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Abstra
t

Hydrologi
al time series in
reasingly exhibit non-stationarity, e.g., variables su
h as pre
ipita-

tion and stream�ow values do not maintain a 
onsistent mean over long periods, due to natural

and anthropogeni
 
hanges. Dete
ting whether su
h shifts are gradual or abrupt is a growing


on
ern for water resour
es planning and management. This paper shows that 
onventional trend

and 
hange-point tests do not adequately enable these two types of 
hange to be distinguished. We

propose a method for 
ombining the rank 
orrelations of the Mann-Kendall and Pettitt statisti
s

to extra
t an indi
ator whose value determines whether a shift observed in a given time series is

gradual or abrupt. This method allows the su

ess rate to be independent of the length of re
ord,

and it is validated with Monte-Carlo experiments. The limitations 
aused by the short and noisy

nature of hydro
limati
 time series are dis
ussed. As an appli
ation, the proposed method provides

useful insights on 
hanges in hydro
limati
 variables in the United States during 1910−2009 using

time series from 1217 stations in the United States Hydro
limati
 Data Network (USHCN).
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1 Introdu
tion

Changes in 
limate, land use and water use have 
aused statisti
al shifts in the long-term means

of hydrologi
al variables. In some 
ases, these evolutions 
ould lead to a water management 
risis,

espe
ially sin
e their un
ertainty makes it 
hallenging for water managers to adapt to the 
hanges [33℄.

Dete
ting 
auses of these shifts 
an be 
omplex, as many fa
tors, some of whi
h exhibit nonlinear or


haoti
 behavior [37, 38℄, a�e
t hydrologi
al pro
esses jointly and reinfor
e one another (e.g. [17, 18℄).

Comprehending their 
omplexity is 
ru
ial in river basins fa
ing serious environmental problems, su
h

as the Aral sea in Central Asia [11, 3, 4℄, and the Yellow River basin in China [5, 10℄. For example,

the long-term gradual trends [10, 6℄ and step 
hanges [54℄ identi�ed in the headwaters of the Yellow

River demonstrate the impa
ts of human interferen
es on stream�ow sin
e 
limati
 variations alone


ould not explain the shifts.

Thus, des
riptive statisti
s and 
hange dete
tion methods 
an be used to understand the 
auses

of histori
 
hanges in hydrologi
 time series. This paper fo
uses on a parti
ular issue of growing

importan
e � determining whether a 
hange in a hydrologi
al time series is gradual or abrupt [32, 46,

43, 44℄. We parti
ularly fo
us on 
hanges in the mean, whi
h are monotonous throughout the time

series, and we de�ne them as �shifts�. The term abrupt is here used for the time series in whi
h the

shift takes pla
e in a single short period of time, i.e., a step 
hange. We de�ne gradual as the opposite

of abrupt: the gradual shift or trend o

urs on a large portion of the time series, or all of it. A

ording

to these spe
i�
ations, a shift 
an be either gradual or abrupt. Indeed, as noted by Villarini et al. [43℄,

the length of most hydrologi
al time series makes it di�
ult to retrieve information on more than one


hange pattern (gradual 
hanges and step 
hanges) at on
e. In parti
ular, if a trend and a step 
hange

are 
ontained in the same time series, it is notoriously di�
ult to separate them [46℄. We therefore

propose to label the resulting shift as gradual, even if it is the result of the superposition of several

shifts of smaller amplitude. Identifying this 
hara
terization 
an improve the understanding of the


ausal me
hanisms (see e.g., [43, 44℄).

There is an extensive literature on hydrologi
al time series analysis, whi
h deals with the issues of

the timing and signi�
an
e of a 
hange. In hydrologi
al time series analysis, many available statisti
al

tests assess the signi�
an
e of a 
hange [25℄, e.g., [29, 30, 53, 24, 41℄ for stream�ow; [20, 36℄ for

rainfall; [28, 13, 14℄ for temperature. However, these 
ited trend dete
tion methods are not designed

to dete
t the duration or timing of 
hanges. To obtain information on the timing of a shift, 
hange-

point tests have been performed in asso
iation with a trend test, using the various methods, su
h as

Bayesian inferen
e [46, 52℄, a moving t-test [54℄, and the nonparametri
 Pettitt test [42℄. Usually,

the trend test is performed �rst to diagnose whether there is a statisti
ally signi�
ant 
hange in the

entire time series. Following that, the 
hange-point test is applied to identifying the date(s) at whi
h

the major 
hange o

urs. The identi�ed dates show a shift in the mean where they 
an be related to

other 
ontemporaneous events, su
h as a 
on
omitant shift in other 
limati
 variables or major human

interventions (su
h as the building of a dam for stream�ow regulation). Change-point tests are also

performed separately from trend tests to provide information on both the signi�
an
e and timing of


hange (e.g. in [26, 2, 34, 51, 50℄). However, there is no mean for those studies to di�erentiate between

abrupt (a step 
hange) and gradual (a trend) 
hanges in a rigorous and 
onsistent way, unless the

nature of the shift is visually obvious.
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Using these statisti
al tests requires a prior knowledge of the duration of a 
hange. When dealing

with shifts, Kundzewi
z and Robson [25℄ re
ommended the use of a trend test to analyze a gradual


hange or a 
hange-point test to analyze a step 
hange. The e�
ien
y of trend tests is 
ommonly

tested on linear trend series (e.g., [47℄), while that of 
hange-point test is for time series featuring

an abrupt 
hange (e.g. [51℄). Even 
utting-edge time series modeling te
hniques, su
h as GAMLSS

(Generalized Additive Models for Lo
ation, S
ale and Shape), require the modeler to de
ide whether

to examine step 
hanges prior to modeling [43℄ or to assume that all 
hanges are the result of gradual

pro
esses [45℄.

Furthermore, M
Cabe and Wolo
k [32℄ warned that the out
ome of a test 
ould lead to hasty


on
lusions about the duration of 
hange, stated as follows �previous resear
h has not demonstrated,

however, whether 
ommonly used statisti
al tests for trends 
an distinguish a gradual monotoni
 
hange

from an abrupt `step' 
hange�. By performing a trend test on a moving temporal window, they dete
ted

a step 
hange in stream�ow in the 
ontinental United States around 1970. Another 
hallenge asso
iated

with gradual 
hanges is determining whether su
h 
hanges should be extrapolated beyond the end of a

time series [32, 43℄. Furthermore, one 
annot easily validate the sele
tion of a parti
ular extrapolation

model [22℄.

A re
ent study by Villarini et al. [43℄ further questioned the assumption that a statisti
ally signif-

i
ant trend test is an indi
ation of the existen
e of a gradual 
hange, and proposed a novel method

that enables one to dis
riminate between gradual and abrupt 
hanges in short time series (under a

hundred years) featuring high variability. Paradoxi
ally, this method still fundamentally relies on the

skillful interpretation of trend and 
hange-point test results. The present work, however, 
ontends that

tests used to dete
t 
hange are not adequate to perform a di�erent yet spe
i�
 task to de
ide whether

this 
hange is gradual or abrupt. It also 
ontends that there is to date no proper statisti
al test that

performs that task. Instead, it proposes a novel method that derives an indi
ator whose value allows

for the shift to be 
lassi�ed as gradual or abrupt using a 
riterion that is unrelated to the length of the

re
ord. This indi
ator is extra
ted dire
tly from the rank 
orrelations used by the Mann-Kendall trend

test [31, 21℄, whi
h is widely re
ognized as one of the most popular trend tests in the �eld [25, 43℄.

The rest of the paper is organized as follows: Se
tion 2 introdu
es the MK and Pettitt tests that

have been used previously to 
hara
terize 
hange in hydrologi
 time series. It justi�es that they alone


an only determine the statisti
al signi�
an
e of a 
hange but 
annot distinguish between step 
hanges

and trends. Se
tion 3 shows that using rank 
orrelations from the statisti
s of both tests 
an retrieve

valuable information that the dire
t out
omes of the tests do not 
onvey. This leads to a method

that 
an be used to determine if 
hange in a given time series is gradual or abrupt. Next, Se
tion 4

tests this method and further dis
usses some pra
ti
al aspe
ts surrounding the use of these �ndings.

Following this theoreti
al analysis, a 
ase-study appli
ation is presented in Se
tion 5. Finally, Se
tion

6 dis
usses and summarizes the 
on
lusions from this resear
h.

2 Challenges in identifying patterns using statisti
al tests

This se
tion introdu
es the statisti
al methods used in the present paper, and then dis
usses how a

trend test and a 
hange-point test 
an be 
ompared when investigating the type of 
hange in a time

3



series. For the purpose of the 
omparison, we use the two statisti
al methods on both a monotoni


linear trend of 
onstant slope and a step 
hange. All the tests in this study are 
ondu
ted through

Monte-Carlo experiments, featuring over 10, 000 runs (unless stated otherwise) and an independent,

identi
ally distributed standard normal noise, using time series with a length of n = 100.

2.1 Statisti
al tests

The tests used in this paper are non-parametri
, and therefore do not require normally distributed

data. These tests are well-suited for hydrology, a �eld in whi
h many time series are skewed or


ontain outliers. Throughout this paper, two types of tests are used: a trend test (Mann-Kendall)

and a 
hange-point test (Pettitt). They both measure 
hange through rank 
orrelations. For a more

thorough des
ription of these tests, one 
an refer to Kundzewi
z and Robson [25℄ and Villarini et al.

[43℄.

2.1.1 The Mann-Kendall (MK) trend test

The MK test [31, 21℄ tests the null hypothesis H0 that there is no 
hange in the median of the

independent observations. For a time-series of n observations, the MK statisti
s uses the sign (sgn) of

the di�eren
e of two distin
t observations (i and j), whi
h is de�ned as:

sgn(xj − xi) =











1 if xj > xi

0 if xj = xi

−1 if xj < xi

(1)

The MK statisti
 (S) is a measure of 
hange over the whole time series:

S =
∑

1≤i<j≤n

sgn(xj − xi) (2)

For n ≥ 8, if H0 holds, then S is approximately normally distributed with the following mean and

varian
e:

E(S) = 0 (3)

V (S) =
1

18

(

n(n− 1)(2n+ 5)−
∑

m

tmm(m− 1)(2m+ 5)

)

(4)

where tm is the number of ties of extent m (there is a tie when xi = xj , and the number of realizations

that are equal give the extent of the tie). More spe
i�
ally, the following variable Z follows a standard

normal distribution:

Z =
S − sgn(S)

V (S)
(5)

Thus, H0 is reje
ted at the level of signi�
an
e α when |Z| > z1−α/2, the (1 − α/2) quantile of the

standard normal distribution.
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2.1.2 The Pettitt 
hange point test

The Pettitt test [35℄ tests the null hypothesis H0 that, when arbitrarily splitting the sample in two,

there is no 
hange in the median. It produ
es a rank-based 
omparison between the observations

situated before and after a date τ through the so-
alled Pettitt statisti
s k(τ), whi
h 
an be 
omputed

as follows:

k(τ) =
τ
∑

i=1

n
∑

j=τ+1

sgn(xj − xi) (6)

We are interested in the time for whi
h k(τ) has the greatest absolute value, sin
e it is a measure of

the 
hange that takes pla
e at date τ . Therefore, let us introdu
e the two following quantities:

T = arg max
1≤τ≤n

(|k(τ)|) (7)

K = max
1≤τ≤n

(|k(τ)|) (8)

K is the �nal Petitt statisti
s, and the date T is the date of 
hange. The signi�
an
e probability

asso
iated with the reje
tion of H0 is approximated by:

p ≈ 2 exp

(

−6K2

n3 + n2

)

(9)

with an a

ura
y within 1% for p < 0.5. However, Eq. (9) does not give any 
on�den
e that T is the

date of a shift, as it merely reports the greatest likelihood of a 
hange in the median.

2.2 The di�
ulty of pattern 
hange re
ognition

To understand the limits of using signi�
an
e tests to dete
t 
hange patterns, we examine the respe
tive


apabilities of the Pettitt 
hange-point test and the MK trend test on a linear trend, a 
entered step

(
hange at τ = 50) and a non-
entered step (
hange at τ = 33). For ea
h time series, upon whi
h a

standard normal white noise ε is superimposed, the mean shifts from 0 to 1:

f1(t) =
1

99
(t− 1) + p ε(t) (10)

f2(t) = p ε(t) +

{

0 if t ≤ 50

1 if t > 50
(11)

f3(t) = p ε(t) +

{

0 if t ≤ 33

1 if t > 33
(12)

Thus, p 
orresponds to the standard deviation of the noise, and also happens to be the 
oe�
ient of

variation (CV) of the time series. Tests are 
ondu
ted using a Monte-Carlo simulation for ea
h value

of p, starting at 0.1 and in
reasing by a step of 0.1 until the total dete
tion power of Pettitt and MK

taken together goes below 0.45 (for p = 1.6). That value of the CV will serve as an upper boundary

for subsequent simulations, be
ause the question whether a shift is gradual or abrupt is only relevant
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when this shift 
an be 
onsistently dete
ted in the �rst pla
e. Following [51℄ and [47℄, we use the term

power to quantify the reje
tion rate of the null hypothesis of a test when the alternative hypothesis is

true.

The results with a 5% signi�
an
e level (Figure 1) show that the MK and Pettitt tests both dete
t


hange in over 80% of the 
ases for a CV of 1 and even 60% of the 
ases for CV= 1.6, regardless of the

gradual or abrupt nature of the shift. In other words, this example shows that the trend test dete
ts


hanges other than trends while the 
hange-point test dete
ts 
hange points even when the 
hange is

a linear trend. In addition, both tests are more powerful in dete
ting a step 
hange, even when it is

not 
entered, than a linear trend. This not only poses a terminology problem but, more importantly,


on�rms a methodologi
al problem (suspe
ted by M
Cabe and Wolo
k [32℄ or Villarini et al. [43℄),

be
ause it 
ontradi
ts the assumed asso
iation between test type and duration of 
hange.

Even re
ent developments that are aware of this 
on
eptual problem do not really surmount it.

Villarini et al. [43℄ 
ontendeded that the presen
e of a 
hange point was determined by a 
hange-point

test. Then, gradual 
hanges were determined by dete
ting those with a trend test, applied to 1) whole

time series if the 
hange-point test did not dete
t 
hange, or 2) separately the parts before and after

the identi�ed 
hange-point. Thus, this method still relies on the assumption that the dete
tion of


hange by a 
hange-point test implies the existen
e of a step, and posits a trend if a trend test and a


hange point test yield 
ontradi
tory results regarding the reje
tion of the null hypothesis of no 
hange

(
ase 1).

This paper proposes to develop a spe
i�
 method of surmounting this 
on
eptual problem by using

the tests' rank 
orrelations, whi
h 
ontain information on the time series, instead of the test results

themselves, whi
h use only a portion of that information.

3 A method to dete
t abrupt and gradual 
hanges

This se
tion explains the derivations that lead to our proposed method. First, we provide a way to

relate the MK and Pettitt statisti
s, and then introdu
e a generalized Pettitt �period� statisti
, before

des
ribing a novel method for distinguishing gradual and abrupt 
hanges.

3.1 Common information of the various 
hange patterns

To develops a method to distinguish gradual trends from abrupt step 
hanges through the 
ombina-

tion of the MK and Pettitt statisti
s, we examine the MK statisti
s (S) not only for the purpose of

determining if there is a 
hange in the mean of the time series, but also to extra
t information about

the 
hange from the rank 
orrelation pairs (xj − xi). Based on the de�nition of S in Eq. (2), we have

∀τ , 1 ≤ τ ≤ n (where n is the length of the time-series), the following de
ompositions of S:
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S =

n−1
∑

i=1

n
∑

j=i+1

sgn(xj − xi)

=

τ
∑

i=1

n
∑

j=i+1

sgn(xj − xi) +

n−1
∑

i=τ+1

n
∑

j=i+1

sgn(xj − xi)

=

τ−1
∑

i=1

τ
∑

j=i+1

sgn(xj − xi) +

τ
∑

i=1

n
∑

j=τ+1

sgn(xj − xi) +

n−1
∑

i=τ+1

n
∑

j=i+1

sgn(xj − xi)

(13)

where the middle item 
an be re
ognized as the quantity introdu
ed by Eq. (6), taking pla
e on date

τ . This dire
tly leads to the following relationship between the MK and Pettitt statisti
s:

S =
∑

1≤i<j≤τ

sgn(xj − xi) + k(τ) +
∑

τ+1≤i<j≤n

sgn(xj − xi) (14)

Introdu
ing the MK statisti
s as 
omputed over a subset of a time series of length n, we have ∀(p, q),

1 ≤ p < q ≤ n:

S(p, q) =
∑

p≤i<j≤q

sgn(xj − xi) (15)

This allows Eq. (14) to be written as:

S = S(1, τ) + k(τ) + S(τ + 1, n) (16)

Abrupt and gradual 
hanges 
an be 
hara
terized by expressing Eq. (16) in a matrix form. De�ning

the elements of the square matrix A of size n× n by:

aij =

{

sgn(xj − xi) if j > i

0 if j ≤ i
(17)

A is an upper triangular matrix that has zeroes on the diagonal. Using Eq. (2) and (17), the MK

statisti
s is merely 
omputed as the sum of the terms in the upper triangle. The de
omposition by

Eqs. (16) 
an be graphi
ally demonstrated by Figure 2.a, whi
h illustrates how the di�eren
e between

a gradual trend and a step 
hange 
an be 
onveyed by the MK and Pettitt statisti
s.

For a step 
hange, S(1, τ) and S(τ +1, n) are not supposed to imply any relevant 
hange if τ = T ,

be
ause there is no 
hange in the �rst τ points nor in the last n− τ points. Thus we have:

E [S(1, n)− k(τ)] = 0 (18)

However, for a trend, there is still 
hange to be measured in the �rst τ points and in the last n − τ

points. We have:

E [S(1, n)− k(τ)] = a× sgn(S) (19)

Where a > 0, and it depends on three parameters: the length of the time series, the amplitude of

the 
hange, and that of the noise in the time series. Thus, Eqs. (18) and (19) provide a means of


omparing between abrupt and gradual 
hanges.
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3.2 Generalizing the Pettitt statisti
s

Sin
e the 
omparison between a trend and step 
hange 
an rely on the 
omparison between S(1, n)

and k(τ), in this se
tion we modify and extend the Pettitt statisti
, now noted k(τ, d) so that it


ompares the median of the values after and before an interval of time of length d. Then, we may have

E[S− k] = 0 when 
onsidering the a
tual period of 
hange (even if it does not behave as the fun
tions

f1 or f2 introdu
ed in Se
tion 2). Thus, Pettitt period statisti
s 
an be introdu
ed as follows and

graphi
ally represented on Figure 2.b, again using the matrix A:

k(τ, d) =

τ+d
∑

i=1

n
∑

j=τ+1

aij

=

τ
∑

i=1

n
∑

j=τ+d+1

sgn(xj − xi) +

τ+d−1
∑

i=τ+1

τ+d
∑

j=i+1

sgn(xj − xi)

+

τ
∑

i=1

τ+d
∑

j=τ+1

sgn(xj − xi) +

τ+d
∑

i=τ+1

n
∑

j=τ+d+1

sgn(xj − xi)

(20)

The �rst item of the de
omposition (designated by (i) on Figure 2.b) of k(τ, d) 
ompares a period before

τ (from 1 to τ) to a period after τ + d (from τ + d+1 to n). In addition, based on equation Eq. (15),

the se
ond item of Eq. (20) 
an be understood as being S(τ +1, τ +d) (ii). It is a rank-based measure

of the in
rease (or the de
rease) during the 
onsidered period, during whi
h the measurements are

ranked in an in
reasing (or de
reasing) order for an in
rease (or de
rease) 
hange. Finally the last two

items, respe
tively, 
ompare the periods before (iii) and after (iv) to the period under 
onsideration

(from τ + 1 to n). For any duration d, we 
an use k(τ, d) in the same way as k(τ) de�ned by Eq.

(6) to introdu
e a modi�ed Pettitt statisti
 K(d) = maxτ (|k(τ, d)|). This is analogous to Eq. (8),

ex
ept that it measures 
hange based on a period of length d rather than a single point. For any d,

the asso
iated date of 
hange Tc is then given as:

Tc = argmax{|k(τ, d)|} (21)

In this new 
on�guration, the generalized Pettitt statisti
 is still related to the MK statisti
 by:

S = S(1, Tc) + k(Tc, d) + S(Tc + d+ 1, n) (22)

3.3 Change duration dete
tion method

Now that we have derived the Pettitt period statisti
, let us suppose that, for a given time series, a


hange in the median o

urs between the dates Tc and Tc + d. Then, sin
e the expe
ted values of

S(1, Tc) and S(Tc + d+ 1, n) are both zero, we 
an write a formula that is analogous to Eq. (19):

E [S(1, n)− k(Tc, d)] = 0 (23)

The pair (Tc, d) 
annot be used to identify the exa
t timing and duration of 
hange sin
e Eq. (23)

is only true on average. In fa
t, as with the varian
e of S, that of [S(1, n) − k(Tc, d)] is roughly

proportional to n3/2
. Let us formally de�ne dc as the minimum duration for whi
h |S| ≤ |k(Tc, d)|:

8



dc = argmin
d

{d/|k(Tc, d)| > |S|} (24)

by whi
h dc 
annot be interpreted as a meaningful physi
al duration, su
h as the exa
t duration of


hange. Rather, it 
an only be used as an indi
ation of whether the 
hange is gradual or abrupt,

be
ause Eq. (23) shows that, on average, dc in
reases when the a
tual duration of 
hange in
reases.

Thus, a relevant 
riterion to distinguish between abrupt and gradual 
hanges 
an be to 
ompare dc to

a threshold duration D. If dc > D, the 
hange is 
onsidered gradual, otherwise it is 
onsidered abrupt.

D 
an be arbitrarily 
hosen, and has no physi
al meaning. Yet, s
aling D with the length n of the

time series under study guarantees that the out
ome of the proposed method will not be dependent

on n.

The algorithm depi
ted in Figure 3 diagrams the pro
ess for dis
riminating between gradual and

abrupt 
hanges. d is in
remented, starting with value d = 1 and stops when the 
ondition given by

Eq. (24) is met. This ensures that the �rst d for whi
h |k(Tc, d)| > |S| is dc as de�ned in Eq. (24).

The 
omparison between this dc and D allows for the 
hange to be 
hara
terized as gradual or abrupt.

One should note that, in the absen
e of noise, the dc and Tc values found with the algorithm would, in

fa
t, be the exa
t dates at whi
h a shift begins and ends, be
ause we have S(1, t) = S(t+d+1, n) = 0.

4 Dis
ussion

4.1 Validation: 
omparison with existing methods

The method presented in the above se
tion 
annot 
ompute any 
on�den
e level for dc being larger, or

smaller, than D for a gradual 
hange. For a method that aims at distinguishing gradual from abrupt,

the �rst step is to re
ognize a shift where the mean 
hanges at every date in the time series as gradual,

and a shift o

urring only at one point as abrupt. A linear trend and a step 
hange are 
ommon

respe
tive examples of su
h shifts. Hen
e, validation is 
ondu
ted through Monte-Carlo simulations

using time series of type f1 for gradual 
hanges and f2 and f3 for abrupt 
hanges, as de�ned in Se
tion

2.1. A large number (10, 000) runs are used for ea
h value of the CV (
omprised between 0.1 and 1.6),

where the noise is des
ribed by two types of probability distribution: the standard normal distribution

and the gamma distribution (also known as Pearson type III distribution, to assess the impa
t of

skewness), with unit parameters for both s
ale and shape so as to keep a unit standard deviation. The

latter is an example of a skewed distribution with extreme values. Based on the validation results, we


ompare our method with the method developed by Villarini et al. [43℄, whi
h, to our knowledge, is

the only other one that attempts to systemati
ally identify abrupt and gradual 
hanges in a short and

noisy time series.

Under the 
onvention we 
hose to des
ribe a shift as abrupt or gradual, we will 
onsider that the

method that Villarini et al. proposed leads to label a shift as abrupt when the Pettitt test dete
ts a


hange point, but the MK test applied to the portions of the time series before and after this 
hange

point doess not. In all other 
ases, the 
hange will be treated as gradual. The most relevant range

for the results is when the CV is 
omprised between 0.5 and 1. Below 0.5, the median values at the

beginning and at the end of the time series are separated by more than two standard deviations of
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the noise. Under this 
ondition, one 
an assume the nature of the shift to be dete
table. With the

values above 1, the standard deviation outweighs the amplitude of the shift and dete
tion of 
hange

itself be
omes an issue.

Results for normal and gamma-distributed noise are displayed in Figures 4 and 5, respe
tively,

with the values of D/n ranging from 0.1 to 0.4. Su

ess rates are de�ned by the number of times a


hange is 
orre
tly dete
ted by the statisti
al tests. Thus, the 
omplementary value of the su

ess rate

(1−su

ess rate) is the 
han
e of mistaking a trend for a step, and vi
e versa. Comparisons of our

method with that from Villarini et al. for n = 40, 60, 80 and 120 with the same values of D/n yields

similar results for both methods, whi
h justi�es the s
aling of D with n. The 
hoi
e of D/n matters,

as a bigger D/n results in more 
hanges being 
hara
terized as abrupt. This means that the higher

the value of D/n, the better 
han
e to dete
t an abrupt 
hange when it is present, but the greater

the risk of false dete
tion when a gradual 
hange is present. Thus one has to 
onsider this trade-o�,

illustrated by the results from Figures 4 and 5, when using this method.

Results show that for both methods, noise has far less impa
t on the dete
tion of gradual 
hanges

when ε ∼ Γ(1; 1). The method from Villarini et al. [43℄ dete
ts gradual 
hanges with low levels of noise,

but its performan
e de
reases sharply when CV> 0.3 (normal) or CV> 0.5 (gamma). The method

dete
ts step 
hanges well but in
orre
tly identi�es over two thirds of trends as step 
hanges when

CV> 0.4 (normal) or CV> 0.7 (gamma). When the CV is smaller than one, the risk of false dete
tion

of gradual 
hanges does not disappear, making it risky to use this method as a robust indi
ator of

the presen
e of trends. The issue of dete
ting existing trends results from the short length of re
ord

and the level of noise, whi
h are two fa
tors well known for 
ompromising the e�e
tiveness of both

parametri
 and non-parametri
 trend tests [47℄. In 
ontrast, our proposed method dete
ts gradual


hanges better sin
e the use of the s
aled value (D/n) largely eliminates the dependen
e of the su

ess

rate on the length of re
ord. Even though the su

ess rate of dete
ting gradual 
hanges de
reases

when the CV in
reases, simulation results show that for D/n = 0.3 and lower, the method 
onstitutes

a 
onsiderable improvement in the most relevant range of the CV. The su

ess rate of the method

by Villarini et al. slightly in
reases for gradual 
hanges when CV > 1.2 (after a sharp de
line when

0.4 <CV< 1.2). However, this is only an artifa
t of the spe
i�
 statisti
al tests being used, as the MK

test be
omes more powerful than the Pettitt test when the CV ex
eeds 1.2 (Figure 1).

As for abrupt 
hanges, both methods produ
e good results and have similar su

ess rates, whi
h

fall around 90% for D/n = 0.3, and the distribution type seems to have little e�e
t on the dete
tion

of abrupt 
hanges. The lo
ation of the shift is shown to slightly a�e
t the proposed method, but not

that of Villarini et al. [43℄. Thus, the 
omparison to the only existing method suggests that the 
hoi
e

of D/n around 0.3 is optimal be
ause the large improvement in gradual 
hange dete
tion generally

outweighs a slightly lower rate of abrupt 
hange dete
tion (if any exists). Very low values of D/n,

su
h as 0.1, perform poorly on step 
hanges, and the same happens, to a lesser extent, for gradual


hanges when D/n is over 0.3. Indeed the power of dete
tion of gradual 
hanges with D/n = 0.3 is

larger than D/n = 0.4 by over a 10% margin, for 0.3 <CV< 1.2 with a normally distributed noise and

for CV> 0.5 with a gamma-distributed noise.
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4.2 Remaining 
hallenges in the exploration of 
hange duration

Even though the proposed method was shown to be the best available for the time series given above,

results show that it does not give perfe
t results, espe
ially when it 
omes to dete
t gradual 
hanges.

This demonstrates the di�
ulty of distinguishing gradual shifts from abrupt ones, and it shows two im-

portant pra
ti
al 
onsequen
es. Firstly, a

ording to the results, if the whole time-series is 
onsidered,

a shift that o

urs over a fra
tion 0 < λ < 1 of a time series is dete
ted as gradual when dc > D. While

if the λn points over whi
h the shift o

urs are 
onsidered in isolation, then we only need dc > λD.

This is due to the fa
t that the out
ome hinges on the s
aled value D/n, and suggests that the best

way to assess whether there is a gradual 
hange on a given part of a time series (for instan
e, its �rst

half) is to apply the proposed method to the shortened re
ord. However, the development of more

spe
i�
 methods to deal with the existen
e of gradual 
hanges on a given part of a time series is beyond

the s
ope of this study. Yet, this remark also shows that even though D has no physi
al meaning, the

idea of using the s
aled value D/n fosters the idea that the notions of gradual and abrupt depend on

the times
ales one is looking at. In a dramati
 fashion, "abrupt" 
an refer to millenia if the re
ord

spans 800, 000 years [1℄.

Se
ondly, this di�
ulty justi�es the 
hoi
e to only determine whether 
hanges in the mean o

ur

over a long period of time or over a short one, 
onsidering for instan
e both linear trends and some

su

eeding step 
hanges to be gradual 
hanges. Tests have been 
arried out for a 
hange pattern with

both a trend and a step, under the form of f1 + f2 (see Figure 6). Using the method proposed in this

paper, the results are remarkably similar to those obtained with f1 alone. The dete
tion of gradual


hanges is improved by using Villarini's method when the CV is below 1, but the su

ess rate de
reases

if the CV is above 1. Indeed, the artifa
t that 
auses the su

ess rate to in
rease for a time series in

the form of f1 disappears if the total amplitude of the shift in
reases. This is the 
ase that is observed

here.

Another noteworthy issue is spatial and temporal 
orrelation. The latter, also 
alled serial 
orrela-

tion, has been widely debated in the analysis of hydrologi
al data sin
e Lettenmaier et al. [27℄. Serial


orrelation interferes with the statisti
al signi�
an
e of patterns dis
overed by the proposed method.

Yet, Yue et al. [48℄ and Yue and Wang [49℄ showed how, in the 
ase of a linear trend, the removal of

the 
hange pattern prior to the 
omputation of the serial 
orrelation 
oe�
ients improves the a

ura
y

of the �rst-rank 
orrelation estimate. We provide an upgrade to the removal of a linear trend before

applying the MK test to any given time series [48℄. In our method, if the 
hange is gradual, one

then removes a linear slope similar as what the previous studies did; while if it is abrupt, one 
an

lo
ate the step 
hange (e.g, with the Pettit test) and remove it. On
e the residuals are obtained, a

variety of modi�
ations to statisti
al tests, su
h as MK's [16, 48, 49℄, 
an be made to a

ount for serial


orrelation when it be
omes signi�
ant. Yet, the removal of the 
hange pattern should not be used

to assess how the CV impa
ts the results. Indeed, the value of the CV hinges on the out
ome of the

proposed method, so that it 
annot be used as a parameter that in�uen
es the result.

Spatial 
orrelation in the testing of 
hanges has re
eived some attention, e.g. [7, 15℄). Data

from 
lose geographi
 lo
ations may 
ontain 
onsiderable 
ommon information due to the spatial


orrelation, although it has been argued that a 
ommon timing of shifts, rather than identi
al year-

to-year variations, 
ould sometimes a

ount for a large fra
tion of spatial 
orrelation [36℄. Combining
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the method proposed here with a way of separating spatial 
orrelation from 
on
omitant shifts in a

regional database 
ould be a natural follow-up to this paper, though this is out of the s
ope of the

present work.

Finally, as mentioned before, the robustness of a signal dete
ted 
annot be inferred from the

examination of a single time series. For this reason, we re
ommend the methodology presented in

this paper as an exploratory tool for large datasets. Preliminary data exploration through statisti
al

analysis 
an provide insights that guide model development (e.g, [23, 45℄). Furthermore, dis
overing

temporal patterns at di�erent lo
ations 
an thus lead to useful insights into the spatial repartition of

di�erent 
hange patterns, as illustrated in the following 
ase study.

5 Appli
ation

We use the United States Histori
al Climatology Network (USHCN) Version 2 Serial Monthly Dataset

for the 
ontinental United States (U.S.), the most re
ent update to a dataset designed to understand


ontemporary past 
hanges in hydro
limatology (e.g., [19, 9℄), whi
h has been extensively used in re
ent

years (e.g., [8, 12, 13, 14, 20, 28, 39℄). Annual total pre
ipitation and annual average temperature time

series for all 1217 stations with no missing data were prepared from the monthly pre
ipitation and

temperature data, respe
tively, for ea
h of the stations. We 
hose 1910− 2009 as the 100-year study

period.

Both the method des
ribed in Se
tion 3 and the one advo
ated by Villarini et al. are applied. The

MK and Pettitt tests are used with a signi�
an
e level of 5%. We also use the results from the method

to detrend the time series before 
omputing their auto
orrelation stru
ture. Serial 
orrelations are

insigni�
ant for most of the time series (Table 1). When they are signi�
ant, we use the MK test from

Yue et al. [48℄ if there is only a lag-1 auto
orrelation, while we employ the one by Hamed and Rao

[16℄ for all other 
ases. As explained in Se
tion 4.2, we do not re
ommend to use the residuals as a

parameter to evaluate how the values of the CV for di�erent time series in�uen
e the results. To better

illustrate the impa
t of the 
hoi
e of the threshold value D/n, we pi
k both D/n = 0.2 and D/n = 0.3

to dis
riminate between abrupt and gradual 
hange. For ea
h of these two values, we thus provide

results for ea
h site and for both pre
ipitation and temperature with regard to the following questions:

whether there is 
hange in the median; if there is, whether it is upward or downward, and whether it

is gradual or abrupt. Figures 7 and 8 show the spatial distribution of annual total pre
ipitation and

average temperature trends, respe
tively, while Table 2 summarizes them and 
ompares them with the

results from the method of Villarini et al. [43℄.

Let us �rst explore the di�eren
e between the two methods, with an emphasis on how they address

the dete
tion of gradual 
hanges. For pre
ipitation, the number of gradual 
hanges dete
ted through

Villarini's method is 
lose to the result from the method introdu
ed here. However, in 92 out of 101


ases, the dete
tion of gradual 
hanges by Villarini's method is due to the MK test reje
ting the null

hypothesis of no 
hange (Table 3), while the Pettitt test 
annot reje
t this same hypothesis. Thus,

most of these dete
ted gradual 
hanges 
an be linked to what 
an be seen as a theoreti
al weakness

of that method, as it relies on two statisti
al tests drawing opposite 
on
lusions on the validity of the

null hypothesis of no 
hange. Figure 9 illustrates this for a time series where only the MK test dete
ts
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hange, and for whi
h the abrupt 
hange reported by our framework is a perfe
tly valid model. It also

displays a 
ase where both MK and Pettitt tests dete
t 
hange, and where only our method (even for

D/n = 0.3) dete
ts the apparent gradual nature of this 
hange.

For temperatures however, the results from Table 2 are widely di�erent between both methods.

Mu
h like in Figures 4 to 6, our method dete
ts 147 (for D/n = 0.3) or 175 (D/n = 0.2) more gradual


hanges than the one by Villarini et al., whi
h labels these shifts as abrupt. An example of this is

provided by 10, where the gradual 
hange is apparent, as only the framework proposed in this paper

dete
ts it, even for D/n = 0.3. These results are in line with the results from Figures 4 and 5, whi
h

point to a more e�e
tive dete
tion of gradual 
hanges with our method. In the end, results suggest

a wide di�eren
e in the dete
tion of gradual 
hanges between the two methods. In the following we

fo
us on the results provided by our method.

This study 
orroborates the presen
e of in
reasing pre
ipitation that many other studies have

dete
ted a
ross large portions of the 
ontinental U.S. during the twentieth 
entury (e.g., [8, 12, 13,

14, 20, 28, 39℄). In addition, we �nd that abrupt in
reases appear more widely than gradual ones,

although both are present over large areas in the eastern U.S., espe
ially the Mississippi River basin

and the northeastern U.S. Around 40% of gradual in
reases dete
ted with D/n = 0.2 are not robust

to the rise of the value of D/n to 0.3, whi
h 
orroborates this predominan
e of abrupt in
reases. This

proves that some metri
s, su
h as the average rate of 
hange, whi
h one would strongly asso
iate

with linear, uniform in
reases, 
an be misleading when des
ribing pre
ipitation in
reases in the U.S.

Moreover, any abrupt 
hanges in pre
ipitation 
an be dated around 1970, whi
h 
orresponds to the

date for whi
h M
Cabe and Wolo
k [32℄ identi�ed a step in
rease in the mean annual �ow in the

eastern U.S.. However, about one-third of the in
reases identi�ed East of the Ro
ky Mountains are

gradual, espe
ially in the Great Plains, the Midwest (espe
ially in Nebraska, Minnesota and northern

Illinois and Indiana) and New England. These results suggest a more 
omplex reality than previously

thought.

As for temperature (Figure 8 and Table 2), we �nd that almost two-thirds of the reported in
reases

are gradual, and in most 
ases this diagnosis is robust to an in
rease in the value of D/n. Most regions

of the 
ountry, with the ex
eption of the Southeast, exhibit in
reasing annual average temperature

trends. In most of these areas, espe
ially in a belt in the northern U.S. from the state of Wis
onsin to

the state of Washington, these gradual in
reases are intertwined with step in
reases, whi
h temporally

o

urred around the 1970s. This pattern of in
reases re�e
ts the general evolution of global temperature

during the 20th 
entury [40℄. However, as reported in the literature [8, 14, 28℄, the annual average

temperature had de
reased over 1910− 2009 throughout the Southeastern U.S. The method presented

in this paper, in addition, 
hara
terizes this downward 
hange as an abrupt 
hange that took pla
e in

the 1950s.

6 Con
lusions

This study attempts to 
ombine two rank-based statisti
al tests, the MK trend test and the Pettitt


hange-point test, to extra
t information that 
an be used to de
ide whether a shift observed in a

given time series is gradual or abrupt. The method goes beyond ordinary uses of these tests as tools
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for dete
ting signi�
ant 
hanges in a time series. We show how the statisti
s from both the trend

and 
hange-point tests 
ould be related and arti
ulated together via a de
omposition of the Mann-

Kendall test statisti
 and the introdu
tion of a modi�ed Pettitt statisti
 to retrieve an indi
ator, whi
h

provides a tool for determining whether a 
hange in a short and noisy time series is gradual or abrupt.

It proposes a threshold that 
an be s
aled by the length of the time series, so that only the amplitudes

of the 
hange and the noise 
an a�e
t its out
ome. The method is shown to outperform the re
ent

pioneering development by Villarini et al. [43℄.

However, extra
ting more e�e
tive information from short and noisy time series, su
h as hydro-


limati
 ones, still remains a 
hallenge, as highlighted by the limitations of the proposed method in

this study. This paper has addressed the issue by removing the 
on
eptual hurdle of using the same

method for dete
ting a shift and des
ribing it on
e it has been dete
ted; however, more sophisti
ated

statisti
al tools, possibly new tests, have yet to be developed to fully resolve the issue.

An appli
ation of this method to real data shows the importan
e that a broad dete
tion of the dura-

tion of 
hange 
an have in a spatiotemporal analysis of 
hange. Observations based on the appli
ation

results have 
lari�ed some hypotheses regarding 
limate 
hange and variability in the 
ontinental U.S.

For instan
e, there is a gradual in
rease in annual average temperature in most of the 
ountry in the

twentieth 
entury, ex
ept for the southeastern U.S. where there is a step de
rease in the 1950s. It is


ru
ial to advan
e statisti
al 
hange dete
tion and 
hara
terization methods, su
h as the one presented

in this paper, in an era in whi
h many regions of the world are experien
ing 
limate 
hange [33℄.
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Table 1: Impa
t of serial 
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e level of 5%).

�V� stands for the method from Villarini et al..

Change pattern Pre
ipitation Temperature

D/n = 0.2 D/n = 0.3 V D/n = 0.2 D/n = 0.3 V

No signi�
ant 
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Figure 3: Algorithm for de
iding whether a 
hange is gradual or abrupt, depending on the value of d.
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Figure 4: Compared su

ess rates of the method proposed in this paper and that by [43℄ in the 
ase

of normally distributed noise, with n = 100 and for di�erent values of D/n. a) Su

ess rates for the

dete
tion of gradual 
hanges (when 
hange is dete
ted), and b) and c) for the dete
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hanges (when 
hange is dete
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Figure 5: Same as in Figure 4, but for gamma-distributed noise (ε ∼ Γ(1; 1)).
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Figure 6: Su

ess rate of the dete
tion of gradual 
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Figure 7: Changes in annual pre
ipitation over the 
ontinental United States during 1910− 2009, with

D/n = 0.2 (upper panel) and D/n = 0.3 (lower panel).
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Figure 8: Changes in annual average temperature over the 
ontinental United States during 1910−2009,
with D/n = 0.2 (upper panel) and D/n = 0.3 (lower panel).
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Figure 9: Patterns found both for D/n = 0.2 and D/n = 0.3: step 
hange model for annual pre
ipita-

tion totals at Pres
ott, AR, and linear trend at Goshen, IN.
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Figure 10: A pattern found both for D/n = 0.2 and D/n = 0.3: linear trend model for annual average

temperatures at Saint Johnsbury, VT.
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