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The design of an automotive powertrain mounting system plays an important role in improving vehicle
noise, vibration and harshness (NVH). One of the main problems encountered in the automotive design
remains the isolation of the low frequencies vibrations of the engine from the rest of the vehicle. Several
engine mounting schemes have been developed to deal with this problem. Most ofthese strategies stem
from arranging the rigid body modes of the engine mounted on resilient supports to have certain coupled
or decoupled characteristics. It is currently admitted in literature that a decoupled powertrain mounting
system improves NVH characteristics. The signi£cant engine mass makes the right frequencies and modes
arrangement a critical design decision. But it can not be stated that decoupling the on-ground rigid body
modes of the engine will systematically reduce chassis vibrations. In this paper,a new analytical method is
proposed to examine the mechanisms of coupling between the engine and the vehicle body structure. The
analytical procedure enable to de£ne the domain of validity of the mounting schemes based on a 6 degrees-
of-freedom engine model and to assess NVH improvement.
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E. Courteille∗+, L. L éotoing+ , F. Mortier ∗ and E. Ragneau+
∗CF GOMMA Barre Thomas S.A
194 Rte de Lorient 35043 RENNES
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1 Introduction

In vehicles, the engine mounts play an essential role for the NVH comfort. Themain functions of these
mounts (rubber or hydraulic) are to provide static supports for the engine and to isolate the vibrations of
the engine from the rest of the vehicle. Thus, the modelling of these vehicle parts, becoming of a great
complexity, constitutes an essential step for the NVH improvement. Besides, in addition to a good de£nition
of the different vehicle parts, it is necessary to focus on the function of the subsystem in the whole vehicle by
evaluating the main interactions with other components. Simulation of the engine mounting system at low
frequency enable to de£ne optimal architecture, and to give the characteristics of the engine mounts necessary
in terms of rigidity and damping. But, to carry out an engine mounting system layout theoretically, system
data have to be provided. As a good de£nition of the rest of the vehicle is not available in early stages of
the vehicle design process, some assumptions have to be made. Speci£cally, the model includes rigid body
representations of the engine and the chassis with appropriate values for the location of the centers of gravity,
masses, and moments of inertia. Therefore, only predictions in the lower frequency range are possible (< 50
Hz). Such a simulation model enable to assess the rigid body modes of the engine in the vehicle as well as
to analyse the motion of the engine and the chassis under various engine operating conditions (idle, full load
speed sweep) and road/wheel inputs.

While designing a powerplant mounting system, one of the main items to consider is the isolation of the
engine vibration from the rest of the vehicle. Generally, this step is largely affected by other vehicle consid-
erations such as packaging constraints and the need for common parts between vehicle platforms. Various
analytical isolation schemes based on rigid body models simulation are employed to optimizethe type of
mounts, their number, location and own characteristics with respect to the overallcharacteristics of the en-
gine mounting system. These strategies include natural frequency placement, torque axis mounting and elas-
tic axis mounting [1]. The background theory of these techniques is widely described in literature [2, 3, 1].
All these studies consider the engine by its on-ground behavior, neglecting the effects of the chassis, exhaust
subsystem, drive-shaft, wheel suspension . . .

Lately, researches have focused on the signi£cance of the rigid body modes alignment for on-ground engine
to its in-vehicle behavior [4, 5]. These studies deal with the accuracy of NVH vehicle models and raise the
problem of interactions between the different subsystems. Various powertrain models have been studied and
their accuracy was discussed through a full vehicle model. By the evaluationof actual cases, the existence of



these interactions have been clearly demonstrated. Nevertheless, no general formalism have been introduced
to evaluate the limits of the modelling assumptions made during the development of the classical 6 d.o.f.
engine mounting schemes.

The aim of the proposed method is to highlight and identify, through an analytical procedure, the relation-
ships between the engine mounting schemes and the vehicle response characteristics. In the second section,
the general equations of motion are reformulated using an original matrix, the coupling matrix introduced
for coupled plates [6]. The characteristics of the coupling matrix, analyzedin the third section, enable to
de£ne the domain of validity of the mounting schemes based on a 6 d.o.f. engine model and to assess NVH
improvement. In the last section, the limitations of the current mounting strategies are discussed.

2 FORMULATION OF THE COUPLING PROBLEM

2.1 Modelling of the vehicle system

In derivation of the equations of motion to simulate dynamic behaviors of engine mount systems with sup-
porting structures, a good modelling of a total vehicle system can consist in foursubsystems : engine (pow-
ertrain), engine mounts, chassis and suspensions. Since small displacements can be assumed, engine is
modelled as rigid body of time-invariant inertial matrix of dimension 6. The engine issupported by an arbi-
trary number of mounts to the vehicle chassis, also modelled as a rigid body elasticallysuspended (Figure
1).
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Figure 1: Engine mounting model

The mounts classically used in engine mounting application are rubber bonded to metalconstruction. It
is possible to get better isolation effects than conventional rubber mount systemswith a hydraulic engine
mount. Elastomeric materials behave visco-elastically, thus engine mounts are represented by three mutually
perpendicular sets of linear spring and corresponding viscous damper in parallel. No rotational stiffness of
the mounts will be considered. The connection to the ground is also simply represented by four systems
of linear spring and viscous damper in parallel at each wheel, characterized by their stiffness and damping
coef£cients following the three directions of the vehicle frame coordinatesR (Figure 1).

By assuming all of the elastic loadings from all mounts and suspensions, the total elastic loadings on the
engine and chassis centers of gravity can be expressed through a generalized square stiffness matrixK of di-
mension 12 (1), resulting from the assembly of the stiffness elementary matrices of mounts and suspensions.

K =

[

Ke −Ke→c

−Kc→e Kc

]

(1)



The matrixKe→c is the engine’s matrix of in¤uence on the chassis and reciprocally,Kc→e is the chassis’s
matrix of in¤uence on the engine. Using a similar assembly procedure to the elastic loadings, the total
damping loadings on the engine and chassis centers of gravity can be expressed by a generalized square
stiffness damping matrixC of dimension 12.

2.2 Equations of motion

The previous assumptions have become standard practice [3] for the development of system simulation
models of vehicles. Because of the broad band input that a vehicle encounters, simulations are generally
performed in the frequency domain. The dynamic equations of motion of the engineand the car body
structure can be written as the matrix form in the frequency domain :

(

−ω2M + jωC + K
)

q (ω) = F (ω) , (2)

whereq is the generalized vector of displacement, de£ned by combining translationalu and rotationalθ
displacements of the centers of gravity of the engine and the chassis (3). The superscriptse andc respectively
stand for engine and chassis. The superscriptj may referred to either the engine or the chassis.

q = t
{

qe qc
}

= t
{

ue θe uc θc
}

(3)

The vectorF = t
{

Fe Fc
}

is the generalized external load vector. The external excitation is harmonic
with known frequencies, amplitudes and phases. Engine excitation forces areapplied to the engine at the cen-
ter of the crankshaft location. The response to road inputs can be studiedby applying forces or displacements
at the suspension ground contact locations in the vehicle model.

The matrixM is the generalized mass matrix of the system (4) :

M =

[

Me 0

0 Mc

]

=









Me
f 0 0 0

0 Me
τ 0 0

0 0 Mc
f 0

0 0 0 Mc
τ









, (4)

with M
j
f = diag(mj),

wheremj is the mass of the rigid bodyj andM
j
τ its inertia matrix.

If a structural damping matrixH is considered, viscous damping termjωC may be replaced by the structural
damping termjH. In the following sections, a complex stiffness (K) is then used to model the dynamic
behavior of the isolators (5).

(

−ω2M + K
)

q (ω) = F (ω) (5)

2.3 Introduction of the coupling matrix

The response of the engine and chassis centers of gravity can be calculated through the solving of equation
(2). Then the complex matrix inversion of equation (6) is classically used.

{

qe

qc

}

=

[ (

K
e
− ω2Me

)

−K
e→c

−K
c→e (

K
c
− ω2Mc

)

]−1 {

Fe

Fc

}

(6)



The inversion of the matrix of impedance is numerically commonplace. Nevertheless, this method of reso-
lution prevent from understanding the coupling phenomena between the engine and the chassis. From the
traditional equation of motion (6), one can isolate a matrix presenting only terms related tothe coupling from
the two bodies (7).

[

I −
(

K
e
− ω2Me

)

−1
K

e→c

−
(

K
c
− ω2Mc

)

−1
K

c→e
I

]

{

qe

qc

}

=

{

(

K
e
− ω2Me

)

−1
Fe

(

K
c
− ω2Mc

)

−1
Fc

}

(7)

For the sake of physical meaning of the coupling mechanism, the term
(

K
e
− ω2Me

)

−1
Fe in equation

(7) represents the displacement of the engine subjected to his own excitation when the chassis is blocked
(suspensions with in£nite stiffnesses). This con£guration represents the on-ground behavior of the engine
(Figure 2-(a)).
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Figure 2: Blocked uncoupled bodies

The term
(

K
c
− ω2Mc

)

−1
Fc represents the displacement of the chassis subjected to his own excitation

when the engine is blocked (null displacements) (Figure 2-(b)). This con£guration however do not represent
a realistic behavior. One expresses the two con£gurations by the generalized vector displacement of the
blocked uncoupled bodiest

{

qe
0 qc

0

}

(8).

{

qe
0

qc
0

}

=

{

(

K
e
− ω2Me

)

−1
Fe

(

K
c
− ω2Mc

)

−1
Fc

}

(8)

While revealing the vector displacement of the coupled systems, the equation (7)takes a form such that a
coupling matrixD appears [6] (9).

{

qe

qc

}

=

{

qe
0

qc
0

}

+ D

{

qe

qc

}

(9)

with D =

[

0
(

K
e
− ω2Me

)

−1
K

e→c

(

K
c
− ω2Mc

)

−1
K

c→e
0

]

Each one of the coupling matrix terms represents the action of the engine mass displacement (respectively
chassis) on the chassis mass displacement (respectively engine). The matrix of coupling describes the ex-
changes between the masses independently of the external excitation. The coupling matrix, studied in more
details in the following part, is then a practical solution to predict the global behavior of a system starting
from the behavior of the isolated subsystems.



3 COUPLING MATRIX

This section is dedicated to the analysis of the coupling matrix by extracting its eigenvalues. The value of
these intrinsic characteristics permits to identify different zone in which the degree of coupling between the
engine and the chassis can be evaluated through an original parameter : the coupling order.

3.1 Eigenvalues and eigenvectors of coupling

The eigenvalues of couplingλr(ω) (r = 1, .., 12) and the eigenvectors of couplingϕr(ω) can be extracted
from the coupling matrix (10).

det (D − λr(ω)I) = 0 (10)

The Figure 3 presents the evolution of the spectral radius of the coupling matrixD versus frequency for three
representative models of front wheel drive cars (a 3, 4 and 6 cylinder engine). The spectral radius ofD is
de£ned byρ (D) = maxr|λr|.
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Figure 3: Spectral radius of the coupling matrixD of 3 models of front wheel drive cars (a 3, 4 and 6 cylinder
engine)

One can see in this £gure that resonant peaks appear for the spectral radius and at the resonance frequencies
of the uncoupled blocked bodies (Table 1).

This property of the spectral radius ofD is clearly demonstrated by rewriting the determinant of the coupling
matrix (11).

detD =
detK

e→c
detK

c→e

det
(

K
e
− ω2Me

)

det
(

K
c
− ω2Mc

) =
∏

r

λr (11)



Engine frequencies (Hz) 1st 2nd 3rd 4th 5th 6th
3 cylinder engine 4.12 4.92 6.55 9.14 10.73 14.89
4 cylinder engine 3.28 5.99 6.57 8.80 12.58 12.67
6 cylinder engine 4.47 5.25 7.69 9.06 9.52 12.90

Chassis frequencies (Hz) 1st 2nd 3rd 4th 5th 6th
3 cylinder engine 3.48 4.89 5.01 5.32 5.62 7.07
4 cylinder engine 3.72 4.72 5.05 5.58 5.76 6.64
6 cylinder engine 3.43 3.98 4.54 4.86 5.45 7.76

Table 1: Frequencies of the rigid body modes of the blocked uncoupled engine and chassis

At the resonance frequencies of the uncoupled blocked bodies, (det
(

K
e
− ω2Me

)

) or (det
(

K
c
− ω2Mc

)

) is
null, then the coupling eigenvalues product and respectively the spectralradius become in£nite. The increase
in the damping of the connections smoothes these resonant peaks. Moreover,the frequencies of the peaks
are located in the frequency band de£ned by the eigenvalues of the coupled bodies [7] (Table 2).

Frequencies (Hz) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
3 cylinder engine 3.01 3.78 4.39 4.84 5.98 6.11 6.34 6.55 8.09 9.54 11.41 15.34
4 cylinder engine 2.58 3.39 3.78 4.01 4.88 5.02 5.43 7.15 7.97 9.28 12.67 12.95
6 cylinder engine 2.28 2.67 3.02 3.39 4.07 4.14 5.31 6.68 7.85 9.35 11.93 13.28

Table 2: Frequencies of the rigid body modes of the engine on mounting system

To support the engine weight and to avoid interference between the engine and the chassis during limit
running conditions such as bumps and sudden brakes, a minimum level of stiffness is necessary for the
engine mounts. The frequency range of the rigid body modes of suspensionare then located between 3 and
20 Hz according to the mass of the engine.

3.2 Hypothesis on the equations of motion

The coupling matrix describes the contribution of one system on the other. One rewrites the equation (9)
connecting the displacement of the systems coupled with the displacement of the blocked uncoupled bodies
(12).

{

qe

qc

}

= (I − D)−1

{

qe
0

qc
0

}

(12)

The components resulting from the excitation (q
j
0
) are isolated from the terms of the coupling matrix, intrin-

sic with the phenomena of coupling. If‖D‖ < 1, where‖.‖ is the Frobenius norm or one of thep-norms,
then(I − D) is nonsingular and :

(I − D)−1 =
∞

∑

n=0

Dn. (13)

Thus, the equation (12) can be written as follow while‖D‖ < 1 :

{

qe

qc

}

=
∞

∑

n=0

Dn

{

qe
0

qc
0

}

. (14)



The spectral radius of the 12-by-12 matrix of couplingD, de£ned in the previous section, gives the lower
bound of the all norms matrix ofD (15).

ρ (D) ≤ ‖D‖ (15)

As shown before, the resonant peaks of the spectral radius appearat the resonance frequencies of the un-
coupled blocked bodies (Figure 3),i.e. between 3 and 16 Hz (Table 2). The £gure 4 shows that beyond 16
Hz, the value of the spectral radius decrease gradually for tending toward zero. From (15), the development
(14) can only be valid apart from resonant peaks of the coupling eigenvalues,i.e. apart from the domain of
appearance of the eigenvalues of the blocked uncoupled bodies.
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Figure 4: Frobenius norm of the coupling matrixD of 3 models of front wheel drive cars (a 3, 4 and 6
cylinder engine)

As presented in £gure 4, the assumption is valid from approximately 22 Hz for the 4and 6 cylinder engine
models. For the 3 cylinder engine model, the assumption is valid from approximately 30 Hzbecause the
resonance frequencies of the uncoupled blocked bodies are slightly higher.

3.3 Coupling order

In an adequate interval of frequencies,i.e. when the value of the norm of the coupling matrix is negligible in
front of the unit, the development of equation (14) can be restricted to a weaker order (16).

{

qe

qc

}

≈
N

∑

n=0

Dn

{

qe
0

qc
0

}

(16)

The parameterN is called ”coupling order”, it expresses the coupling level between the two rigid bodies for
the domain of frequency studied. The evaluation ofN is essential for the global analysis in order to obtain



simplistic relations between coupled system displacements and blocked uncoupled bodies ones. The last part
of this paper notably illustrates the interests of low coupling orders.

The traditional mounting system design strategies require the rigid body modes of the on-ground engine.
Theses strategies involve only engine rigid body mode arrangements for ”shaping” the engine vibratory
behavior,i.e. the vectorqe

0. According to the domain of frequency studied, the phenomena of interactions
between rigid bodies can drastically modify the vibratory responses of the vehicle. The internal vibroacoustic
comfort in automobiles is directly controlled by the chassis acceleration. In a preliminary design phase, a 6
d.o.f. model is indispensable to conduct an engine rigid body mode analysis. But a higher level NVH model
that contains engine and chassis on suspension should be used to understand the interactions between the
rigid bodies thanks to the general expression (9) or to the expression (16) valid in the isolation band, where
‖D‖ < 1. These expressions enable to examine the domain of validity of the modelling assumptionsand
pro£t towards classical engine mounting strategies on the NVH improvement.

4 Numerical evaluation of the coupling order at idle

4.1 3-cylinder engine

The inputs for a 3-cylinder engine are particularly low in frequency at idle ;the combustion forces are 1.5
order (17.5 Hz at 700 rpm) and the unbalance moments are £rst order (11.6 Hz at 700 rpm). Therefore,
the fundamental frequency of the excitation is in the frequency range of thesuspension modes, where the
coupling eigenvalues present resonant peaks. In this range, the interaction between the rigid bodies is high
(Figures 3 and 4) and the coupling with the chassis will strongly modify the vibratory response of the engine.
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Figure 5: Frequency response of the engine center of gravity of the 3 cylinder engine model in the global
coordinate systemR for idle excitation

For this engine type, the development (16) is not valid and no coupling ordercan be de£ned at idle.



4.2 4-cylinder engine

This is in contrast with 4 and 6 cylinder engines for which an evaluation of the coupling order can lead to
an analytical study of the coupling phenomena. The fundamental frequency of the excitation is in the zone
of £ltering, beyond the frequencies of the rigid body modes. Indeed, at thesecond order,i.e. 25 Hz for a 4
cylinder engine at 750 rpm, and at the third order,i.e. 40 Hz for a 6 cylinder engine at 800 rpm, the value of
the norm of the coupling matrix is small in front of the unit (Figure 4).

The £gure 6 represents the decoupled frequency response of the engine center of gravity of the 4 cylinder
engine model for different values of the coupling orderN . The engine response at the £rst order develop-
ment, which corresponds to the blocked uncoupled engine responseqe

0 because of the form extra-diagonal
of D, is quite different from the in-vehicle engine response (N −→ ∞).
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Figure 6: Decoupled frequency response of the engine center of gravity of the 4 cylinder engine model in the
global coordinate systemR with only crankshaft torque excitation

Then the development can be restricted to the second order for the enginedisplacement (Figure 6) since the
difference between the two plots (N = 2) and (N −→ ∞) never exceeds1%. In the same way, the £gure 7
represents the decoupled frequency response of the chassis centerof gravity for the 4 cylinder engine model
for different values ofN . Then, for the frequency domain studied, a £rst coupling order leads to a good
approximation of the chassis response. For the global system, a second coupling order is therefore suf£cient
:

{

qe

qc

}

≈
(

I + D + D2
)

{

qe
0

qc
0

}

. (17)

According to the equation (17), withqc
0 = 0, the chassis displacements are given by :

qc ≈
(

K
c
− ω2Mc

)

−1
K

c→e
qe

0. (18)
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Figure 7: Decoupled frequency response the chassis center of gravity of the 4 cylinder engine model in the
global coordinate systemR with only crankshaft torque excitation

4.3 Automotive powerplant isolation strategies

The strategies currently used in industry analyze, under the modal approach, the harmonic response of the
engine on resilient supports attached to ground [1, 8]. The modal analysisof this six degrees of freedom
(d.o.f.) model is interesting insofar as the response to an excitation is calculated and interpreted according
to the position in frequency and to the form of the modes. The usual strategy moves the rigid body natural
frequencies of the engine away from the frequencies of the input sources to avoid resonances [9, 10].

By manipulating the rigid body modes of the on-ground engine, the torque roll axis decoupling and the elastic
axis decoupling methods attempt to shape the response with the aim of minimizing the vibrations. In these
common methods, it is hypothesized that the disturbances transferred to the car body structure can be reduced
by conditioning the engine mounting system such that the rigid body mode of the engineare decoupled. The
torque roll axis (TRA), is de£ned as the resulting £xed axis of rotation of an unconstrained three dimensional
rigid body when a torque is applied along any axis. Geck and Patton [2] givea mathematical proof for the
conditions which ensure that the engine pulsating torque excites only one engine mode. Singh and Jeong [3]
demonstrate from the axioms of Geck and Patton that when the constant direction of the response becomes a
rigid body mode of the on-ground engine, then the response is a rotation around theTRA, so with a constant
direction. The torque roll axis decoupling strategy controls the displacement of the uncoupled blocked
engine. The on-ground engine has a frequency response only in theTRA direction with the crankshaft
torque variation excitation in all frequency range. The design objective is to reduce vehicle vibration in
certain frequency range with respect to idle engine excitations. At idle, onlythe engine is directly excited, so
the uncoupled blocked chassis has no displacements (Fc = 0 thenqc

0 = 0). However the vibratory behavior
of the vehicle cannot be limited to this six d.o.f model and the coupling effects of the chassis can be very
important.

Then the use of the torque roll axis decoupling strategy for a 3-cylinder engine, already applied by Saitoh



[11], is debatable because the engine behavior in the vehicle can be verydifferent from that on the ground
(Figure 5, up to 15 Hz). A numerical analysis must be done thanks to equation(9) to obtain the hypothetic
bene£ts on the chassis response by a puri£cation of the engine vibratory response.

Conversely, the issue of the torque roll axis strategy on the mounting system of4 cylinder front wheel drive
cars can be analytically analyzed by equation 18. A £rst coupling order leadsto a simple relation between the
on-ground engine response and the vehicle behavior. Such an expression enable to adjust easily the engine
mounting system characteristics for a vehicle improvement.

5 Conclusions

This study was initiated with a desire to determine the signi£cance of the powertrainrigid-body modes for
on-ground system to its in-vehicle NVH behaviour.

The current engine mounting strategies examined the rigid-body modes of the powertrain as it would sit on
the mounts attached to the ground,i.e. neglecting the effect of the chassis. To predict correctly the issue
of the traditional engine mounting strategies in terms of improvement of the dynamic chassis responses,
it is essential to be able to analyze the phenomena induced by the coupling, andthis for the whole of the
excitation frequencies. The complexity of the harmonic response of the powertrain mounted on engine
mounts in a vehicle cannot be understand using the traditional equations of motion.

The general equations of motion are reformulated by using the coupling matrix, intrinsic with the suspended
bodies and independent of the external excitation. The coupling matrix constitutes the starting point of the
analysis of the traditional engine mounting strategies and the order of coupling enable to de£ne their £eld of
validity in frequency.

The use of a simple rigid-body representation of the engine and the chassis enable to concentrate only on the
physique of the coupling problem. It is obvious that such a simplicity occults the effects of chassis ¤exibility
or the modal properties of the cradle on the dynamic response.
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