
HAL Id: hal-00913429
https://hal.science/hal-00913429v1

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Fault Detection and Isolation of Aircraft Air
Data/Inertial system

Denis Berdjag, Jérome Cieslak, Ali Zolghadri

To cite this version:
Denis Berdjag, Jérome Cieslak, Ali Zolghadri. Fault Detection and Isolation of Aircraft Air
Data/Inertial system. EUCASS Proceedings Series - Advances in AeroSpace Sciences, 2013, 6, pp.317-
332. �10.1051/eucass/201306317�. �hal-00913429�

https://hal.science/hal-00913429v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


FAULT DETECTION AND ISOLATION
OF AIRCRAFT AIR DATA/INERTIAL SYSTEM

D. Berdjag1, J. Cieslak2, and A. Zolghadri2

1LAMIH Lab, University of Valenciennes
Le Mont Houy, Valenciennes 59313, France

2IMS Lab, University of Bordeaux
351 Cours de la Lib‚eration, Talence Cedex 33405, France

A method for failure detection and isolation (FDI) for redundant aircraft
sensors is presented. The outputs of the concerned sensors are involved
in the computation of §ight control laws, and the objective is to elimi-
nate any fault before propagation in the control loop when selecting a
unique §ight parameter among a set (generally, three) of redundant mea-
surements. The particular case of an oscillatory failure is investigated.
The proposed method allows an accurate FDI of erroneous sensor and
computes a consolidated parameter based on the fusion of data from
remaining valid sensors. The bene¦ts of the presented method are to
enhance the data fusion process with FDI techniques which improve the
performance of the fusion when only few sources (less than three) are
initially valid.

1 INTRODUCTION

The state-of-practice for aircraft manufacturers to diagnose guidance and control
(G&C) faults and obtain full §ight envelope protection at all times is to provide
high level of hardware redundancy in order to perform consistency tests and to
ensure su©cient available control action. In the frame of future environmentally-
friendlier aircraft and structural design optimization, this work deals with a
method of integrity control based on the processing of anemometric and iner-
tial data in the Flight Control Computer (FCC). The FCC provides data used
to compute a command (position order) to servocontrol each moving surface
(Fig. 1). The data are acquired using an inertial acquisition system composed

Progress in Flight Dynamics, GNC, and Avionics 6 (2013) 317-332 
DOI: 10.1051/eucass/201306317 
© Owned by the authors, published by EDP Sciences, 2013

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0,  which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article available at http://www.eucass-proceedings.eu or http://dx.doi.org/10.1051/eucass/201306317

http://www.eucass-proceedings.eu
http://dx.doi.org/10.1051/eucass/201306317


PROGRESS IN FLIGHT DYNAMICS, GNC, AND AVIONICS

Figure 1 Flight control law computation

by several dedicated redundant units (usually, three). The FCC generally re-
ceives three redundant values of each §ight parameter from the sensors and
computes unique §ight parameter value required for the §ight control laws com-
putation.
This speci¦c data fusion processing, called ¤consolidation,¥ classically con-

sists of two simultaneous steps: from the three sources, selection of one unique
and accurate parameter and in parallel, monitoring of each of the three indepen-
dent sources to discard any failed source and to ensure that the selected value
is correct. This overall ¤consolidation¥ processing selects the reliable §ight pa-
rameters with the required accuracy by discarding any possible failed redundant
source.
Current consolidation state-of-practice allows to be compliant with strin-

gent regulations. However, for future aircraft structural design optimization, it
could be required to avoid the propagation of oscillations even of smaller ampli-
tudes.
Fault-tolerant management system checks the consistency of all sensor out-

puts to detect a failed source, typically by using a majority-voting or a weighted
mean method [1] or soft-computing approaches [2]. The main advantages of
this architecture are the design and integration simplicity [3]. Also, to provide
safe operation, the architecture must have at least three valid sources, which
means the fault tolerance could not be guaranteed after a single source failure:
if a source fails, then it has to be removed from the fault tolerant architec-
ture.
The sensor management system proposed in this work aims to solve the in-

herent issue of losing a source in a three sensor acquisition system or triplex,
and to be still capable of a su©cient fault tolerant data acquisition. The is-
sue is investigated for very speci¦c oscillatory failures that may occur in the
§ight parameter sensors. The presented approach is based on a hierarchical
FDI structure which takes in consideration the number of healthy sensors in
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the system. When more than two sensors are available, soft computing tech-
niques are used for data consolidation. Otherwise, ¦lter-based FDI approach
is used to detect the failure node by node. The novelty in the method is the
use of a particular residual generator similar to the harmonic ¦lter developed
in [4] to transform the fault signature in the residual from sinusoidal to step-
like, greatly improving the detection rate for low amplitude oscillatory failures.
The application is related to on-going research undertaken within the Euro-
pean ADDSAFE project [5] to assess the capability of e©cient model-based
fault detection and diagnosis (FDD) methods on realistic aircraft §ight control
systems.
This work is organized as follows:

  section 2 is devoted to problem formulation;

  section 3 presents the proposed structure based on a mixed data fusion /
FDI method for consolidation;

  section 4 presents the simulation results obtained from a high-¦delity
benchmark; and

  concluding remarks are discussed in the last section.

2 PROBLEM FORMULATION

One class of §ight parameter sensor failures is additive oscillations appearing
on output signals. These failures are referred as Combined Oscillatory Failure
Cases (COFC) in contrast to Oscillatory Failure Cases (OFC) which impact only
one control surface [6, 7]. Combined oscillatory failure cases can impact several
control surfaces. The measurements provided by the corrupted source could
propagate through the control loop and may cause under some circumstances
unwanted oscillations of the control surfaces. Thus, the corrupted sources need
to be switched o¨ as fast as possible.
Current industrial practices involve triplex voting schemes as in [8 10]. The

basic principle, shown in Fig. 2, is to sort output signals and to give a 0.5
weighting to the source providing the median value of the parameter and a 0.25
weighting to the two other sources, then adding the results to obtain the value
of the parameter. A threshold, centered around the obtained value, is used to
detect the occurrence of a failure. When a COFC occurs, the corrupted source
is detected when the provided measurement stays outside the threshold for a
speci¦c amount of time.
If only two sources are valid, the consolidation is performed by choosing the

mean value of the two measurements. Notice the discontinuity when switching
from vote-based consolidation to the mean-based one. If the di¨erence between
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Figure 2 Triplex monitoring

the two signals is superior to a speci¦ed threshold, then the two sources are dis-
carded and the last correct value of the parameter is used. On fault occurrence,
the isolation is possible if initially the three sources are valid, and all measure-
ment updates are lost when two sources are declared corrupted, since it cannot be
decided which source remains valid. Also, thresholds must be chosen oªine for
all the possible §ight scenarios, involving long and costly experiments. Finally,
as it can be seen in Fig. 2, transients appear on the consolidated parameter.
The main objective of this work is to enhance the classical majority-vote

triplex monitoring. Two failure cases are investigated: the ¦rst one starting
with three valid sources initially (where the classical majority-based approach is
appropriate) and the second one starting with two valid sources and a corrupted
source initially (where the majority-based approach is impossible).
In order to improve the existing methodology on the ¦rst scenario and to

extend failure isolation functionality on the second one, a mixed Data Fusion
(DF) /FDI method is proposed in the following section.

3 DETAILED DATA FUSION/FAULT DETECTION
AND ISOLATION METHOD

3.1 General Structure

The overall structure of the proposed method is shown in Fig. 3. There are
two major components. The ¦rst one is the FDI module composed by resid-
ual generators and decision-making module, and the second component is the
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Figure 3 Overall structure of the proposed methodology

consolidation module. The role of the FDI module is to detect the corrupted
source and to switch it o¨ as soon as possible, while the consolidation mod-
ule gives an accurate estimation of the parameter based on the measurement
data provided by the valid sources. The knowledge of the §ight control law
is used to discriminate between the COFC and a possible (normal) pilot in-
put, since the oscillation detection is performed separately on each sensor and
the ¦ltering will not discriminate between the ¤good¥ and the ¤bad¥ oscilla-
tions. The consolidation module provides also FDI functionality in the three
valid sources scenario. In order to minimize the computation time, the FDI
module is switched ON only when a sensor is declared corrupted, since when all
the sources are valid, consolidation module provides su©ciently performant fault
isolation.

3.2 Consolidation Module

The consolidation module is similar to the system proposed in [2]. The fusion
between di¨erent sources is performed using a Fuzzy logic approach called Soft-
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voting. Each source is assigned a weight corresponding to the amount of trust
it is credited, and the consolidated signal is the weighted average of all valid
sources:

Svote =
nvalid∑

i=1

wiSi

with wi representing the weight to the source Si and nvalid corresponding to
the number of valid sources. The weight wi is computed from the membership
degree μi ∈ [0, 1] assigned to each measurement:

wi =
μi

nvalid∑

j=1

μj

.

The computation of di¨erent values of μi is given in [2,11]. Each membership
function is centered on the value provided by the corresponding source (Fig. 4)
and used to determine the membership degree of the source, which is given by
the largest membership degree qj of the remaining valid signals:

μi = max
i�=j
(μi(qj)) .

Figure 4 Membership degree computation
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As it can be seen, the majority voting concept is used in soft voting as it
is used in conventional consolidation. The di¨erence is the contribution of the
measurement signals: in conventional scheme, the contribution of the potentially
faulty signal is rejected from the start while in soft voting scheme, the contribu-
tion of the signal is reduced gradually before rejection. The direct consequence of
the ¤rejection¥ vs. the ¤reduction¥ is the discontinuity of the consolidated mea-

surement appearing when a failed
Table 1 Soft monitoring procedure

If μi = 1 then counti = counti − 1
If 0 < μi < 1 then counti = counti
If μi = 0 then counti = counti + 2

source is switched o¨ in the classical
voting scheme. In the soft-voting
based consolidation, the consolidated
measurement remains smooth in all
cases. The overall structure of the soft
voting block is given in [11]. The mon-

itoring component is based on a counter associated to each source and a maxi-
mum allowed threshold (Table 1).
Another very important point is the periodic nature of the failure. Using this

complementary information, the detection can be performed by monitoring the
periods between transitions from 1 to 0 of a membership degree μi as shown in

Figure 5 Oscillatory failure cases behavior
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Figure 6 Soft monitor

Fig. 5. When four successive 1 to 0 transitions of μi show periodicity, an OFC
is detected. Notice that the counter also can provide a detection for a large
amplitude OFC. This is useful to detect a single OFC occurring in three valid
sensors scenarios.
The overall scheme of the monitoring block is shown in Fig. 6. Since the

counter rate is not a function of the di¨erence between the consolidated value
and the ith measurement as in the conventional scheme, but a function of the dif-
ference between the di¨erent measurements, therefore, no transients occur when
a source is switched o¨ because its contribution to the consolidated parameter
was already nil.

3.3 Fault Detection and Isolation Module

Since the only knowledge on the system is the measured outputs and the char-
acteristics of the expected failures, signal processing based FDI methods can be
preferred. The proposed FDI module is based on a particular characteristic of
the harmonic ¦lter proposed in [4]. For the considered problem, the parameter
estimation functionality of this ¦lter is useless; however, the ¦lter is very sen-
sitive to new harmonics appearing in input signal spectrum. This functionality
will be used to design a selective residual generator.
The measured signals are noisy; so, the direct residual generation is di©cult.

Additional ¦ltering component is considered in the form of a suboptimal steady-
state ¦lter similar to the ¦lter developed in [12, 13].
Finally, an abrupt change detection method is used to perform COFC de-

tection. In this work and because of harsh computer time constraints, a robust
derivative estimator is used to amplify residual changes and threshold crossing
detection. The thresholds are computed oªine, in fault-free conditions.

3.3.1 Kalman ¦ltering

Consider the following fault signal:

f(t) = a cos(ω0t+ φ) (1)
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where a, ω0 and φ are, respectively, the amplitude, frequency, and phase of the
sinusoidal signal f(t). The corresponding state space model is

[
‘x1
‘x2

]

=
[
0 1
−ω20 0

]

︸ ︷︷ ︸
A

[
x1
x2

]

;

f =
[
a 0

]

︸ ︷︷ ︸
C

x+ v

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2)

where v is the Gaussian noise. The Kalman Filter for the system described by
Eqs. (2) is:

‘�x = A�x+H [f − C�x] .
In [12], an appropriate value of H for this model is given by

H = 2ξω0

[
1
0

]

.

It is a reasonable choice leading to a suboptimal steady-state ¦lter, with ξ being
a small constant and a set to a = 1. The ¦nal state-space equation of this ¦lter
is given by

‘�x =
[−2ξω0 1
−ω20 0

]

�x+ 2ξω0

[
1
0

]

f . (3)

This corresponds to a stable second order transfer function between the output
and �x1:

G(s) =
�X1
F
=

2ξω0s

s2 + 2ξω0s+ ω20
.

This simple system provides suboptimal performance when ¦ltering sinusoidal
signals around ω0 frequency, ±5 Hz, which ¦ts rather well for the case of in-
terest. However, should the OFC occur in a larger frequency band, the use of
an extended Kalman ¦lter must be considered, augmenting the state with the
parameter –ω0, representing the uncertainty on ω0.

3.3.2 Residual generation

A classical decision-making method in FDI is to check threshold crossing by
the residual signal. An usual problem here is to determine appropriate threshold
values in order to simultaneously maximize fault detection ratio and to minimize
detection delay and false alarms rate. This problem has many possible solutions
for fault signatures that induce abrupt changes in the system behavior (see, for
instance, [14 17]. But for oscillatory failures, the problem is much more di©cult,
as classical abrupt change detection methods are ill-suited for detecting smooth
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changes in the system signals, especially in case of low amplitude oscillatory
failures and noisy measurements.
A possible solution to this problem and the principal contribution of this

work is to transform the sinusoidal in§uence of the COFC in the system into
a step-like in§uence. The determination of the detection threshold is simpli¦ed
and is solely based on the parameters of the measurement noise, usually available
and depending on sensors performance. This transformation is obtained using an
appropriate additional ¦lter. From this perspective, the work reported in [4] will
constitute the basis of the residual generator. In the original paper, an estimator
is proposed to provide accurate estimation for a sinusoidal component in a noisy
signal. It is shown that the outputs of the estimator converge asymptotically
to the correct values. The core of the estimator is a third order nonlinear ¦lter
described by the relations:

‘x1 = Kx3(−2α[−2αx3 − α2x2 + u]− α2x3)
−Kx23y −K[−2αx3 − α2x2 + u]u ;

‘x2 = x3 ;

‘x3 = −2αx3 − α2x2 + u ;
y = x1 +Kx3u .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

The coe©cients K and α are the tuning parameters, with K acting like a gain
and α acting like a damping ratio. When t → ∞, the relation �ω0 =

√|y| is
an accurate estimation of the pulsation of an input oscillatory signal from the
form 1. The remaining parameters (amplitude and phase) are given by

a =

√

−�‘u2
y
+ β2 ; φ = y − β

with

β =
��u
y
;

�‘u = yx3 + 2α[−2αx3 − α2x2 + u] + α2x3 ;
��u = y[−2αx3 − α2x2 + u] + 2αyx3 + α2[−2αx3 − α2x2 + u] .

Here, �‘u and ��u are the input derivative estimates. The residual generator proposed
in this work is thus based on the nonlinear ¦lter described in (4). The ¦lter is
sensitive to the input of an oscillatory signal and reacts by a slope change of the
output y. The proof is ommited for the sake of brevity (see [4]).
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3.3.3 Residual evaluation

The residual evaluation is a decision-making process which usually comes down
to a threshold logic of a decision function [18]. Due to measurement noises,
modeling uncertainties, robust residual evaluation is the only way to keep the
false alarm rate small with an acceptable sensitivity to faults. Classically, robust
residual evaluation can be accomplished in many ways, for example, by statistical
data processing, data reconciliation, correlation, pattern recognition, fuzzy logic,
or adaptive thresholds. In the considered case, the harmonic ¦lter provides a
good discrimination for all nonperiodic outputs and behaves in easily predictable
way when a periodic signal is present in the processed data. Using the residual (or
the energy of the residual) provided by the relations (4) and (3), the detection is
improved using a discrete-time high gain observer proposed in [19]. The discrete
transfer function is given below:

T (z) =
2β

2ε+ β–T
z − 1

z + (1− 2ε/(β–T ))/(1 + 2ε/(β–T ))
where –T is the sampling time and β and ε are the tuning parameters to optimize
false alarm / missed detection ratio. The behavior of this ¦lter is ¦xed by the
ratio –T/ε. High values (superior to 1) are taken when the noise is weak and
low values when the noise is strong.

4 SIMULATION RESULTS

4.1 Protocol

In ADDSAFE project context [5], the simulations are performed using a high
¦delity commercial aircraft benchmark under Matlab/Simulink environment.
The measured parameter is the angle of attack. The measurement noise is a
Gaussian noise with a 10−4 variance. For con¦dentiality concerns, all values
are normalized. The sampling rate is –t = 0.01 s. Two cases are consid-
ered:

(1) a unique failure occurring at tdef = 6 s on the ¦rst sensor with all units
initially being healthy. The detection and the isolation of the COFC is
performed using soft monitoring module; and

(2) a second failure occurring at tdef = 9 s on the second sensor with the ¦rst
unit initially oªine. The detection and the isolation of the COFC are based
on the analysis of the residuals corresponding to each source.
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Note that the second case where only two
Table 2 Combined oscillatory
failure cases parameters

Frequency, Hz Amplitude
0.2; 0.7; 5; 10 0.5◦; 1◦

valid sources are available is very similar to the
case when only one valid source exists, since the
FDI method proposed in this work does not use
data from other sources. For each case, simula-
tions are performed with COFC of di¨erent fre-
quencies and amplitudes (Table 2).

The tuning parameters of the Kalman ¦lter are ω0 = 4π = 2Hz and ξ = 0.9.
The parameters of the harmonic ¦lter are set to K = 20 and α = 10. The
parameter ω0 is taken near the middle of the frequency band of the expected
OFCs, i. e., (0.1 10) Hz. The parameters ξ, K, and α are chosen using a Pareto-
optimum approach, maximizing fault detection ration and minimizing detection
delay, missed detections and false alarms (to have an idea on the selection proce-

Figure 7 Soft monitoring simulation results: (a) measurement consolidation; (b) con-
solidation error; 1 ¡ soft-computing; and 2 ¡ classical
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dure, see [11]). The values are given for a COFC of amplitude 0.5◦ and frequency
of 0.7 Hz.
For the robust derivative estimator, β is set to 1. If the measurement noise

is weak, one can take –T/ε = 10, but for the considered application, the ratio is
¦xed to 0.3 to obtain the best detection/false alarm ratio. This value is obtained
using the approach from the previous paragraph given in [11].

4.2 Unique Failure Scenario

Figure 7 shows the simulation results
Table 3 Soft-monitoring detection delays
(in seconds)

Amplitude
Frequency, Hz

0.2 0.7 5 10
0.5◦ 0.63 0.23 0.13 0.17
1.0◦ 0.33 0.13 0.07 0.07

for the COFC case (a = 0.5◦ and f
= 0.7 Hz). Soft-computing based
FDI scheme and classical voting
approach are compared. It is easy to
notice the discontinuity in the consol-
idated measurement obtained by the
classical vote-based method, while the
soft-computing based consolidated
measurement remains smooth. Parameter discontinuities can lead to unwanted
controller behaviors and should be avoided. The remaining COFC case results
are processed likewise. The detection delays are given in Table 3. The delays
are given as the di¨erence between COFC occurrence in the system and COFC
detection by the implemented FDI method.

4.3 Double Failure Scenario

When two simultaneous OFC occur on
Table 4 Failure detection and isolation
delays (in seconds)

Amplitude
Frequency, Hz

0.2 0.7 5 10
0.5◦ 0.4 0.29 0.23 0.23
1.0◦ 0.37 0.25 0.22 0.22

the ¦rst and the second sensors, the
consolidation module will perform de-
tection but fails to switch o¨ the faulty
sources due to majority-vote principle
(see section 2). However, the results
given in Table 4 let to notice that fault
isolation is successfully carried by the
implemented FDI approach for all
fault frequencies. Hence, any possible wrong decisions could be corrected. Fig-
ure 8 shows the simulation results for the COFC case (a = 0.5◦ and f = 0.7 Hz).
The residual reacts as expected to the occurrence of the failure.
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Figure 8 Combined oscillatory failure detection and isolation cases based on residuals
(ERD ¡ equivalent residual dose)

4.4 Discussion

Simulation results show the complementarity of the two monitoring approaches.
When all the §ight parameter sensors are initially healthy, soft-monitoring suc-
cessfully detection and switches o¨ the corrupted source, with best performance
achieved for frequencies superior to 0.2 Hz. When the soft-monitoring is not
suitable, FDI based on residual generation successfully detects COFC failures
for all frequencies compared to the work investigated in [11].

5 CONCLUDING REMARKS

An approach to oscillatory FDI in aircraft air data/inertial system is presented.
Fuzzy logic approach for consolidation is combined with signal processing based
FDI to extend the conventional scheme in order to manage a low number of
healthy sensors. The proposed approach was successfully implemented on a high
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¦delity commercial aircraft benchmark, and the simulation results con¦rm e©-
ciency of the combined FDI method vs. the conventional scheme.
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