∈ N∗, consider H∗n = span {ξ1, · · · , ξn}, where
ξ1, · · · , ξn are associated with the n largest eigenvalues of Tµ, denoted respectively
by λ1 > · · · > λn. Then H∗n minimizes the IMSE criterion among all subspaces Hn

of H with dimension n and CI(H∗n) =
∑n
k=1 λk.

Notice that H∗n is not necessarily unique, depending of the multiplicity of λn.

Proof. Let Hn be a closed linear subspace of Hµ with dimension n (the restriction to
subsets of Hµ follows from Proposition 3.2 and yields no loss of generality) and let
{η1, · · · , ηn} be an orthonormal basis of Hn. From Proposition 3.3, since {ξ1, · · · , ξn}
forms an orthonormal basis of H∗n, we have CI(H∗n) =

∑n
k=1 λk.

For any i and j ∈ {1, · · · , n}, we have
∑
k∈I+ αi,kαj,k = δij (Kronecker delta).

For k ∈ I+, let ak ∈ Rn be the column vector given by ak = (α1,k, . . . , αn,k)
T , so that∑n

j=1 α
2
j,k = aTk ak, where aTk stands for the transpose of the vector ak. We also have∑

k∈I+ aka
T
k = Idn×n (the n× n identity matrix). So, for l ∈ I+,

aTl

( ∑

k∈I+
aka

T
k

)
al = aTl al =

(
aTl al

)2
+
∑

k 6=l

(
aTl ak

)2
,

which proves that

∀k ∈ I+,
n∑

j=1

α2
j,k 6 1. (3.9)

6
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For j ∈ {1, · · · , n}, we have
∑
k∈I+ α

2
j,k = 1 and therefore

∑
k∈I+

∑n
j=1 α

2
j,k = n.

Since λ1, · · · , λn are the largest eigenvalues of Tµ, we deduce from this equality com-
bined with (3.9) that

n∑

j=1

λj >
∑

k∈I+

n∑

j=1

α2
j,kλk,

i.e., CI(H∗n) > CI(Hn), which concludes the proof.

3.4. Approximation by truncation. The spectral representation of the IMSE
criterion can be approximated by truncation.
Definition 3.1. Let HD be a closed linear subspace of H with orthonormal basis
{ηj , j ∈ J} and consider the notation of Proposition 3.3. For a subset Itrc of I+,
the (spectral) truncated-IMSE criterion associated with the subspace HD is given by
IMSEtrc(HD) = τtrc − CItrc(HD), with

CItrc(HD) =
∑

k∈Itrc

∑

j∈J
α2
j,kλk (3.10)

and where τtrc =
∑
k∈Itrc λk.

Remark 3.2. We have chosen to use τtrc in Definition 3.1 since we interpret the
truncated-IMSE criterion as the IMSE when only a subset of the eigenvalues is taken
into account. In particular, if we denote by H∗trc the closed linear subspace of H
spanned by the random variables ξk, k ∈ Itrc, then,

IMSEtrc(HD) =

∫

X
E
[(
PH∗trc

[
Zx − PHn [Zx]

])2
]
dµ(x)

and, from the property of orthogonal projections in Hilbert space,

CItrc(HD) =

∫

X
E
[
PH∗trc

[Zx]PHD
[Zx]

]
dµ(x).

This in particular shows that CItrc(HD) does not depend on the choice of the or-
thonormal basis {ηj , j ∈ J} of HD. /

Proposition 3.5 (Error induced by truncation). For any closed linear subspace HD

of H and for any truncation set Itrc ⊂ I+, we have,

CItrc(HD) 6 CI(HD) 6 CItrc(HD) +
∑

k 6∈Itrc
λk,

so that
∑
k 6∈Itrc λk gives an upper bound on the error induced by truncation.

Proof. Consider the notations of Proposition 3.3 and the spectral expansions of CI
and CItrc given in (3.5) and (3.10). The left-hand side inequality follows from the
positivity of all the α2

j,kλk. For the right-hand side inequality, we just have to remark
that, similarly to (3.9), for all k ∈ I+, we have

∑
j∈J α

2
j,k 6 1.

Classically, the accuracy of the approximation by truncation is quantified through
the spectral ratio

Rtrc =
τtrc
τ

=

∑
k∈Itrc λk∑
k∈I+ λk

.

In practice, we shall consider truncations that only use the ntrc ∈ N∗ largest eigen-
values of the spectrum and ntrc will be called the truncation level.

7
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Remark 3.3. Let Hn be a closed linear subspace of Hµ with dimension n and consider
the framework of the proof of Proposition 3.4. For a truncation set Itrc ⊂ I+, since∑
k∈I+

∑n
j=1 α

2
j,k = n, we also have the following bound for the error induced by

truncation:

CI(Hn)− CItrc(Hn) =
∑

k 6∈Itrc

n∑

j=1

α2
j,kλk 6

(
n−

∑

k∈Itrc

n∑

j=1

α2
j,k

)
max
k 6∈Itrc

(λk). (3.11)

Notice that contrary to Proposition 3.5, the bound (3.11) depends on the subspace
Hn considered. /

4. IMSE and design of experiments.

4.1. Classical approach. Denote by z the (column) random vector

z = (Zx1
, · · · , Zxn)

T
,

where x1, · · · , xn ∈ X and n ∈ N∗. We thus consider the design {x1, · · · , xn} and the
associated subspace Hev of H defined by equation (2.3).
Definition 4.1. For a fixed n ∈ N∗, a set {x1, · · · , xn} of n points of X is an n-point
IMSE-optimal design (for the learning of Z) if

Hev = span {Zx1 , · · · , Zxn}

minimizes the IMSE criterion among all subspaces of H based on n evaluations of the
random field Z.

Let k be the (column) vector of functions with components Kxi , 1 6 i 6 n, that
is, for x ∈ X , k(x) =

(
Kx1(x), · · · ,Kxn(x)

)T . Also, let K be the covariance matrix
of z. For the sake of simplicity, we assume that the random field Z and {x1, · · · , xn}
are such that K is invertible (a generalized inverse of K can be used otherwise in
order to express the orthogonal projection PHev

). We classically have (simple kriging
predictor),

∀x ∈ X , PHev
[Zx] = E

(
Zx
∣∣Zx1

, · · · , Zxn
)

= kT (x)K−1z.

The corresponding IMSE is then IMSE(Hev) = τ − CI(Hev), where

CI(Hev) =

∫

X
kT (x)K−1k(x)dµ(x). (4.1)

Under this form, the computation of the IMSE criterion for the design {x1, · · · , xn}
requires, from a numerical point of view, the inversion of the matrix K, and next the
integration of the function x 7→ kT (x)K−1k(x).

4.2. Spectral representation and truncation of the IMSE. For a design
of experiments {x1, · · · , xn}, we introduce the matrix F with entries

Fi,k = λkφk(xi) =
√
λkE (ξkZxi) , with 1 6 i 6 n and k ∈ I+. (4.2)

Hence, F has n rows and card (I+) columns.
Proposition 4.1. Let Hev = span {Zx1

, · · · , Zxn}, then

CI(Hev) =
∑

k∈I+

[
(F·,k)

T
K−1 (F·,k)

]
= trace

(
FTK−1F

)
, (4.3)
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where F·,k is the k-th column of the matrix F. If we consider a truncation based on
a subset Itrc ⊂ I+, then

CItrc(Hev) =
∑

k∈Itrc

[
(F·,k)

T
K−1 (F·,k)

]
= trace

(
(F·,Itrc)

TK−1(F·,Itrc)
)
, (4.4)

where F·,Itrc is the matrix with columns given by F·,k, k ∈ Itrc.

Proof. Expression (4.3) is a direct consequence of Proposition 3.3 applied to the eval-
uation case. Indeed, let K = CCT be the Cholesky decomposition of K, then the
components of the random vector (η1, · · · , ηn)T = C−1z form an orthonormal basis
of Hev. Consider the diagonal matrix Λ = diag (λk, k ∈ I+). With (4.2) and the
notations introduced in the proof of Proposition 3.4, we have ak =

(
C−1FΛ−

1
2
)
·,k,

so that

λka
T
k ak = λk

n∑

j=1

α2
j,k = (F·,k)

T
K−1 (F·,k) .

We hence obtain CI(Hev) =
∑
k∈I+

[
(F·,k)

T
K−1 (F·,k)

]
, from which the right-hand

side of (4.3) and (4.4) directly follow.

Expressions (4.3) and (4.4) indicate that once the functions λkφk(·) are known,
IMSE(Hev) and IMSEtrc(Hev) can be obtained without explicitly integrating the
mean-squared prediction error. This two expressions however involve summations
over I+ or Itrc. In addition, notice that the computation of φk(x) for a general x ∈ X
from the eigenpair {λk, φ̃k} using expression (3.3) requires the computation of an
integral (see Remark 4.1).
Remark 4.1. Assume that X is a topological space (endowed with its Borel σ-
algebra) and that the RKHS H consists of continuous functions on supp(µ) ⊂ X (the
support of µ). Then, by choosing a representer for the equivalent class φ̃k which is
continuous on supp(µ) (and denoting φ̃k this representer), we have φ̃k(x) = φk(x) for
all x ∈ supp(µ). It is thus possible to evaluate and optimize the IMSE criterion on
supp(µ) by using only the spectral decomposition of the operator Tµ.

A situation of particular interest is when the measure µ is discrete, which is the
case for instance when a quadrature rule is used to approximate the integral of the
MSE. This situation is detailed in Section 4.4. /

4.3. Alternative expressions for the IMSE and truncated-IMSE. Start-
ing from (4.1) and using the property of the trace operator combined with Tonelli’s
theorem, we obtain

CI(Hev) = trace
(
K−1

∫

X
k(x)kT (x)dµ(x)

)
,

where
∫
X k(x)kT (x)dµ(x) stands for the n× n symmetric matrix with i, j entry

∫

X
Kxi(x)Kxj (x)dµ(x) = Tµ[Kxj ](xi) = Tµ[Kxi ](xj).

We can then introduce the kernel Σ(·, ·) on X × X , with

∀s and t ∈ X ,Σ(s, t) =

∫

X
Ks(x)Kt(x)dµ(x).

9
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Let Σ be the n× n matrix with i, j entry Σ(xi, xj), we have Σ =
∫
X k(x)kT (x)dµ(x)

and finally

CI(Hev) = trace
(
K−1Σ

)
. (4.5)

In the same way, for the truncated criterion with a fixed truncation set Itrc, we
easily deduce from (4.4) that

CItrc(Hev) = trace
(
K−1Σtrc

)
, (4.6)

with Σtrc = F·,Itrc(F·,Itrc)
T . We then introduce the kernel Σtrc(·, ·) on X × X , with

∀s and t ∈ X ,Σtrc(s, t) =
∑

k∈Itrc
λ2
kφk(s)φk(t),

and the i, j entry of Σtrc is Σ(xi, xj).
From a design optimization perspective (requiring a large number of criterion

evaluations), expressions (4.5) and (4.6) appears to be of particular interest when
the design space is restricted to finite subset of points in X . In this situation, one
can indeed compute and store, preliminary to the design optimisation, the value of
the (symmetric) kernels Σ(·, ·) and Σtrc(·, ·) for all the pairs of points belonging to
the restricted design space. This way, during the design optimization, any additional
calculation is required for the construction of the matrices Σ and Σtrc. The evaluation
of the IMSE or truncated-IMSE then mainly consists in the inversion of the matrix
K (see also Remark 4.2). Such a situation is considered in Section 4.4.2, where the
design space is restricted to the set of quadrature points used to approximated the
integrated MSE.
Remark 4.2. Let A be a l × m matrix and let B be a m × l matrix, with l and
m ∈ N∗. In order to compute trace(AB), it is of course not useful to compute the
off-diagonal elements of the product AB. Instead, one shall compute sum

(
A ∗BT

)
,

where ∗ stands for the Hadamard matrix product (i.e., element by element) and sum(·)
means that we sum all the elements of the matrix considered. /

4.4. Quadrature approximation. Consider the situation where a (pointwise)
quadrature rule is used in order to approximate integrals over X relatively to µ.

4.4.1. Notations. For a real-valued function f on X , integrable with respect to
µ, we consider the following approximation:

∫

X
f(s)dµ(s) ≈

Nq∑

j=1

ωjf(sj),

with ωj > 0, sj ∈ X and Nq ∈ N∗. This situation thus corresponds to a particular case
of the general problem studied in Section 3, where the measure µ on X is approximated
with the discrete measure

µ̂ =

Nq∑

j=1

ωjδsj , (4.7)

with δsj the Dirac measure (evaluation functional) at sj . We thus obtain an approx-
imation Tµ̂ of the integral operator Tµ (Nyström method, see for instance [Hac95,
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Kre99]), more precisely,

∀x ∈ X , Tµ̂[f ](x) =

Nq∑

j=1

ωjK(x, sj)f(sj).

Throughout the rest of the paper, the hat symbol indicates that the corresponding
object is associated with the quadrature approximation µ̂. For instance, λ̂k refers
to an eigenvalue of Tµ̂, whereas λk refers to an eigenvalue of Tµ, etc. The results
contained in this section can be deduced from those of Section 3.2. However, due
to the great importance of quadrature approximations in our study, some details are
given below.

We introduce the two Nq ×Nq matrices W = diag
(
ω1, · · · , ωNq

)
and Q with i, j

term Qi,j = K(si, sj), for 1 6 i, j 6 Nq. The matrix W is thus the diagonal matrix of
quadrature weights and Q is the covariance matrix for the quadrature points. We can
canonically identify the Hilbert space L2(X , µ̂) with the space RNq endowed with the
inner product (·|·)W, where for x and y ∈ RNq , (x|y)W = xTWy. To f ∈ L2(X , µ̂),
we associate the vector f =

(
f(s1), · · · , f(sNq )

)T ∈ RNq (i.e., f is the column vector
with components the values of f at the quadrature points) and the operator Tµ̂ then
corresponds to the matrix QW. In matrix notation, we have

∀x ∈ X , Tµ̂ [f ] (x) = qT (x)Wf ,

with, for all x ∈ X , q(x) =
(
Ks1(x), · · · ,KsNq

(x)
)T .

For the sake of simplicity, we assume that Q is nonsingular (if Q is singular,
then QW will have some zero eigenvalues which can be ignored, see Section 3.3). We
denote by λ̂1 > · · · > λ̂Nq > 0 the eigenvalues of the matrix QW and by v1, · · · ,vNq
their associated eigenvectors, i.e., QW = PΛ̂P−1 with Λ̂ = diag

(
λ̂1, · · · , λ̂Nq

)
and

P =
(
v1

∣∣ · · ·
∣∣vNq

)
. The set of vectors

{
v1, · · · ,vNq

}
forms an orthonormal basis of{

RNq , (·|·)W
}
, so that

PTWP = IdNq×Nq ,

the Nq ×Nq identity matrix.
Lemma 4.1. For 1 6 k 6 Nq, consider the functions defined by

∀x ∈ X , φ̂k(x) = qT (x)Q−1vk =
1

λ̂k
qT (x)Wvk. (4.8)

Then φ̂k is an eigenfunction of Tµ̂ associated with λ̂k and φ̂k ∈ Hµ̂, the closed linear
subspace of H spanned by the Ksj , 1 6 j 6 Nq. In addition, the φ̂k, with 1 6 k 6 Nq,
are orthogonal in H and

∥∥φ̂k
∥∥2

H = 1/λ̂k.
The proof is detailled in Appendix A. Equation (4.8) is the equivalent of expression

(3.3) in the quadrature case. Therefore, as mentioned at the end of Section 4.2, for
1 6 k 6 Nq, the computation of φ̂k(x) for a general x ∈ X requires the computation
of an integral (here, of a quadrature). However, the situation is much simpler when
x is a quadrature point. In that case, we have, for all 1 6 j, k 6 Nq,

φ̂k(sj) = (vk)j , (4.9)
11
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the j-th component of the eigenvector vk. It is therefore possible to optimize the
µ̂-IMSE and truncated-µ̂-IMSE on the support of µ̂ (that is, on quadrature points)
using only the matrices Q and W and the spectral decomposition of QW. This is
considered below. Notice that the restriction of the design space to a finite subset of
points is also motivated by the considerations made is Section 4.3.

4.4.2. Quadrature-designs. We suppose that the design space is restricted to
subsets of quadrature points and we keep the same notations as Section 4.4.1.
Definition 4.2. We call quadrature-design a design of experiments which is only
composed of quadrature points. For n ∈ N∗ (with n 6 Nq), the index set of a n-point
quadrature-design {si1 , · · · , sin} is the subset Iq = {i1, · · · , in} of {1, · · · , Nq}.

For a quadrature-design with index set Iq, we denote by Hq
ev the associated Gaus-

sian subspace. From (4.9), the approximation F̂ of the matrix F defined in equation
(4.2) is given by F̂ = (PΛ̂)Iq,·, i.e. F̂ consists of the rows of PΛ̂ having indices in Iq.

We then obtain the following expressions for the quadrature approximation of the
IMSE criterion:

ĈI(H
q
ev) = trace

(
WQ.,IqK

−1QIq,.

)
(4.10)

= trace
(
F̂TK−1F̂

)
(4.11)

where K = QIq,Iq is the covariance matrix of the considered quadrature-design (K is
a submatrix of Q). The right-hand side of (4.10) follows from the integral form of the
IMSE and (4.11) is its spectral representation. For the truncated criterion associated
with a truncation set Îtrc (quadrature approximation), we have, from (4.11),

ĈItrc(H
q
ev) = trace

(
(F̂·,̂Itrc)

TK−1(F̂·,̂Itrc)
)
. (4.12)

Following Section 4.3, we can introduce the two Nq×Nq matrices (these matrices
are compute once for all, before the design optimization)

Ω = QWQ and Ωtrc = (PΛ̂)·,̂Itrc
(
(PΛ̂)·,̂Itrc

)T
,

and we finally obtain

ĈI(H
q
ev) = trace

(
K−1Σ̂

)
and ĈItrc(H

q
ev) = trace

(
K−1Σ̂trc

)
, (4.13)

with Σ̂ = (Ω)Iq,Iq and Σ̂trc = (Ωtrc)Iq,Iq . This way, the IMSE or truncated-IMSE cri-
terion can be easily evaluated for any quadrature-design, making global optimization
affordable. This is illustrated on an example with Nq = 5 000 in Section 5.3.

5. Examples. This section presents some examples of construction of IMSE-
optimal designs using quadrature approximation and spectral truncation. All compu-
tations have been performed with the free softwares R and Sage [R C13, S+13]. The
objective is to assess the impact of the restriction of the design space to quadrature
points and to illustrate the influence of the truncation level ntrc on optimal designs.
The last example illustrates the computational cost of the IMSE or truncated-IMSE
in the framework of Section 4.4.2.

5.1. A one-point design augmentation problem.
12
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5.1.1. Kernel of exponential type. Consider a centered Gaussian process Z
on R with covariance

∀x and y ∈ R,K(x, y) = e−|x−y| − e−(|x|+|y|).

This corresponds to the covariance of a centered Ornstein-Uhlenbeck process on R
conditioned to vanish at 0 (that is, after one observation at 0). We take µ as the
uniform probability measure on [0, 1]. We have

τ =

∫ 1

0

1− e−2xdx =
1

2

(
1 + e−2

)
≈ 0.5676676.

We approximate µ with a 500-point quadrature, where sj = (2j − 1)/1000, with
1 6 j 6 500, each point receiving weight 1/500 (mid-point rectangular quadrature
method with intervals of length 0.002). We denote by µ̂ the corresponding discrete
measure. A numerical evaluation gives τ̂ = 0.5676679.

For a design point t ∈ R, we introduce Ht = span {Zt}. For t ∈ (0, 1], we have

CI(Ht) =
e−2t

1− e−2t

(
e2t − e−2t

2
− 2t

)
+
(
e2t − 1

) e−2t − e−2

2
.

This function reaches its maximun at t∗ ≈ 0.707859, the 1-point µ-IMSE-optimal
design for this problem (without quadrature approximation). This is illustrated in
the left part of Figure 5.1 where the quadrature approximation ĈI(Ht) of CI(Ht)
is also presented. In particular, we observe that the 1-point µ̂-IMSE optimal design,
denoted by t̂∗, coincides with t̂q∗, the 1-point µ̂-IMSE optimal quadrature-design. The
right part of Figure 5.1 indicates that this property is also verified by the quadrature
approximation of the truncated criteria: we have t̂∗ntrc = t̂q∗ntrc for any truncation level
ntrc, where t̂∗ntrc refers to the optimal design and t̂q∗ntrc to the optimal quadrature-
design. The restriction to quadrature points has therefore no impact in this particular
case (see also Remark 5.1).

t

0.33506

0.33507

0.33508

0.703 0.705 0.707 0.709 0.711

t 7→ CI(Ht)

t 7→ ĈI(Ht)

← t̂∗ = t̂q∗ = 0.707← t̂∗ = t̂q∗ = 0.707← t̂∗ = t̂q∗ = 0.707← t̂∗ = t̂q∗ = 0.707← t̂∗ = t̂q∗ = 0.707← t̂∗ = t̂q∗ = 0.707← t̂∗ = t̂q∗ = 0.707← t̂∗ = t̂q∗ = 0.707← t̂∗ = t̂q∗ = 0.707

← t∗ ≈ 0.707859← t∗ ≈ 0.707859← t∗ ≈ 0.707859← t∗ ≈ 0.707859← t∗ ≈ 0.707859← t∗ ≈ 0.707859← t∗ ≈ 0.707859← t∗ ≈ 0.707859← t∗ ≈ 0.707859

t

0.33501

0.33504

0.33507

0.703 0.705 0.707 0.709 0.711

t 7→ ĈI(Ht)

t 7→ ĈItrc(Ht)

ntrc = 7

ntrc = 9
ntrc = 10

ntrc = 15
ntrc = 36

Figure 5.1. Graphs of t 7→ CI(Ht) and t 7→ ĈI(Ht) for 0.703 6 t 6 0.711 (left) and graph of
t 7→ ĈItrcHt) for various truncation level ntrc (right), the quadrature points are indicated on the
horizontal axis of both plots.

Figure 5.2 shows the designs t̂∗ntrc optimal for ĈItrc as a function of the number
ntrc of eigenvalues retained (for instance, for ntrc = 1, t̂∗ntrc = 0.695); notice that
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quad. pts

µ-IMSE opt. pt.

ĈItrc opt. quad. pt.

0.695

0.699

0.703

0.707

0.711

0.715

0.719

1 5 10 15 20 25 30

1-point optimal designs for ĈItrc

ntrc

Figure 5.2. Representation of the 1-point optimal designs (quadrature-designs) for ĈItrc as a
function of ntrc.

Table 5.1
Value, in percent, of the spectral ratio R̂trc for various ntrc (Section 5.1.1).

ntrc 1 2 3 7 9 10 15 36

R̂trc (%) 68.87 82.88 88.33 94.92 96.04 96.44 97.62 99.01

all those designs are quadrature-designs. A fast convergence of t̂∗ntrc to the µ̂-IMSE-
optimal design t̂∗ = t̂∗Nq = 0.707 as ntrc increases is observed (a similar convergence
can also be observed for the 2-, 3- and 4-point design problems). For 3 6 ntrc 6 9,
t̂∗ntrc oscillates between 0.707 and 0.709, the two quadrature points closest to the
µ-IMSE optimal design t∗. For ntrc > 10, t̂∗ntrc coincides with t̂

∗ = t̂q∗. Table 5.1 gives
the values, in percent, of the spectral ratio (quadrature approximation) for various
truncation levels ntrc.
Remark 5.1 (Ornstein-Uhlenbeck process and quadrature approximation). For a
one-dimensional centered Ornstein-Uhlenbeck process on R and a quadrature µ̂, by
considering the first and second derivative of the continuous function t 7→ ĈI(Ht)
(these derivatives are defined whenever t is not a quadrature point), one can easily
prove that one-point µ̂-IMSE optimal designs are always quadrature-designs. /

5.1.2. Kernel of squared-exponential (Gaussian) type. We keep the same
notations and settings as in Section 5.1.1 but we now assume that the centered Gaus-
sian process Z admits the following covariance on R,

∀x and y ∈ R,K(x, y) = e−(x−y)2 − e−(x2+y2).

Figure 5.3 shows the values of ĈI(Ht) and ĈItrc(Ht), with ntrc ∈ {1, 2, 3}, as
functions of the design point t. The corresponding spectral ratios are reported on the
figure.

For any truncation level ntrc, the optimal 1-point quadrature-design is t̂q∗ntrc =

t̂q∗ = 0.719. For ntrc = 1 (bottom curve), the optimal design is t̂∗1 ≈ 0.718672 and
for ntrc > 2, we have t̂∗ntrc ≈ 0.718836 ≈ t̂∗. One may note that in this example,
the 1-point optimal designs for µ̂-IMSEtrc are not supported by the quadrature (i.e.,
are not quadrature-designs). However, we have ĈI(Ht̂∗) ≈ 0.3813078 and ĈI(Ht̂∗)−
ĈI(Ht̂q∗) ≈ 8.258e-09, so that the error induced by the restriction to quadrature-
designs is marginal.
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0.3813

0.381304

0.381308

0.715 0.717 0.719 0.721 0.723

t 7→ ĈI(Ht)

t 7→ ĈItrc(Ht)

ntrc = 1 (R̂trc ≈ 95.02%)

ntrc = 2 (R̂trc ≈ 99.82%)

ntrc = 3 (R̂trc ≈ 99.99%)

t̂∗ ≈ 0.718836 ≈ t̂∗3 ≈ t̂∗2
t̂∗1 ≈ 0.718672

t̂q∗ntrc
≈ 0.719

t

Figure 5.3. Graphs of t 7→ ĈI(Ht) and t 7→ ĈItrc (Ht) (with ntrc ∈ {1, 2, 3}) around their
maximum, i.e., for 0.715 6 t 6 0.723.

Table 5.2
Value, in percent, of the spectral ratio R̂trc for various ntrc (Section 5.2).

ntrc 1 2 3 4 5 6 12

R̂trc (%) 74.81 85.72 96.63 98.23 98.96 99.70 99.99

5.2. Gaussian kernel on the unit square. Consider now a centered Gaussian
process Z on R2 with covariance (Gaussian, or squared-exponential) kernel,

∀x and y ∈ R2,K(x, y) = e−‖x−y‖
2

,

where ‖ · ‖ is the Euclidean norm of R2. We take µ as the uniform probability on
[0, 1]2 (so that τ = 1).

We approximate integrals over [0, 1]2 through a quadrature consisting of a regular
grid of 33 × 33 points, all points receiving the same weight (mid-point rectangular
quadrature rule). The corresponding discrete measure is denoted by µ̂. Table 5.2
gives the spectral ratios R̂trc (in percent) for various truncation levels ntrc.

Figure 5.4 shows the quadrature-designs X̂q∗
n and X̂q∗

n,ntrc respectively optimal
for ĈI and ĈItrc , with ntrc = n (the design size) for n = 4 and n = 5; X̂q∗

n and
X̂q∗
n,n coincide for n = 4 but not for n = 5. We numerically observe that the 5-

point quadrature-designs optimal for ĈItrc with ntrc > 6 are the µ̂-IMSE optimal
quadrature-design X̂q∗

5 . The right part of Figure 5.4 illustrates in particular how
ĈItrc(X̂

q∗
5 ) tends to ĈI(X̂

q∗
5 ) (dashed line on the top) when ntrc increases. Notice

that ĈItrc(X̂
q∗
5 ) is an increasing function of ntrc and that for ntrc = 6, ĈItrc(X̂

q∗
5 ) ≈

0.9890146, which is already very close of ĈI(X̂
q∗
5 ) ≈ 0.9890174.

The 4- and 5-point µ̂-IMSE optimal designs X̂∗4 and X̂∗5 (with quadrature ap-
proximation but without restriction to quadrature-designs) are not supported by the
quadrature points. However, for the 4-point problem, we obtain

ĈItrc(X̂
∗
4 ) ≈ 0.9815098 and ĈItrc(X̂

∗
4 )− ĈItrc(X̂q∗

4 ) ≈ 2.258776e-05,

and for the 5-point problem, we have

ĈItrc(X̂
∗
5 ) ≈ 0.9890199 and ĈItrc(X̂

∗
5 )− ĈItrc(X̂q∗

5 ) ≈ 2.479523e-06.
15
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0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ntrc = n = 4

4-point optimal designs

quad. pts
µ̂-IMSE opt. quad. des.
ĈItrc opt. quad. des.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0
.2

0
.4

0.
6

0.
8

1.
0

ntrc = n = 5

5-point optimal designs

Design X̂q∗
5,5

Design X̂q∗
5

6 8 10 12 14

0
.9
8
2

0
.9
8
4

0
.9
8
6

0
.9
8
8

ntrc

ĈItrc(X̂
q∗
5,5)

ĈItrc(X̂
q∗
5 )

ĈI(X̂
q∗
5,5) = 0.9881732

ĈI(X̂
q∗
5 ) = 0.9890174

Figure 5.4. Quadrature-designs optimal for the criteria ĈI and ĈItrc for n = ntrc = 4

(left) and n = ntrc = 5 (middle). Values of the criterion ĈItrc for the two quadrature-designs X̂q∗
5

and X̂q∗
5,5 (respectively optimal for ĈI and ĈItrc with ntrc = 5) as function of the number ntrc of

considered eigenvalues (right).

In both cases, the error induced by the restriction of the design problem to quadrature-
designs is therefore negligible.

5.3. Numerical experiments in dimension 6. Consider the 6-dimensional
tensor-product Matérn covariance kernel on R6, that is K(x, y) =

∏6
i=1Kθi(xi, yi),

where x = (x1, . . . , x6) and y = (y1, . . . , y6) are in R6 and where the kernels Kθi(·, ·)
are given by Kθi(xi, yi) = (1 +

√
3|xi − yi|/θi) exp(−

√
3|xi − yi|/θi), with θi > 0.

We set (θ1, θ2, θ3, θ4, θ5, θ6) = (0.32, 0.52, 0.62, 0.52, 0.42, 0.62) and we take µ as
the uniform probability measure on [0, 1]6. The use of regular grids to approximate
integrals on high dimensional spaces is prohibitive and we consider a quasi Monte-
Carlo quadrature with Nq = 5 000 points obtained from a uniform Halton sequence
(see, e.g., [Nie92]), each point receiving the same weight 1/Nq. The computations
have been performed with R-64bit on a 2012 Macbook Air fitted with a 1.8GHz Intel
Core i5 processor and 4Gb RAM.

The low discrepancy grid is generated with the R function runif.halton(). Using
the function eigen(), the eigendecomposition of QW takes approximately 4 minutes
(with a O(N3

q ) complexity). The computation of the matrix Ω = QWQ requires
approximately 2 minutes. The IMSE and truncated-IMSE are encoded following
(4.13) and Remark 4.2. The design covariance matrix K is inverted using the func-
tion solve(). The IMSE criterion is for instance encoded as follows (indicated for
reproducibility of the test):

IMSE<-function(Iq){ TAU-sum(solve(MatQ[Iq,Iq])*MatO[Iq,Iq]) }
where Iq is the index set Iq of a quadrature-design, MatQ and MatO stand for the
matrices Q and Ω, and TAU is the trace term τ (here, τ = 1).

Table 5.3 indicates the median duration, over 1 000 repetitions, of one evaluation
of the function IMSE() at some random quadrature-design and for various design sizes
(we use the function microbenchmark()). The median duration for the inversion of
the matrix K is also indicated. As expected, we observe that once the preliminary
computations are done (that is, for the IMSE, the computation of the matrices Q
and Ω), the evaluation of the IMSE for any quadrature-design mainly consists in the
inversion of the covariance matrix of the design.
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Table 5.3
Median duration (over 1 000 repetitions, random quadrature-designs), in seconds, for one eval-

uation of the function IMSE() for various design sizes (6-dimensional example) and median duration
for the inversion of the design covariance matrix.

design size 10-point 30-point 50-point 70-point 100-point
IMSE() 46.47e-6 131.27e-6 439.11e-6 1.128e-3 3.033e-3
K−1 37.31e-6 114.78e-6 369.21e-6 971.80e-6 2.694e-3

6. Concluding remarks. We have described how the IMSE criterion can be
approximated by spectral truncation. When a (pointwise) quadrature is used to inte-
grate the MSE and the design space is restricted to subsets of quadrature points, we
have detailed a numerically efficient strategy for computing the IMSE and truncated-
IMSE. Obviously, since preliminary calculations are required, the approach is only
of numerical interest for a large enough number of criterion evaluations, which is in
particular the case from a design optimization perpective. A simulated-annealing al-
gorithm for the computation of IMSE optimal designs that takes advantage of these
considerations is presented in [GP14].

In its present form, the approach only applies to random fields with known mean.
The extension to kernel-based interpolation models including an unknown parame-
tric trend would enlarge the spectrum of potential applications and is under current
investigation. Also, note that the choice of a suitable quadrature takes a special
importance here since quadrature-designs are subsets of quadrature points. The study
of the errors induced by restricting the optimization to quadrature-designs and by
approximating the exact criteria CI and CItrc by their quadrature approximations ĈI
and ĈItrc should deserve further studies.

The interest of optimizing the truncated-IMSE (with appropriated truncation
level) instead of the IMSE needs to be investigated in more details. For instance,
numerical experiments (see [GP14]) indicate that for truncation levels slightly larger
than the design size, the truncated criterion appears as more easy to optimize than the
original IMSE, while leading to designs with high IMSE efficiency. The construction
of optimal designs for the truncated-IMSE criterion should also be related with the
approach of [SP10] (optimal designs for a Bayesian linear model based on the main
eigenfunctions of the spectral decomposition), and this connection deserves further
investigations.

In the framework considered in Sections 4 and 5, the IMSE, which corresponds to
the integral of the kriging variance, is widely acknowledged as a most sensible criterion
for choosing observation sites in Gaussian process models. However, in general it is not
used for optimal design because it seems complicated (numerically costly) to evaluate.
We hope that the present paper will contribute to popularize the use of this criterion
to quantify the prediction uncertainty attached to a given design.
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Appendix A. Proofs of some lemmas and propositions.

Proof of Lemma 3.1. From assumption C-i, the representation property (2.1), the
17
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Cauchy-Schwarz inequality in H and C-iii, we have, for all h ∈ H,

‖h‖2L2 =

∫

X
(h|Kt)

2
H dµ(t) 6 ‖h‖2H

∫

X
K(t, t)dµ(t) = τ ‖h‖2H ,

the integral of h2 being well-defined as the integral of a positive measurable function
(see for instance [Dud02]).

Proof of Lemma 3.2. The reproducing property of K(·, ·) and the Cauchy-Schwarz
inequality imply that, for all x and y ∈ X ,

K(x, y) =
(
Kx

∣∣Ky

)
H 6

∥∥Kx

∥∥
H
∥∥Ky

∥∥
H =

√
K(x, x)

√
K(y, y).

Combining this with conditions C-ii and C-iii, we obtain
∫

X

∫

X
K(x, y)2dµ(x)dµ(y) 6

(∫

X
K(x, x)dµ(x)

)2

= τ2.

Let {ei, i ∈ I} be an orthonormal basis of L2 (X , µ) (with I a general index set, not
necessarily countable), we have

∫

X

∫

X
K(x, y)2dµ(y)dµ(x) =

∫

X

∥∥Kx

∥∥2

L2dµ(x)

=

∫

X

∑

i∈I

(
Kx

∣∣ei
)2
L2dµ(x) =

∑

i∈I

∥∥Tµ[ei]
∥∥2

L2 6 τ2, (A.1)

the interchange between the sum and integral being justified by Tonelli’s theorem. So,
the operator Tµ is a Hilbert-Schmidt operator on L2 (X , µ) and Tµ is thus a compact
operator on L2 (X , µ) (in particular, the number of terms different from 0 in the sum
on the right-hand side of (A.1) is at most countable). Finally, from the properties of
symmetry and positivity of K(·, ·), we have, for f and g ∈ L2(X , µ),

(
f
∣∣Tµ[g]

)
L2 =

(
Tµ[f ]

∣∣g
)
L2 and

(
f
∣∣Tµ[f ]

)
L2 > 0,

so that Tµ is self-adjoint and positive on L2 (X , µ).

Proof of Proposition 3.1 . First, H0 is well-defined thanks to Lemma 3.1. Also note
that, as an orthogonal subspace, Hµ is by definition closed in H. For a fixed f ∈
L2 (X , µ), we consider the linear functional If,µ on H defined by,

∀h ∈ H, If,µ(h) =

∫

X
f(t)h(t)dµ(t).

Again, If,µ is well-defined thanks to Lemma 3.1. From the Cauchy-Schwarz inequality
and (3.2), we have

|If,µ(h)| 6 ‖f‖L2 ‖h‖L2 6
√
τ ‖f‖L2 ‖h‖H ,

so that the application If,µ is continuous on H. Thus, from the Riesz-Fréchet Theo-
rem, there exists a unique element ρf,µ of H such that If,µ(h) = (h|ρf,µ)H. One can
finally identify ρf,µ with Tµ[f ] thanks to

If,µ(h) = (h|f)L2 = (h|Tµ[f ])H . (A.2)
18

ha
l-0

09
13

46
6,

 v
er

si
on

 3
 - 

18
 S

ep
 2

01
4



(see [GB12] for more details). Equation (A.2) proves in particular that, for all f ∈
L2 (X , µ), Tµ[f ] ∈ H⊥H0 = Hµ, since we have (using the Cauchy-Schwarz inequality)

∀f ∈ L2 (X , µ) ,∀h0 ∈ H0,
∣∣(h0|Tµ[f ]

)
H
∣∣ =

∣∣(h0|f)L2

∣∣ 6 ‖h0‖L2 ‖f‖L2 = 0.

Denote by null (If,µ) the null space of If,µ (which is closed in H as the null space
of a continuous linear application). We then remark that

H0 =
⋂

f∈L2(X ,µ)

null (If,µ) ,

so that H0 is closed in H (and in particular, H⊥Hµ = H0).
Now, let k and l ∈ I+ and denote by δkl the Kronecker delta, we have

(φk|φl)H =
1

λkλl

∫

X

∫

X
φ̃k(x)φ̃l(t)K(x, t)dµ(x)dµ(t) =

λk
λkλl

δkl,

so that
{√

λkφk, k ∈ I+
}
is an orthonormal system in Hµ.

To conclude, suppose that h ∈ H is such that (h|φk)H = 0 for all k ∈ I+, then
Tµ[h] = 0. Since, from equation (A.2), ‖h‖2L2 = (h|Tµ[h])H, we obtain that h ∈ H0

and finally that span {φk, k ∈ I+} is dense in Hµ.
Proof of Lemma 4.1. The expression Hµ̂ = span

{
Ksj , 1 6 j 6 Nq

}
follows directly

from the definition of µ̂ given in (4.7) (in particular because the support of µ̂ is a
finite set). By construction, we have φ̂k ∈ Hµ̂ for all 1 6 k 6 Nq and

∀x ∈ X , Tµ̂
[
φ̂k
]
(x) = qT (x)WQQ−1vk = qT (x)Q−1QWvk = λ̂kφ̂k(x).

Finally, since (q|qT )H = Q (matrix notation), we have

∥∥φ̂k
∥∥2

H = vTk Q−1QQ−1vk = vTk WW−1Q−1vk =
1

λ̂k
vTk Wvk =

1

λ̂k

and the orthogonality of the φ̂k can be obtained with similar arguments.

Appendix B. Some technical remarks.
Remark B.1. To ensure that CI(HD) is well-defined, we have to check the measura-
bility of the function x ∈ X 7→ E

[
(PHD

[Zx])2
]
. From the isometry between HD and

HD, if {hj , j ∈ J} is an orthonormal basis of HD, then we have, for all x ∈ X ,

0 6 E
[
(PHD

[Zx])2
]

=
∑

j∈J
h2
j (x) 6 K(x, x).

The function x 7→∑
j∈J h

2
j (x) is well-defined and is measurable as an at most count-

able sum of (positive) measurable functions (since H is separable). Finally CI(HD)
is well-defined as the integral of a positive mesurable function. Note that a similar
reasoning with HD = H shows that

∫
X K(x, x)dµ(x) is well-defined assuming C-i

(and H separable). /

Remark B.2. The results of this article can be extended to a non separable Gaussian
Hilbert space H. However, in this case condition C-i is not sufficient to ensure the
measurability of the function x 7→ E

[
(PHD

[Zx])2
]
for a non-separable subspace HD.

We then have to assume that x 7→ K(x, x) is measurable (see for instance [For85]) and
19

ha
l-0

09
13

46
6,

 v
er

si
on

 3
 - 

18
 S

ep
 2

01
4



also, either restrict the definition of the IMSE to separable closed linear subspaces of
H or assume that x 7→ E

[
(PHD

[Zx])2
]
is measurable whatever HD.

Note that the separability assumption for H is not very restrictive for most prac-
tical situations. Indeed, from the structure theorem for Gaussian measures and the
theory of abstract Wiener spaces, this assumption is satisfied by all random fields
with sample paths in classical functions spaces, such as Banach or Fréchet spaces, see
for instance [Sat69, DFLC71, Bor76]. /
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