
HAL Id: hal-00913466
https://hal.science/hal-00913466v2

Preprint submitted on 20 Jan 2014 (v2), last revised 21 Nov 2014 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectral approximation of the IMSE criterion for
optimal designs in kernel-based interpolation models.

Bertrand Gauthier, Luc Pronzato

To cite this version:
Bertrand Gauthier, Luc Pronzato. Spectral approximation of the IMSE criterion for optimal designs
in kernel-based interpolation models.. 2013. �hal-00913466v2�

https://hal.science/hal-00913466v2
https://hal.archives-ouvertes.fr


SPECTRAL APPROXIMATION OF THE IMSE CRITERION

FOR OPTIMAL DESIGNS

IN KERNEL-BASED INTERPOLATION MODELS

BERTRAND GAUTHIER†∗
AND LUC PRONZATO‡∗

Abstract. We address the problem of computing IMSE-optimal designs for random fields inter-
polation models. A spectral representation of the IMSE criterion is obtained from the eigendecom-
position of the integral operator defined by the random field covariance kernel and the integration
measure considered. The criterion can hence be evaluated without explicitly integrating the MSE
and spectral truncation naturally defines an approximated criterion. The approach is of particular
interest when a quadrature rule is used to approximate the integral of the MSE. In this situation and
for quadrature designs (i.e., designs composed of quadrature points), the truncated criterion yields a
significant reduction of the computational cost for multiple IMSE criterion evaluations. We present
numerical experiments which illustrate that retaining a small number of eigenpairs is often sufficient
to obtain an IMSE-optimal quadrature design while optimizing the truncated criterion.

Key words. Random field model, interpolation, design of experiments, IMSE, integral operator,
Karhunen-Loève decomposition.

AMS subject classifications. 62K99, 65C60, 62G08

1. Introduction. This work adresses the problem of designing experiments (i.e.,
of choosing sampling points) in the framework of kernel-based interpolation models
(see for instance [RW06, Wah90]). The integrated mean-squared error (IMSE) cri-
terion is a classical tool for evaluating the overall performance of interpolators (see
for example [SWMW89]). For a fixed class of models and a given design size, it is
therefore natural to try to choose sampling points such that the resulting interpola-
tion minimises the IMSE criterion among all possible samplings. One then speaks of
IMSE-optimal design of experiments.

IMSE-optimal designs are generally difficult to compute, see, e.g., [SWMW89,
ABM12]. Indeed, the direct evaluation of the IMSE criterion is numerically expensive
(it requires the computation of the integral of the mean-squared prediction error over
the whole space) and its global optimization is often made difficult due to the presence
of many local minima. The present work aims at investigating an alternative approach
to make the computation of IMSE-optimal designs more tractable.

The choice of an IMSE criterion for learning a random field naturally leads to
a particular Karhunen-Loève decomposition of this random field through the defini-
tion of an integral operator (see Section 3 and e.g., [ST06]). The main idea of the
paper is to link the integration of the mean-squared prediction error (MSE) with the
evaluation, at the design points, of the eigenfunctions of the IMSE integral operator
(more precisely, the evaluation of the harmonics, which are canonical extension of
the eigenfunctions, see Definition 3.2 and Remark 3.2). We hence obtain, in equa-
tion (4.4), a spectral representation of the IMSE criterion. This representation can
next be approximated by spectral truncation, leading to the spectral truncated IMSE
criterion.

Our approach is of particular interest when a quadrature rule is used to approxi-
mate the integral of the MSE and if the design optimization is restricted to quadrature
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designs (i.e., only composed of quadrature points). In this situation, the truncated
criterion yields a significant reduction of the computational cost for multiple IMSE cri-
terion evaluations and numerical experiments indicate that retaining a small number
of eigenpairs is sufficient to obtain IMSE-optimal quadrature designs when optimizing
the truncated criterion, leading to a significant reduction of the computational cost
of the optimization process.

We have tried to make this paper as self-contained as possible; the definitions of
most concepts are thus reminded and most proofs are detailed. The paper is organized
as follows. Section 2 is devoted to the introduction of the general framework of
conditioning of Gaussian random fields. General results concerning the IMSE criterion
and the associated integral operator are given in Section 3. The spectral representation
of the IMSE design criterion and its approximation by spectral truncation are detailed
in Section 4. This section also tackles the quadrature approximation of the IMSE
integral operator. Numerical constructions of IMSE-optimal quadrature designs are
carried out in Section 5. The numerical interest of the proposed approach and some
perspectives are finally discussed in Section 6.

2. General framework and notations.

2.1. Random fields and involved Hilbert structures. Let X be a general
set. We consider a real random field (Zx)x∈X indexed by X . We assume that Z is
centered, second-order, and defined on a probability space (Ω,F ,P). For the sake of
simplicity, we also assume that Z is Gaussian. In what follows, Z will refer to the
random field (Zx)x∈X .

We denote by L2 (Ω,P) the Hilbert space of second-order, real random variables
(r.v.) on (Ω,F ,P), where we identify random variables that are equal P-almost surely.
The inner product between two r.v. U and V of L2 (Ω,P) is denoted by E (UV ).

Let K : X × X → R be the covariance kernel of the random field Z. Since, by
assumption, for all x and y ∈ X , E (Zx) = E (Zy) = 0, we have

E (ZxZy) = K(x, y).

We denote by H the Gaussian Hilbert space generated by Z; H is the closed linear
subspace of L2 (Ω,P) spanned by the r.v. Zx, x ∈ X , i.e.

H = span {Zx, x ∈ X}L
2(Ω,P)

.

H is endowed with the Hilbert structure involved by L2 (Ω,P). We assume that H is
separable.

In parallel, we denote by H the reproducing kernel Hilbert space (RKHS, see for
instance [BT04]) of real-valued functions on X associated with the kernel K(·, ·). We
use the classical notation, Kx(·) = K(x, ·), for x ∈ X (and Kx ∈ H). We remind that
H is characterized by the representation property,

∀h ∈ H, ∀x ∈ X , (h|Kx)H = h(x),

with (·|·)H the inner product of H. The two Hilbert spaces H and H are therefore
isometric thanks to the relation, for all x and y ∈ X ,

(Kx|Ky)H = K(x, y) = E (ZxZy) .

We denote this isometry by I : H → H, with I (Kx) = Zx.
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2.2. Conditioning. Let HC be a closed linear subspace of the Hilbert space
H. We consider the orthogonal projection PHC

of H onto HC . For x ∈ X , the r.v.
PHC

[Zx] is called the conditional mean of the r.v. Zx relatively to HC . If HC is
spanned by the r.v. ζj , j ∈ J , with J is a general index set, the notation

PHC
[Zx] = E (Zx|ζj , j ∈ J)

is often used. The covariance of the random field (Zx − PHC
[Zx])x∈X is called the

conditional covariance of Z relatively to HC . We shall pay particular attention to
subspaces of the evaluation-type, i.e.

Hev = span {Zx1
, · · · , Zxn

} , (2.1)

with n ∈ N
∗ (the set of all positive integers) and x1, · · · , xn ∈ X .

Remark 2.1. By isometry, a conditioning problem in the Gaussian Hilbert space H

is associated with an optimal interpolation problem in the RKHS H. To the subspace
HC of H corresponds a subspace HC of H and one can define the orthogonal projection
PHC

of H onto HC , etc.

3. IMSE criterion and associated integral operator.

3.1. IMSE criterion. From now on we suppose that X is a measurable space
and we consider a σ-finite measure µ on X . We denote by L2 (X , µ) the Hilbert space of
square integrable real-valued functions on X with respect to µ. Notice that elements
of L2 (X , µ) are in fact equivalent classes of µ-almost everywhere equal functions;
however, when it will not be source of error, we shall make the widespread abuse of
notation consisting in assimilating elements of L2 (X , µ) with functions on X .

Following [For85, GB12], we make the following assumptions:
C-i. each function h ∈ H is measurable,
C-ii. the kernel K : X × X → R is measurable (for the product σ-algebra),

C-iii. τ =

∫

X

K(x, x)dµ(x) < +∞.

These three conditions ensure in particular that the sample paths of (Zx)x∈X are in
L2 (X , µ) with P-probability 1 (and therefore that H ⊂ L2 (X , µ), with continuous
inclusion, see equation (3.7)).

Then, for a given subspace HC of H, the integrated mean-squared error criterion
(IMSE, or when necessary µ-IMSE, to explicitly refer to the measure µ) is the positive
real

IMSE(HC) = E

[∫

X

(Zx − PHC
[Zx])

2
dµ(x)

]

=

∫

X

E

[
(Zx − PHC

[Zx])
2
]
dµ(x) =

∫

X

K(x, x)− E

[
(PHC

[Zx])
2
]
dµ(x). (3.1)

The IMSE associated with the subspace HC is therefore the integral of the conditional
variance of the considered conditioning. From C-iii, we have

IMSE(HC) = τ − CI(HC), with CI(HC) =

∫

X

E
[
(PHC

[Zx])
2
]
dµ(x). (3.2)

Since τ does not depend on HC , minimizing the IMSE criterion thus amounts to
maximizing CI(HC).
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Remark 3.1. In terms of RKHS, PHC
[Kx] is the reproducing kernel of HC . Hence,

by isometry and from the properties of orthogonal projections,

CI(HC) =

∫

X

(
PHC

[Kx]
∣∣PHC

[Kx]
)
H
dµ(x) =

∫

X

(
Kx

∣∣PHC
[Kx]

)
H
dµ(x)

=

∫

X

E
[
ZxPHC

[Zx]
]
dµ(x). (3.3)

Definition 3.1. For a fixed n ∈ N
∗, a set {x1, · · · , xn} of n elements of X is a

n-point IMSE-optimal design (for the learning of Z) if

Hev = span {Zx1
, · · · , Zxn

}

minimizes the IMSE criterion among all subspaces of H based on n evaluations of the
random field Z.

3.2. Integral operator. The introduction of an IMSE criterion for the learning
of a random field Z naturally defines an integral operator Tµ on L2 (X , µ), given by

∀f ∈ L2 (X , µ) , ∀x ∈ X , Tµ [f ] (x) =

∫

X

f(t)K(x, t)dµ(t). (3.4)

The interest of such operators when dealing with kernel-based interpolation models
has been studied for instance in [CS02, GB12], see also [DPZ13] for application to
optimal designs for linear models.

The operator Tµ is diagonalisable and positive (see for instance [Sch79]). We
denote by λi its eigenvalues (repeated according to their algebraic multiplicity) and

by φ̃i ∈ L2 (X , µ) the associated eigenfunctions, with i ∈ I, a general index set.

We remind that
{
φ̃i, i ∈ I

}
forms a orthonormal basis of L2 (X , µ) and that the set

of all strictly positive eigenvalues of Tµ is at most countable. We then denote by
{λk, k ∈ I+} this set; i.e., λk > 0 for all k ∈ I+ ⊂ N. When necessary, we shall index
the set of the strictly positive eigenvalues of Tµ by N

∗, the eigenvalues being sorted
in descending order, i.e. λ1 > λ2 > · · · > 0.
Proposition 3.1. Denote by Hµ the orthogonal of the subspace H0 of the Hilbert

space H (i.e. Hµ = H⊥H

0 ), with

H0 =
{
h0 ∈ H, ‖h0‖2L2 = 0

}
. (3.5)

For k ∈ I+, consider the functions φk given by

∀x ∈ X , φk(x) =
1

λk

∫

X

φ̃k(t)K(x, t)dµ(t). (3.6)

Then H0 is closed in H and
{√

λkφk, k ∈ I+

}
forms an orthonormal basis of Hµ for

the Hilbert structure of H.

Proof. First, as an orthogonal space, Hµ is closed in H. From conditions C-i, C-ii
and C-iii, the representation property and the Cauchy-Schwarz inequality, we obtain,
for h ∈ H,

‖h‖2L2 =

∣∣∣∣
∫

X

(h|Kt)
2
H dµ(t)

∣∣∣∣ 6 ‖h‖2H
∫

X

K(t, t)dµ(t) = τ ‖h‖2H . (3.7)
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For a fixed f ∈ L2 (X , µ), we consider the linear functional on H defined by,

∀h ∈ H, If,µ(h) =

∫

X

f(t)h(t)dµ(t).

From the Cauchy-Schwarz inequality and expression (3.7), we have

|If,µ(h)| 6 ‖f‖L2 ‖h‖L2 6
√
τ ‖f‖L2 ‖h‖H , (3.8)

so that the application If,µ is continuous on H. Thus, from the Riesz-Fréchet Theo-
rem, there exists a unique element ρf,µ of H such that If,µ(h) = (h|ρf,µ)H. One can
finally identify ρf,µ with Tµ[f ] thanks to (see [GB12] for more details)

If,µ(h) = (h|f)L2 = (h|Tµ[f ])H . (3.9)

This in particular proves that for all f ∈ L2 (X , µ), Tµ[f ] ∈ H⊥H

0 = Hµ.
Denote by null (If,µ) the null space of If,µ (which is closed in H as the null space

of a continuous linear application). We then remark that

H0 =
⋂

f∈L2(X ,µ)

null (If,µ) ,

so that H0 is closed in H (and in particular, H⊥H

µ = H0).
Now, let k and l ∈ I+ and denote by δkl the Kronecker delta, we have

(φk|φl)H =
1

λkλl

∫

X

∫

X

φ̃k(x)φ̃l(t)K(x, t)dµ(x)dµ(t) =
λk

λkλl

δkl,

so that
{√

λkφk, k ∈ I+

}
is an orthonormal system in Hµ.

To conclude, suppose that h ∈ H is such that (h|φk)H = 0 for all k ∈ I+, then
Tµ[h] = 0. Since, from equation (3.9), ‖h‖2L2 = (h|Tµ[h])H, we obtain that h ∈ H0

and finally that span {φk, k ∈ I+} is dense in Hµ.

Definition 3.2. For k ∈ I+, we call hk =
√
λkφk the k-th harmonic associated with

λk and normed in H (i.e., such that ‖hk‖H = 1), defined by the random field Z and
the µ-IMSE criterion.

Remark 3.2. We have φk
L2(X ,µ)

= φ̃k (or more precisely, φk belongs to the equiva-

lent class φ̃k). However, as elements of L2 (X , µ), the φ̃k are only defined µ-almost
everywhere whereas the φk are defined on the whole set X . Notice that

τ =

∫

X

K(x, x)dµ(x) =
∑

k∈I+

λk.

From equation (3.9), the harmonics hk, k ∈ I+ (or, equivalently the functions φk)
satisfy the following property:

∀h ∈ H, ∀k ∈ I+, (h|φk)H =
1

λk

(
h
∣∣∣Tµ[φ̃k]

)
H

=
1

λk

(
h
∣∣φ̃k

)
L2 . (3.10)

This expression links the inner-products in H and in L2 (X , µ). In particular, we
obtain, for k ∈ I+ and x ∈ X ,

(
φk

∣∣Kx

)
L2 = λk

(
φk

∣∣Kx

)
H

= λkφk(x). (3.11)
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3.3. Spectral representation and harmonics optimality. For k ∈ I+, we
introduce the r.v. ξk = I(hk) ∈ H (orthogaussian harmonic random variables). We
have, from equation (3.6),

ξk =
1√
λk

∫

X

φ̃k(t)Ztdµ(t)

and the ξk, k ∈ I+, are orthonormal in H (see [GB12] for additional considerations).
Following Proposition 3.1, we denote by Hµ the closed linear subspace of H spanned
by the r.v. ξk, k ∈ I+ and by H0 its orthogonal, so that we have the orthogonal
decomposition

H = Hµ

⊥
+ H0. (3.12)

The following proposition shows that r.v. belonging to H0 have no influence on the
µ-IMSE criterion.
Proposition 3.2. Let HC be a closed linear subspace of H, we have

CI (HC) = CI (HC ∩Hµ) , (3.13)

where the CI is defined in equation (3.2).

Proof. From the orthogonal decomposition (3.12), we have

HC = (Hµ ∩HC)
⊥
+ (H0 ∩HC) .

We introduce the notation HµC = Hµ ∩ HC and H0C = H0 ∩ HC , so that the
orthogonal projection of H onto HC can be written

PHC
= PHµC

+ PH0C
.

For all x ∈ X , the r.v. PHµC
[Zx] and PH0C

[Zx] are orthogonal, hence

E
[
(PHC

[Zx])
2
]
= E

[
(PHµC

[Zx])
2
]
+ E

[
(PH0C

[Zx])
2
]
, so that

CI (HC) = CI (HC ∩Hµ) + CI (HC ∩H0) .

To conclude, we note that, from equations (3.3) and (3.5),

CI(H0C) =

∫

X

(
PH0C

[Kx]
∣∣Kx

)
H
dµ(x) = 0,

since PH0C
[Kx] ∈ H0 for all x ∈ X .

Proposition 3.3. Let HC be a closed linear subspace of H and let {ηj , j ∈ J} be an
orthonormal basis of HC . Then

CI(HC) =
∑

k∈I+

∑

j∈J

α2
j,kλk, (3.14)

with, for j ∈ J and k ∈ I+, αj,k = E (ηjξk).
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Proof. From Proposition 3.1, {ξk, k ∈ I+} forms an orthonormal basis of Hµ, so

∀j ∈ J, PHµ
[ηj ] =

∑

k∈I+

αj,kξk. (3.15)

For all r.v. U ∈ H, we have

PHC
[U ] =

∑

j∈J

E (ηjU) ηj and E

[
(PHC

[U ])
2
]
=

∑

j∈J

(E (ηjU))
2
. (3.16)

Combining relations (3.16) with Proposition 3.2, we obtain

CI(HC) = CI (HC ∩Hµ) =

∫

X

E

[(
PHC

[
PHµ

[Zx]
])2]

dµ(x)

=
∑

j∈J

∫

X

[
E
(
ηjPHµ

[Zx]
)]2

dµ(x). (3.17)

We next consider the expansion

∀x ∈ X , PHµ
[Zx] =

∑

k∈I+

ξkE (ξkZx) =
∑

k∈I+

ξk
√
λkφk(x).

Combined with expressions (3.15) and (3.17), we have

CI(HC) =
∑

j∈J

∫

X

[ ∑

k∈I+

αj,k

√
λkφk(x)

]2
dµ(x) =

∑

k∈I+

∑

j∈J

α2
j,kλk,

completing the proof.

We can now recall the following well-known result (Proposition 3.4), which shows
the optimal character of the harmonic r.v. in terms of IMSE.
Proposition 3.4. For a fixed n ∈ N

∗, consider

H∗
n = span {ξ1, · · · , ξn} ,

where ξ1, · · · , ξn are associated with the n largest eigenvalues of Tµ. Then H∗
n mini-

mizes the IMSE criterion among all subspaces Hn of H with dimension n.

Proof. Let Hn be a closed linear subspace of H with dimension n and let η1, · · · , ηn
be an orthonormal basis of Hn. From Proposition 3.3,

CI(Hn) =
∑

k∈I+

n∑

j=1

α2
j,kλk with αj,k = E (ηjξk) and CI(H

∗
n) =

n∑

k=1

λk. (3.18)

By definition, we have, for any i and j ∈ {1, · · · , n},
∑

k∈I+
αi,kαj,k = δij (Kro-

necker delta). For k ∈ I+, let ak ∈ R
n be the (column) vector given by

ak = (α1,k, . . . , αn,k)
T
, so that

n∑

j=1

α2
j,k

(notation)
= aTk ak.

Here, aTk stands for the transpose of the vector ak and aTk ak has to be understood as
a scalar product in R

n. Note that we identify vectors of Rn, n ∈ N
∗, with the column
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vectors of their coefficients in the canonical basis of Rn. A similar convention is also
used for matrices through the rest of the paper.

We have
∑

k∈I+
aka

T
k = Idn×n (the n× n identity matrix). So, for l ∈ I+,

aTl

( ∑

k∈I+

aka
T
k

)
al = aTl al =

(
aTl al

)2
+
∑

k 6=l

(
aTk ak

)2
,

which proves that

∀k ∈ I+,

n∑

j=1

α2
j,k 6 1. (3.19)

Since
∑

k∈I+
α2
j,k = 1 for all 1 6 j 6 n, we have

∑

k∈I+

n∑

j=1

α2
j,k = n. (3.20)

Finally, since λ1 · · · , λn are the largest eigenvalues of Tµ, we deduce from equations
(3.19) and (3.20) that

n∑

j=1

λj >
∑

k∈I+

n∑

j=1

α2
j,kλk,

i.e., CI(H
∗
n) > CI(Hn), which concludes the proof.

4. Computation of the IMSE criterion.

4.1. Classical approach. Denote by z the (column) random vector

z = (Zx1
, · · · , Zxn

)
T
,

where x1, · · · , xn ∈ X and n ∈ N
∗. We thus consider the design {x1, · · · , xn} and the

associated subspace Hev of H, defined by equation (2.1).
Let k be the (column) vector with components Kxi

, with 1 6 i 6 n (with a slight
abuse of notation, we shall denote I(k) = z), i.e.,

k = (Kx1
, · · · ,Kxn

)
T
. (4.1)

Let K be the covariance matrix of z. In matrix notation, we have

K = E
(
zzT

)
=

(
k
∣∣kT

)
H
.

We assume that Z and {x1, · · · , xn} are such that K is invertible. We thus obtain

∀x ∈ X , PHev
[Zx] = E

(
Zx

∣∣Zx1
, · · · , Zxn

)
= kT (x)K−1z.

The corresponding IMSE criterion is then IMSE(Hev) = τ − CI(Hev), where

CI(Hev) =

∫

X

kT (x)K−1k(x)dµ(x). (4.2)

Therefore, the computation of the IMSE criterion for the design {x1, · · · , xn} requires,
from a numerical point of view,

- the inversion of the matrix K,
- the integration of the function x 7→ kT (x)K−1k(x).
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4.2. Alternative expression and truncation.

4.2.1. Spectral representation for the IMSE. Let us introduce the matrix
X with entries

Xi,k =
√

λkφk(xi) = hk(xi) = E (ξkZxi
) , with 1 6 i 6 n and k ∈ I+. (4.3)

Hence, X has n rows and card (I+) columns, where card (I+) is the cardinality of the
set I+. We also introduce the diagonal matrix

Λ = diag (λk, k ∈ I+) .

Proposition 4.1. Let Hev = span {Zx1
, · · · , Zxn

}, then

CI(Hev) =
∑

k∈I+

λk

[
(X·,k)

T
K−1 (X·,k)

]
= Tr

(
ΛXTK−1X

)
, (4.4)

where (X·,k) is the k-th column of the matrix X, that is, the column vector of the
values taken by the k-th harmonic at x1, · · · , xn.

Proof. Expression (4.4) is a direct consequence of Proposition 3.3 applied to the eval-
uation case. Indeed, let K = CCT be the Cholesky decomposition of K, then the
components of the random vector η = (η1, · · · , ηn)T = C−1z form an orthonormal
basis of Hev.

If we consider the notations introduced in the proof of Proposition 3.4, we have
ak = (α1,k, . . . , αn,k)

T
= C−1 (X·,k), so that

aTk ak =

n∑

j=1

α2
j,k = (X·,k)

T
K−1 (X·,k) .

We hence obtain CI(Hev) =
∑

k∈I+
λk

[
(X·,k)

T
K−1 (X·,k)

]
, from which the second

equality in equation (4.4) directly follows.

Equation (4.4) implies that once the spectral decomposition of the IMSE integral
operator is known (Section 3.2), the value of IMSE(Hev) can be obtained without
the explicit computation of the mean-squared prediction error. The calculation of the
integral is indeed replaced by the evaluations of the harmonic functions hk, k ∈ I+,
(see equation (4.3) and Definition 3.2) at the sampling points x1, · · · , xn ∈ X .

Another interest of the alternative expression (4.4) for the IMSE lies in the fact
that it can be easily approximated by spectral truncation, as we consider now.

4.2.2. Approximation by truncation. Let Hn be a linear subspace of H with
dimension n. Consider a subset Itrc ⊂ I+ and introduce

CItrc(Hn) =
∑

k∈Itrc

n∑

j=1

α2
j,kλk. (4.5)

In practice, Itrc will be a finite set associated with the largest eigenvalues of Tµ

(spectral truncation). Let Hev = span {Zx1
, · · · , Zxn

} be given by equation (2.1)
and such that K is invertible (see Section 4.1). We introduce the matrices Λtrc =
diag (λk, k ∈ Itrc) and Xtrc, with

(Xtrc)i,k =
√
λkφk(xi) = hk(xi), with 1 6 i 6 n and k ∈ Itrc.
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Definition 4.1. The spectral truncated IMSE criterion associated with a subset Itrc
of I+ and a design {x1, · · · , xn} is given by IMSEtrc(Hev) = τ − CItrc(Hev), with

CItrc(Hev) =
∑

k∈Itrc

λk

[
(X·,k)

T
K−1 (X·,k)

]
= Tr

(
ΛtrcX

T
trcK

−1Xtrc

)
.

In Definition 4.1, remark that we may replace τ by
∑

k∈Itrc
λk. Indeed, the

main point here is the approximation of CI(Hev) by CItrc(Hev), the quantities τ and∑
k∈Itrc

λk being independent of the design {x1, . . . , xn}.
Remark 4.1. A property similar to Proposition 3.2 also holds for the truncated
IMSE criterion since for a closed linear subspace HC of H,

CItrc (HC) = CItrc (HC ∩Hµ) .

Remark 4.2 (Distance to harmonics). Let Hn be a linear subspace of H with di-
mension n and consider the optimal subspace H∗

n of Proposition 3.4. We have

∫

X

E

[(
PH∗

n
[Zx]− PHn

[Zx]
)2]

dµ(x)

= CI(H
∗
n) + CI(Hn)− 2

∫

X

E
[
PH∗

n
[Zx]PHn

[Zx]
]
dµ(x)

6 2CI(H
∗
n)− 2

∫

X

E
[
PH∗

n
[Zx]PHn

[Zx]
]
dµ(x), (4.6)

where the inequality follows from the majoration CI(H
∗
n) > CI(Hn). Considering

expression (4.6), we introduce the term

CS(Hn) =

∫

X

E
[
PH∗

n
[Zx]PHn

[Zx]
]
dµ(x) (4.7)

and the majoration appearing in expression (4.6) suggests that designs which maxi-
mise the CS criterion should perform relatively well in terms of IMSE. Following
Section 3.3, we then consider an orthonormal basis η1, · · · , ηn of Hn. We hence
obtain, from equation (3.15),

CS(Hn) =

n∑

k=1

n∑

j=1

α2
j,kλk. (4.8)

Comparing expression (4.8) with equations (3.14) and (4.5), we finally remark that
the criterion CS(Hn) is in fact the criterion CItrc(Hn) where only the n first harmonic
r.v. ξ1, · · · , ξn (i.e., those associated with the n largest eigenvalues of Tµ) have been
retained.
Remark 4.3 (Truncation level). Notice that for any closed linear subspace HC of
H, we have, from equations (3.18), (4.5) and (3.19),

CItrc(HC) 6 CI(HC) 6 CItrc(HC) +
∑

k 6∈Itrc

λk ,

so that the examination of
∑

k 6∈Itrc
λk gives an upper bound for the error induced by

truncation.
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4.3. Quadrature and Nyström method. Let us consider the situation where
a quadrature rule is used in order to approximate integrals over X relatively to µ.
Then, for all real-valued functions f on X , integrable with respect to µ and with
sufficient regularity (that is, f has to be bounded at the quadrature points),

∫

X

f(s)dµ(s) ≈
Nq∑

j=1

ωjf(sj), (4.9)

with ωj > 0, sj ∈ X and Nq ∈ N
∗. This situation thus corresponds to a particular case

of the general problem studied in Section 3, where the measure µ on X is approximated
with the finite measure

µ̂ =

Nq∑

j=1

ωjδsj ,

with δsj the Dirac measure at sj . All the results contained in this section can there-
fore be directly deduced from Section 3.2. However, due to the great importance of
quadrature approximations in many applications, some details are given below.

We thus consider an approximation Tµ̂ of the integral operator Tµ (Nyström
method, see for instance [Hac95, Kre99]), more precisely,

∀x ∈ X , Tµ̂[f ](x) =

Nq∑

j=1

ωjK(x, sj)f(sj).

Following for instance [GB12, Section 5], we introduce the two Nq × Nq matrices
W = diag

(
ω1, · · · , ωNq

)
and Q, with i, j term

Qi,j = K(si, sj), for 1 6 i, j 6 Nq.

W is thus the matrix of the quadrature weights and Q is the covariance matrix of the
quadrature points. We assume that Q is nonsingular. Denote by λ̂1 > 0, · · · , λ̂Nq

> 0
the eigenvalues of the matrix QW and by v1, · · · ,vNq

their associated eigenvectors,

i.e. QW = PΛ̂P−1 with

Λ̂ = diag
(
λ̂1, · · · , λ̂Nq

)
and P = (v1| · · ·

∣∣vNq

)
.

Remark that
{
v1, · · · ,vNq

}
forms an orthonormal basis of R

Nq endowed with the
inner product (·|·)W, where for x and y ∈ R

Nq (x|y)W = xTWy. Thus, we have

PTWP = IdNq×Nq
, where IdNq×Nq

is the Nq ×Nq identity matrix. (4.10)

Notice that, throughout the paper, the hat symbol indicates that the correspon-
ding object is associated with the operator Tµ̂ (or more generally, with the quadrature

approximation case), i.e., the quadrature approximation of Tµ. For instance, λ̂k refers
to an eigenvalue of Tµ̂, when λk refers to an eigenvalue of Tµ, etc.

As in equation (4.1), we use the notation

q(·) =
(
K(s1, ·), · · · ,K(sNq

, ·)
)T

.

If we also introduce f =
(
f(s1), · · · , f(sNq

)
)T ∈ R

Nq (i.e., f is the column vector with
components the values of the function f at the quadrature points), we obtain,

∀x ∈ X , Tµ̂ [f ] (x) = qT (x)Wf .

11



Proposition 4.2. Let us consider the functions defined by, for 1 6 k 6 Nq,

∀x ∈ X , φ̂k(x) = qT (x)Q−1vk =
1

λ̂k

qT (x)Wvk. (4.11)

Then, φ̂k is an eigenfunction of Tµ̂ associated with λ̂k and φ̂k ∈ Hµ̂, the closed linear

subspace of H spanned by the Ksj , 1 6 j 6 Nq. In addition, the φ̂k, with 1 6 k 6 Nq,

are orthogonal in H and
∥∥∥φ̂k

∥∥∥
2

H
=

1

λ̂k

.

Proof. By construction, φ̂k ∈ Hµ̂ = span
{
Ksj , 1 6 j 6 Nq

}
for all 1 6 k 6 Nq and,

for x ∈ X ,

Tµ̂

[
φ̂k

]
(x) = qT (x)WQQ−1vk = qT (x)Q−1QWvk = λ̂kφ̂k(x).

Next, we have

∥∥∥φ̂k

∥∥∥
2

H
= vT

k Q
−1QQ−1vk = vT

k WW−1Q−1vk =
1

λ̂k

vT
k Wvk =

1

λ̂k

and the orthogonality of the φ̂k can be obtained with similar arguments.

Notice that equation (4.11) is the equivalent of expression (3.6) in the quadrature

case. Therefore, for 1 6 k 6 Nq, the computation of φ̂k(x), for a general x ∈ X
requires the computation of an integral (here, of a quadrature). This is however not
true when x is a quadrature point. In this situation, we have, for all 1 6 j, k 6 Nq,

φ̂k(sj) = (vk)j , (4.12)

where (vk)j is the j-th component of the eigenvector vk. We hence introduce the
notion of quadrature designs, that is designs of experiments which are only composed
of quadrature points. For such quadrature designs, once the spectral decomposition
of the integral operator (here, the matrix QW) is known, considering the truncated
criterion significantly reduce the computational cost of the IMSE criterion. See Section
6.1 for further discussions on the numerical interest of the approach.

5. Examples. We present two numerical examples of approximation of IMSE-
optimal designs using quadrature approximation and spectral truncations. All com-
putations have been performed with the free softwares R and Sage [R C13, S+13].

In what follows, we denote by ĈI and ĈItrc the quadrature approximation of the
criteria CI and CItrc . We shall only consider truncations with ntrc > n although, in
practice, any ntrc > 1 could be considered, whatever the value of n.

5.1. Ornstein-Uhlenbeck process. Consider a centered Gaussian process Z
on [0, 1] with covariance

∀x and y ∈ [0, 1],K(x, y) = e−|x−y| − e−(x+y).

This corresponds to the covariance of a centered Ornstein-Uhlenbeck process on [0, 1],
conditioned to vanish at 0. We assume [0, 1] endowed with a uniform probability
measure (denoted by µ). We have in particular

τ =

∫ 1

0

1− e−2xdx =
1

2

(
1 + e−2

)
.
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Note that this corresponds to a rather unfavorable situation for the construction of
µ-IMSE-optimal designs using spectral truncation, since it combines a relatively slow
decreasing spectrum with the lack of symmetry.

We approximate integrals over [0, 1] with a 500-point quadrature, where

sj =
2j − 1

1000
with 1 6 j 6 500,

each point receiving a weight 1/500 (mid-point rectangular quadrature method with
intervals of length 0.002). We then compute the spectral decomposition of the Nys-
tröm approximation defined by this quadrature. We denote by µ̂ the corresponding
discrete measure. Figure 5.1 shows the graph of the variance of the process Z and
illustrates the spectral decomposition of Tµ̂.
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0 100 200 300 400 500
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φ̂1

φ̂2

φ̂3

Figure 5.1. Graph of the variance of the process considered (left); eigenvalues of the Nyström
approximation of the IMSE integral operator (middle); eigenfunctions associated with the three
largest eigenvalues of the Nyström approximation (right).

1-point optimal designs. Let t ∈ [0, 1] and consider Ht = span {Zt} (i.e., t denotes
the design point). We have

CI(Ht) =
e−2t

1− e−2t

(
e2t − e−2t

2
− 2t

)
+

(
e2t − 1

) e−2t − e−2

2
. (5.1)

Inside [0, 1], this function reaches its maximun at t∗ ≈ 0.707859, the 1-point µ-IMSE-
optimal design for this problem (so, without quadrature approximation).

The left part of Figure 5.2 shows the values of the criterion CI (expression (5.1),

no quadrature approximation) and of ĈItrc (quadrature approximation) with ntrc = 1,
as functions of the design point t. The right part of this figure shows the quadrature
design t̂∗ntrc

optimal for ĈItrc as a function of the number ntrc of eigenvalues retained

(for instance, for ntrc = 1, t̂∗ntrc
= 0.695). We observe a quick convergence of t̂∗ntrc

to the µ̂-IMSE-optimal quadrature design t̂∗ = t̂∗Nq
= 0.707 as ntrc increases. For

3 6 ntrc 6 9, t̂∗ntrc
oscillates between 0.707 and 0.709, the two quadrature points

closest to the µ-IMSE-optimal design t∗. For ntrc > 10, t̂∗ntrc
coincides with t̂∗.

n-point optimal designs, n = 2, 3 and 4. Figure 5.3 shows the 2-, 3- and 4-point
quadrature designs optimal for ĈItrc as functions of the number of eigenvalues con-
sidered. For the 3-point case, the oscillations of the central design point between
0.593 and 0.595 are due to the fact that the two corresponding quadrature de-
signs have the same µ̂-IMSE score. The same phenomenon occurs for the 4-point
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Figure 5.2. Graph of the values of the criteria CI and ĈItrc for ntrc = 1 as function of the

design point (left); 1-point optimal quadrature design for the ĈItrc as a function of ntrc (right).
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Figure 5.3. 2-, 3- and 4-point quadrature designs optimal for ĈItrc as functions of ntrc.

designs, with now oscillations for the two central points. More precisely, the three
4-point quadrature designs {0.229, 0.457, 0.687, 0.917}, {0.229, 0.459, 0.687, 0.917}
and {0.229, 0.459, 0.689, 0.917} are µ̂-IMSE-optimal. As for the 1-point case, we ob-

serve a quick convergence of quadrature designs optimal for ĈItrc to µ̂-IMSE-optimal

quadrature designs (i.e., optimal for ĈI) when ntrc increases.

5.2. Gaussian kernel. Consider now a centered Gaussian process Z on [0, 1]2

with covariance (Gaussian, or squared exponential) kernel,

∀x and y ∈ [0, 1]2,K(x, y) = e−‖x−y‖2

,

where ‖ · ‖ is the Euclidean norm of R2. We assume [0, 1]2 endowed with a uniform
probability measure, denoted by µ (so that τ = 1).
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We approximate integrals over [0, 1]2 through a quadrature consisting of a regu-
lar grid of 33× 33 points, all points receiving the same weight (mid-point rectangular
quadrature rule). The corresponding discrete measure is again denoted by µ̂. Two
eigenfunctions of the Nyström approximation of the IMSE integral operator are pre-
sented in Figure 5.4.
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Figure 5.4. Two eigenfunctions of the Nyström approximation for the Gaussian kernel with
µ the uniform probability measure on the unit square.

Figure 5.5 shows the µ̂-IMSE-optimal quadrature designs X̂∗
n and the quadrature

designs X̂∗
n,ntrc

optimal for ĈItrc with ntrc = n (n is the design size), for n = 4 and

n = 5. X̂∗
n and X̂∗

n,n coincide for n = 4 but not for n = 5. However, we numerically

observe that the 5-point quadrature designs optimal for ĈItrc with ntrc > 6 are the

µ̂-IMSE optimal design X̂∗
5 . The right part of Figure 5.5 illustrates in particular how

ĈItrc(X̂
∗
5 ) tends to ĈI(X̂

∗
5 ) when ntrc increases. Notice that ĈItrc(X̂

∗
5 ) is an increasing

function of ntrc and that for ntrc = 6, ĈItrc(X̂
∗
5 ) ≈ 0.9890146 is already very close of

ĈI(X̂
∗
5 ) ≈ 0.9890174.

6. Concluding remarks.

6.1. Numerical interest of the approach. Consider the general framework
of Section 4.3 (i.e., quadrature approximation) and suppose that we want to compute

a µ̂-IMSE-optimal quadrature design. In this case, card(̂I+) = Nq, where Nq is the
number of quadrature points. From equations (4.2), (4.4) and (4.9) and for a design

{x1, · · · , xn}, we have (recall that ĈI is the quadrature approximation of CI)

ĈI(Hev) =

Nq∑

j=1

ωjk(sj)
TK−1k(sj) =

Nq∑

k=1

λ̂k

[(
X̂·,k

)T

K−1
(
X̂·,k

)]
,

where, by analogy with Section 4.2, X̂ is the matrix with entries

X̂i,k =

√
λ̂kφ̂k(xi), with 1 6 i 6 n and 1 6 k 6 Nq.
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Figure 5.5. Quadrature designs optimal for the criteria ĈI and ĈItrc for n = ntrc = 4

(left) and n = ntrc = 5 (middle). Values of the criterion ĈItrc for the two quadrature designs X̂∗
5

and X̂∗
5,5 (respectively optimal for ĈI and ĈItrc with ntrc = 5) as function of the number ntrc of

considered eigenvalues (right).

Now, if we only retain the ntrc largest eigenvalues of the matrix QW (with ntrc =

card(̂Itrc) ∈ N
∗ and ntrc 6 Nq), we have, from Definition 4.1,

ĈItrc(Hev) =

ntrc∑

k=1

λ̂k

[(
X̂·,k

)T

K−1.
(
X̂·,k

)]
.

In Section 4.3, we have noticed that once the spectral decomposition of the integral
operator (here, the matrix QW) and for a given quadrature design, the terms of the

matrix X̂ can be obtained directly from the spectral decomposition of QW through
expression (4.12).

Thus, for quadrature designs, the computation of ĈI(Hev) requires the evaluation
of a sum of Nq terms (in addition to the inversion of the design covariance matrix K),
where Nq is large in practical applications. On the other hand, the computation of

ĈItrc(Hev) only requires the evaluation of a sum of ntrc terms, and numerical exper-
iments indicate that a value ntrc ≪ Nq (typically, ntrc slightly larger than the design
size n, see Section 5) is sufficient to obtain a µ̂-IMSE-optimal quadrature design when

maximizing ĈItrc . Therefore, once the spectral decomposition of the matrix QW is
performed, no additional demanding computation is required for the evaluation of
ĈItrc at any new quadrature design. Since modern algorithms for spectral decom-
position are extremely fast and efficient (all the more as we focus on the eigenpairs
corresponding to the largest eigenvalues), the extra computational time due to the
initial spectral decomposition is largely compensated by the gain resulting in the use
of the criterion ĈItrc instead of ĈI for the construction of an optimal quadrature
design.

6.2. Perspectives. In its present form, the proposed approach only considers
the problem of designing IMSE-optimal experiments in the context of centered Gaus-
sian random fields (or more generally, in the context of Gaussian random fields with
known mean). Extension to kernel-based interpolation models including an unknown
parametric trend is therefore of importance in order to enlarge the spectrum of po-
tential applications.
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Remark 4.3 can be used to set an upper bound on the truncation level ntrc.
However, this bound generally does not give information about the minimal truncation
level to consider in order to obtain IMSE-optimal quadrature designs when optimizing
the truncated criterion. A better understanding of this level would thus be of interest.

Finally, the choice of a suitable quadrature takes a special importance here since
quadrature designs are searched among the quadrature points. The study of the errors
induced by restricting the optimization to quadrature designs and by approximating
the exact criteria CI and CItrc by their quadrature approximations ĈI and ĈItrc

should hence deserve further studies; see for instance [ST06] for preliminary results
concerning the approximation of the Karhunen-Loève decomposition of random fields.
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