
HAL Id: hal-00913309
https://hal.science/hal-00913309v1

Submitted on 11 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A general framework for the realistic analysis of sorting
and searching algorithms. Application to some popular

algorithms
Julien Clément, Thu Hien Nguyen Thi, Brigitte Vallée

To cite this version:
Julien Clément, Thu Hien Nguyen Thi, Brigitte Vallée. A general framework for the realistic analysis
of sorting and searching algorithms. Application to some popular algorithms. 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), 2013, Kiel, Germany. pp.598–
609, �10.4230/LIPIcs.STACS.2013.598�. �hal-00913309�

https://hal.science/hal-00913309v1
https://hal.archives-ouvertes.fr

A general framework for the realistic analysis of
sorting and searching algorithms. Application to
some popular algorithms∗

Julien Clément, Thu Hien Nguyen Thi, and Brigitte Vallée

Université de Caen / ENSICAEN / CNRS - GREYC - Caen, France

Abstract
We describe a general framework for realistic analysis of sorting and searching algorithms, and we
apply it to the average-case analysis of five basic algorithms: three sorting algorithms (QuickSort,
InsertionSort, BubbleSort) and two selection algorithms (QuickMin and SelectionMin). Usually,
the analysis deals with the mean number of key comparisons, but, here, we view keys as words
produced by the same source, which are compared via their symbols in the lexicographic order.
The “realistic” cost of the algorithm is now the total number of symbol comparisons performed
by the algorithm, and, in this context, the average–case analysis aims to provide estimates for
the mean number of symbol comparisons used by the algorithm. For sorting algorithms, and
with respect to key comparisons, the average-case complexity of QuickSort is asymptotic to
2n logn, InsertionSort to n2/4 and BubbleSort to n2/2. With respect to symbol comparisons, we
prove that their average-case complexity becomes Θ(n log2 n),Θ(n2),Θ(n2 logn). For selection
algorithms, and with respect to key comparisons, the average-case complexity of QuickMin is
asymptotic to 2n, of SelectionMin is n − 1. With respect to symbol comparisons, we prove
that their average-case complexity remains Θ(n). In these five cases, we describe the dominant
constants which exhibit the probabilistic behaviour of the source (namely, entropy, and various
notions of coincidence) with respect to the algorithm.

1998 ACM Subject Classification F2.2: Pattern matching, sorting and searching – G2.1: Gen-
erating functions, permutations – G4: Algorithm design and analysis – H1.1: Information theory
– I1.2: Analysis of algorithms

Keywords and phrases Probabilistic analysis of algorithms – Sorting and searching algorithms
– Pattern matching – Permutations – Information theory – Rice formula – Asymptotic estimates

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.598

Introduction

There are two main classes of sorting and searching algorithms: the first class gathers the
algorithms which deal with keys, while the algorithms of the second class deal with words
(or strings). Of course, any data is represented inside a computer as a sequence of bits (that
is a binary string). However, the point of view is different: the key is viewed as a “whole”,
and its precise representation is not taken into account, whereas the structure of a word, as
a sequence of symbols, is essential in text algorithms. Hence, for basic algorithms of the first
class (sorting, searching), the unit operation is the comparison between keys, whereas for
text algorithms of the second class, comparisons between symbols are considered.

∗ Thanks to the two ANR Projects: ANR BOOLE (ANR 2009 BLAN 0011) and ANR MAGNUM (ANR
2010 BLAN 0204).

© Julien Clément, Thu Hien Nguyen Thi, and Brigitte Vallée;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 598–609

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.598
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Clément, T. H. Nguyen Thi, and B. Vallée 599

There exist two important drawbacks to this usual point of view. First, it is difficult to
compare algorithms belonging to these two different classes, since they are analyzed with
respect to different costs. Second, when the keys are complex items, not reduced to single
machine words, it is not realistic to consider the total cost of their comparison as unitary.
This is why Sedgewick proposed in 1998 to analyze basic algorithms (sorting and searching)
when dealing with words rather than with “atomic” keys; in this case, the realistic cost for
comparing two words is the number of symbols comparisons needed to distinguish them in
the lexicographic order and is closely related to the length of their longest common prefix,
called here the coincidence. There are two factors which influence the efficiency of such
an algorithm: the strategy of the algorithm itself (which words are compared?) and the
mechanism which produces words, called the source (what makes two words distinguishable?).

The first results in the area are due to Fill and Janson [5], Fill and Nakama [6], who dealt
with data composed of random uniform bits. Then, in the paper [18], a general framework
towards a realistic analysis based on the number of symbol comparisons is provided, when the
source which emits symbols is (almost completely) general. Furthermore, these principles are
applied to two algorithms, QuickSort and QuickSelect. Later on, a study of the distribution
of the complexity was performed in the same framework [4, 7].

Main results. The present paper follows the lines of the article [18], and works within the
same general framework, with four specific aims:

(a) The general method has been already described in [18]: it was shown that a Dirichlet
series denoted by $(s) characterizes the behavior of an algorithm with respect to the source.
We wish here to highlight the main principles, in order to make easier its application to
various algorithms. As it is often the case in analytical combinatorics, there are two main
phases in the method, a first phase where the series $(s) is built, and a second phase where
it is analyzed. We note here that the first phase may mostly be performed in an “automatic”
way.

(b) We apply the method to three other popular algorithms: InsertionSort, BubbleSort and
SelectionMinimum, respectively denoted in the sequel by the short names InsSort, BubSort,
SelMin (see for instance the book [15] for a thorough description of these algorithms). With
this approach we also easily recover the results about algorithms QuickSort and QuickMin
already obtained in [18]. Thus we provide an unified framework for the analysis of these five
algorithms in Section 2.2.

(c) We exhibit in each case the probabilistic features of the source which play a role
in the analysis: each algorithm of interest is related to a particular constant of the source,
which describes the interplay between the algorithm and the source, and explains how the
efficiency of the algorithm depends on the source, via various notions of coincidence between
words (See Proposition 5). This type of coincidence provides a good characterization of the
algorithm, and our study is a tool for a better understanding of the algorithmic strategy.

(d) We discuss the robustness of the algorithms, i.e., the possible changes in the complexity
behaviors, due to the change in the complexity measure, from the number of key comparisons
to the number of symbol comparisons (see Discussion p. 607).

Plan of the paper. Section 1 first presents the general method, with its main steps. Then,
Section 2 states the main results.

Most of the proofs and technical details are omitted due to space constraints. The full
version of this paper will include them.

STACS’13

600 Realistic analysis of algorithms

1 Main steps for the “realistic” analysis of a sorting algorithm

Here, we describe our general framework, already provided in [18]. We insist on the main steps,
and the notions developed here are somewhat different from the previous paper. We first
characterize in Section 1.1 the strategy of the algorithm (which keys are compared? with which
probability?), then we describe the source, and the central notion of coincidence (Sections
1.2 and 1.3). We obtain an exact formula for the mean number of symbol comparisons,
which involves the mixed Dirichlet series $(s) (depending on the source and the algorithm)
introduced in Section 1.4 and 1.5. In order to obtain asymptotic estimates, we deal with
tameness properties of the source, which entail tameness for the series $(s), and finally the
asymptotic estimates (Sections 1.6 and 1.7).

1.1 The classical probabilistic model: permutations and arrival times
Consider a totally ordered set of keys U = {U1 < U2 < · · · < Un} and any algorithm A which
only performs comparisons and exchanges between keys. The initial input is the sequence
(V1, V2, . . . , Vn) defined from U by the permutation σ ∈ Sn via the equalities Vi = Uσ(i). The
execution of the algorithm does not actually depend on the input sequence, but only on the
permutation σ which defines the input sequence from the final (ordered) sequence. Then,
the permutation σ is the actual input of the algorithm and the set of all possible inputs is
the set Sn (usually endowed with the uniform distribution).

The strategy of the algorithm A defines, for each pair (i, j), with 1 ≤ i < j ≤ n, the
subset of Sn which gathers the permutations σ (or the arrival times) for which Ui and Uj
are compared by the algorithm A, when the input sequence is (Uσ(1), Uσ(2), . . . , Uσ(n)). For
efficient algorithms, the two keys Ui and Uj are compared only once, but there exist other
algorithms (the BubSort algorithm for instance) where Ui and Uj may be compared several
times. In all cases, π(i, j) denotes the mean number of comparisons between Ui and Uj .
The computation of π(i, j) is the first step, described in Section 2.1. These mean numbers
π(i, j) are computed with direct probabilistic arguments. A remarkable feature is that the
expectations π(i, j) are always expressed as sums of rational functions depending on i, j or
j − i.

1.2 General sources
Here, we consider that the keys are words produced by a general source. By convention, we
denote open and closed intervals of real numbers]a, b[and [a, b], whereas (a, b) denotes a
pair of real numbers.

I Definition 1. Let Σ be a totally ordered alphabet of cardinality r. A general source
produces infinite words of ΣN, and is specified by the set {pw, w ∈ Σ?} of fundamental
probabilities pw, where pw is the probability that an infinite word begins with the finite prefix
w. It is (only) assumed that sup{pw : w ∈ Σk} tends to 0, as k →∞.

For any prefix w ∈ Σ?, we denote by |w| the length of w (i.e., the number of the symbols
that it contains) and aw, bw, pw the probabilities that a word produced by the source begins
with a prefix α of the same length as w, which satisfies α < w, α ≤ w, or α = w, meaning

aw :=
∑

α,|α|=|w|,
α<w

pα, bw :=
∑

α,|α|=|w|,
α≤w

pα, pw = bw − aw. (1)

Denote by L(S) the set of (infinite) words produced by the source S, ordered via the
lexicographic order. Given an infinite word X ∈ L(S), denote by wk its prefix of length k.

J. Clément, T. H. Nguyen Thi, and B. Vallée 601

The sequence (awk) is increasing, the sequence (bwk) is decreasing, and bwk−awk = pwk tends
to 0. Thus a unique real P (X) ∈ [0, 1] is defined as the common limit of (awk) and (bwk),
and P (X) can be viewed as the probability that an infinite word Y be smaller than X. The
mapping P : L(S) → [0, 1] is strictly increasing outside the exceptional set formed with
words of L(S) which end with an infinite sequence of the smallest symbol or with an infinite
sequence of the largest symbol.

Conversely, almost everywhere, except on the set {aw, w ∈ Σ?}, there is a mapping M
which associates, to a number u of the interval I := [0, 1], a word M(u) ∈ L(S). Hence the
probability that a word Y be smaller than M(u) equals u. The lexicographic order on words
is then compatible with the natural order on the interval I. The interval Iw := [aw, bw], of
length pw, gathers (up to a denumerable set) all the reals u for which M(u) begins with the
finite prefix w. This is the fundamental interval of the prefix w.

1.3 Coincidence
Here, we are interested in a more realistic cost related to the number of symbol comparisons
performed by these algorithms, when the keys are words independently produced by the
same source. The words are ordered with respect to the lexicographic order, and the cost for
comparing two words (measured as the number of symbol comparisons needed) is closely
related to the coincidence, defined as follows.

I Definition 2. The coincidence function γ(u, t) is the length of the largest common prefix
of M(u) and M(t).

More precisely, the realistic cost of the comparison between M(u) and M(t) equals γ(u, t)+1.
The coincidence γ(u, t) is at least ` if and only if M(u) and M(t) have the same common
prefix w of length `, so that the parameters u and t belong to the same fundamental interval
Iw relative to a prefix w of length `. We thus introduce the triangles

T := {(u, t) : 0 ≤ u ≤ t ≤ 1}, Tw = (Iw × Iw) ∩ T = {(u, t) : aw ≤ u ≤ t ≤ bw}. (2)

Using the two relations

T ∩ [γ ≥ `] =
⋃
w∈Σ`

Tw,
∑
`≥0

1[γ≥`] =
∑
`≥0

(`+ 1)1[γ=`],

the following equality holds, for any integrable function g on the unit triangle T , and will be
extensively used in the sequel,∫

T
[γ(u, t) + 1]g(u, t) du dt =

∑
w∈Σ?

∫
Tw
g(u, t) du dt. (3)

1.4 Average-case analysis – various models
The purpose of average–case analysis of structures (or algorithms) is to characterize the
mean value of their parameters under a well-defined probabilistic model that describes the
initial distribution of its inputs.

Here, we adopt the following general model for the set of inputs: we consider a finite
sequence V = (V1, . . . , Vn) of infinite words independently produced by the same source S.
Such a sequence V is obtained by n independent drawings v1, v2, . . . , vn in the interval I
via the mapping M , and we set Vi := M(vi). We assume moreover that V contains two
given words M(u) and M(t), with u < t. The variables N[0,u[, N[0,t[respectively denote the

STACS’13

602 Realistic analysis of algorithms

number of words of V strictly less than M(u), strictly less than M(t). These variables define
the ranks of M(u) and M(t) inside the set V, via the relations, valid for u < t,

RankM(u) = N[0,u[+ 1,RankM(t) = N[0,t[+ 2,

where the respective translations of 1 and 2 express that M(u) and M(t) belong to V.
We first consider the number of key comparisons between M(u) and M(t), and deal with

the mean number π̂(u, t) of key comparisons performed by the algorithm between M(u) and
M(t), where the mean is taken with respect to all the permutations of V . The mean number
π̂(u, t) is related to the mean number π(i, j) via the equality

π̂(u, t) = π(N[0,u[+ 1, N[0,t[+ 2). (4)

In our framework, expressions obtained for π(i, j) ensure that π̂(u, t) is always a sum of rational
functions in variables N[0,u[, N[0,t[and N[u,t[, (with the relation N[0,t[= N[0,u[+N]u,t[+ 1).

When the cardinality n of V is fixed, and words Vi ∈ V are independently emitted by
the source S, this is the Bernoulli model denoted by (Bn,S). However, it proves technically
convenient to consider that the sequence V has a variable number N of elements that obeys
a Poisson law of rate Z,

Pr{N = k} = e−Z
Zk

k! . (5)

In this model, called the Poisson model of rate Z, the rate Z plays a role much similar to
the cardinality of V. When it is relative to probabilistic source S, the model, denoted by
(PZ ,S), is composed with two main steps:

(a) The number N of words is drawn according to the Poisson law of rate Z;
(b) Then, the N words are independently drawn from the source S.
Note that, in the Poisson model, the variables N[0,u[, N]u,t[are themselves independent
Poisson variables of parameters Zu and Z(t− u) (respectively). The expectation π̂(u, t) is
itself a random variable which involves these variables.

1.5 Exact formula for the mean number of symbol comparisons
The density of the algorithm in the Poisson model, denoted by φZ(u, t) and defined as

φZ(u, t) du dt = Z2 · EZ [π̂(u, t)] du dt = (Z du) · (Z dt) · EZ [π̂(u, t)],

is the mean number of key comparisons between two wordsM(u′) andM(t′) for u′ ∈ [u−du, u]
and t′ ∈ [t, t + dt]. In the model (PZ ,S), this is a main tool for computing, not only the
mean number of key comparisons KZ performed by the algorithm, but also the mean number
of symbol comparisons SZ via the formulae

KZ =
∫
T
φZ(u, t) du dt, SZ =

∫
T

[γ(u, t) + 1]φZ(u, t) du dt.

To return to the Bernoulli model (Bn,S), the coefficients ϕ(n, u, t) in the series expansion of
φZ(u, t) defined as

ϕ(n, u, t) := (−1)n n![Zn]φZ(u, t), (6)

are computed in an “automatic way” from the mean numbers π̂(u, t), themselves closely
related to π(i, j). This is the second step leading to results in Table 1 p. 608. Using Eq. (3),
the sequence ϕ(n) is now defined for any n ≥ 2,

ϕ(n) :=
∫
T

(γ(u, t) + 1)ϕ(n, u, t) du dt =
∑
w∈Σ?

∫
Tw
ϕ(n, u, t) du dt, (7)

J. Clément, T. H. Nguyen Thi, and B. Vallée 603

and is easy to obtain via computations of the integral of ϕ(n, u, t) on the triangles Tw. Now,
the mean number S(n) of symbol comparisons used by the algorithm when it deals with n
words independently drawn from the same source is related to ϕ(n) by the equality

S(n) =
n∑
k=2

(−1)k
(
n

k

)
ϕ(k), (8)

which provides an exact formula for S(n), described in Section 2.2. The expression of S(n)
is obtained in an “automatic” way, from the expectations π(i, j).

1.6 Asymptotic estimates for the mean number of symbol comparisons
However, the previous formula does not give an easy or straightforward access to the
asymptotic behaviour of S(n) (when n→∞). In order to get asymptotic estimates, we first
need an analytic lifting $(s, u, t) of the coefficients ϕ(k, u, t), that is an analytic function
$(s, u, t) which coincides with ϕ(k, u, t) at integer values s = k in the summation of Eq. (8).
This analytic lifting gives rise to the mixed Dirichlet series itself,

$(s) :=
∫
T

[γ(u, t) + 1]$(s, u, t) du dt =
∑
w∈Σ?

∫
Tw
$(s, u, t) du dt,

which depends both on the algorithm (via $(s, u, t)) and the source (via the fundamental
triangles Tw). For each algorithm, the existence of this analytic lifting is granted in a domain
<s > σ0. However, the value of σ0 depends on the algorithm. One has σ0 = 1, except for
the algorithms InsSort and BubSort where σ0 equals 2. This is due to constant term 1/2
appearing in the expectation π(i, j), as seen in Table 1 p. 608 (see also Section 2.2).

The Rice Formula [12, 13] transforms a binomial sum into an integral in the complex
plane. For any real σ1 ∈]σ0, σ0 + 1[, one has

T (n) =
n∑

k=1+σ0

(−1)k
(
n

k

)
$(k) = (−1)n+1

2iπ

∫
<s=σ1

G(s) ds, with G(s) = n!$(s)
s(s− 1) . . . (s− n) . (9)

Then, along general principles in analytic combinatorics [9, 10], the integration line can be
pushed to the left, as soon as G(s) (closely related to $(s)) has good analytic properties: we
need a region R on the left of <s = σ0, where $(s) is of polynomial growth (for =s→∞)
and meromorphic. With a good knowledge of its poles, we finally obtain a residue formula

T (n) = (−1)n+1

[∑
s

Res [G(s)] + 1
2iπ

∫
C2

G(s) ds
]
,

where C2 is a curve of class C1 enclosed in R and the sum is extended to all poles s of G(s)
inside the domain delimited by the vertical line <s = σ1 and the curve C2.

The dominant singularities of G(s) provide the asymptotic behaviour of T (n), and the
remainder integral is estimated using the polynomial growth of G(s) when |=(s)| → ∞.
According to Eq. (8) and(9), and in the cases where σ0 = 2, we have to add to T (n) the term
corresponding to the index k = 2, where the analytical lifting $ does not coincides with ϕ.
For algorithms BubSort and InsSort, the additional term is of the form ϕ(2)

(
n
2
)
.

1.7 Tameness of sources
We first describe three cases of possible regions R where good properties of $(s) will make
possible such a shifting to the left in the Rice formula.

STACS’13

604 Realistic analysis of algorithms

I Definition 3. A function $(s) is tame at σ0 if one of the three following properties holds:
(a) [S–shape] (shorthand for Strip shape) there exists a vertical strip <(s) > σ0 − δ for

some δ > 0 where $(s) is meromorphic, has a sole pole (of order k0 ≥ 0) at s = σ0 and is of
polynomial growth as |=s| → +∞.

(b) [H–shape] (shorthand for Hyperbolic shape) there exists an hyperbolic region R,
defined as, for some A,B, ρ > 0

R := {s = σ + it; |t| ≥ B, σ > σ0 −
A

tρ
}
⋃
{s = σ + it; σ > σ0 −

A

Bρ
, |t| ≤ B},

where $(s) is meromorphic, with an only pole (of order k0 ≥ 0) at s = σ0 and is of polynomial
growth in R as |=s| → +∞.

(c) [P–shape] (shorthand for Periodic shape) there exists a vertical strip <(s) > σ0 − δ
for some δ > 0 where $(s) is meromorphic, has only a pole (of order k0 ≥ 0) at s = σ0 and
a family (sk) (for k ∈ Z, k 6= 0) of simple poles at points sk = σ0 + 2kiπt with t 6= 0, and is
of polynomial growth as |=s| → +∞1.

There are three parameters relative to the tameness: the integer k0 is the order, and,
when they exist, the real δ is the abscissa, and the real ρ is the exponent.

Here, the main Dirichlet series $(s) of interest are closely related to the Dirichlet series
of the source, which involve the fundamental probabilities pw, and the ends aw, bw of the
fundamental intervals (see Section 1.1), via a function F : [0, 1]2 → R+ of class C1,

Λ[F](s) :=
∑
w∈Σ?

F (aw, bw) psw, Λk[F](s) :=
∑
w∈Σk

F (aw, bw) psw. (10)

For F ≡ 1, we omit the reference to F , and we let Λ := Λ[1]. These series satisfy, for <s > 1,
the relation2 |Λ(F, s)| ≤ ‖F‖Λ(σ). Since the equality Λk(1) = 1 holds for all k, the series
Λ(s) is divergent at s = 1, and many probabilistic properties of the source can be expressed
in terms of the behavior of Λ(s), when <s is close to 1. For instance, the entropy h(S) of the
source S is defined as the limit (if it exists),

h(S) := lim
k→∞

−1
k

∑
w∈Σk

pw log pw = lim
k→∞

−1
k

d

ds
Λk(s)|s=1 . (11)

Two types of properties of the source may entail tameness for the mixed series $(s).

I Definition 4 (Tameness of Sources). (a) A source is weakly tame if the function s 7→ Λ(s)
is analytic on <s > 1, and of polynomial growth when =s→∞ on any <s ≥ σ1 > 1

(b) Denote by F the set of functions F : [0, 1]2 → R+ of class C1. A source is Λ–tame
if Λ(s) admits at s = 1 a simple pole, with a residue equal to 1/h(S), (where h(S) is the
entropy of the source)3 and if one of the following conditions is fulfilled:
1. [S–shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1 with a S–shape;

1 More precisely, this means that $(s) is of polynomial growth on a family of horizontal lines t = tk with
tk →∞, and on vertical lines <(s) = σ0 − δ′ with some δ′ < δ.

2 The norm ‖·‖ is the sup-norm on [0, 1]× [0, 1].
3 Then (proof omitted here) any series Λ[F](s) for any F ∈ F , F > 0, admits at s = 1 a simple pole, with

a residue equal to
1

h(S)

∫ 1

0
F (x, x)dx.

J. Clément, T. H. Nguyen Thi, and B. Vallée 605

2. [H–shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1 with a H–shape;
3. [P–shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1, with a P–shape for F ≡ 1.

For F 6≡ 1, Λ[F](s) has either a S–shape, or a P–shape.

This definition is in fact very natural, since it describes various possible behaviors of
classical sources. “Most of the time”, the simple sources (memoryless sources or aperiodic
Markov chains) are Λ–tame. They never have a S–shape, but they may have a H–shape or
a P–shape, according to arithmetic properties of their probabilities [8]. Dynamical sources,
introduced by Vallée and defined in [17], may have a P–shape only if they are “similar”
to simple sources. Adapting deep results of Dolgopyat [2, 3], it is possible to prove that
dynamical sources are “most of the time” Λ–tame with a S–shape [1], but they may also have
a H–shape [14]. See the cited papers for more details, where all these facts, here described
in a informal way, are stated in a formal way and proven.

This definition is also well-adapted to our framework since it describes situations where
the mixed series $(s) may be proven tame. Then, the contour of the Rice integral may be
shifted to the left, providing an asymptotic expansion for the mean number S(n).

The weak tameness of the source is sufficient to entail the tameness at s = 1 (with a
S–shape, and an exponent k0 = 0) of series $(s) related to selection algorithms (namely
QuickMin and SelMin). The Λ–tameness of the source is central in the analysis of sorting
algorithms, as it ensures the tameness of $(s) related to algorithms QuickSort, InsSort
and BubSort); moreover, the tameness shape $(s) is inherited from the one of the source.

2 Summary of our results.

We recall the main steps of the method.
Step 1. Computation of expected values π(i, j).
Step 2. Automatic derivation of $(s, u, t); determination of the abscissa σ0.
Step 3. Expression for the mixed Dirichlet series $(s), and description of the main term of
the singular expression of $(s)/(s− σ0). Interpretation of the “dominant” constants.
Step 4. Relation between tameness of the source and tameness of the mixed series $(s).
Application of the Rice Formula. Statement of the final results.

This Section presents the results with three tables (found at the end), five propositions
and a theorem. Section 2.1 summarizes Steps 1 and 2 with Propositions 2.1 and 2.2, and
Table 1. Section 2.2 summarizes Step 3 with Propositions 2.3, 2.4, 2.5, and Table 2. Finally,
Section 2.3 states the final result (Theorem 2.6) with Table 3. The proofs are omitted in this
short version and defered to a full version of this paper.

2.1 Summary of the results for Steps 1 and 2
We present in the leftmost part of Table 1 the expressions for the mean number π(i, j) of
key comparisons between Ui and Uj , for each algorithm of interest. With these expressions,
it is easy to recover the estimates for the mean number K(n) of key comparisons (recalled in
the third column).
I Proposition 5. Consider the permutation model described in Section 1.1, and denote by
π(i, j) the mean number of comparisons between the keys of rank i and j, with i ≤ j. Then,
for any of the five algorithms, the mean numbers π(i, j) admit the expressions described in
the second column of Table 1 p. 608.
We then obtain the expressions for the analytic lifting $(s, u, t), via an “automatic” derivation
taking into account the similar expressions for quantities π(i, j).

STACS’13

606 Realistic analysis of algorithms

I Proposition 6. Denote by $(s, u, t) the function which provides an analytical lifting of
the sequence ϕ(n, u, t) defined in Eq. (6), and by σ0 the integer which defines the domain
<s > σ0 of validity of this lifting. Then, for any of the five algorithms, the functions $(s, u, t)
admit the expressions described in the fifth column of Table 1 p. 608.

2.2 Summary of the results for Step 3 – the mixed Dirichlet series
I Proposition 7. Consider any general source, assumed to be weakly tame, together with
the fundamental intervals [aw, bw] defined in (1) and its Dirichlet series defined in Eq. (10).
Then, for any of the five algorithms, the mixed Dirichlet series $(s) (defined in Section 1.6)
admit in the domain <s > σ0, the expressions displayed in the second column of Table 2,
together with the values of σ0 in the third column. Depending on the value of σ0 the mean
number S(n) of symbol comparisons is

S(n) =
n∑
k=2

(−1)k
(
n

k

)
$(k) (if σ0 = 1), S(n) =

(
n

2

)
Λ(2)

2 +
n∑
k=3

(−1)k
(
n

k

)
$(k) (if σ0 = 2).

We now study the relation between tameness of the source and tameness of the mixed
Dirichlet series.
I Proposition 8. Assume the source S to be weakly tame. Then, the mixed Dirichlet series
$(s) relative to selection algorithms are both tame at σ0 = 1 with order k0 = 0 and a
S–shape. Moreover, their abscissae δ satisfy

(a) [QuickMin] δ ≥ 1/3.
(b) [SelMin] δ > 0 depends on an exponent a (attached to the source).
Assume the source S to be Λ–tame. Then, the mixed Dirichlet series $(s) relative to sorting
algorithms satisfy the following:

(a) [QuickSort] $(s) is tame at σ0 = 1 with order k0 = 2.
(b) [InsSort] $(s) is tame at σ0 = 1 with order k0 = 1.
(c) [BubSort] $(s) is tame at σ0 = 2 with order k0 = 1.
Moreover, the source S gives its shape of tameness to the series $(s).
We finally describe the main term of the singular expression of $(s)/(s− σ0) at s = σ0.
I Proposition 9. The constants of interest which intervene in the main terms displayed in
the last column of Table 2 p. 608 are:

(i) The entropy h(S) of the source.
(ii) The coincidence c(S), namely the mean number of symbols needed to compare two

random words produced by the source.
(iii) The min–coincidence a(S): this is the mean number of symbols needed to compare a

uniform random word and the smallest word of the source.
(iv) The logarithmic coincidence b(S): this is the mean number of symbols needed to compare

two words X and Y randomly chosen as follows: the word X is uniformly drawn from
the source, and Y is drawn with Y ≥ X, according to density 1/t.

The entropy is defined in (11). The constants a(S), b(S), c(S) satisfy the inequalities
a(S) < b(S), c(S) < 2b(S) and are defined as follows

a(S) =
∑
`≥0

q`, b(S) =
∑
w∈Σ?

∫
Tw

1
t
du dt c(S) = 2

∑
w∈Σ?

∫
Tw

du dt =
∑
w∈Σ?

p2
w = Λ(2).

Here q` is the probability of the prefix of length ` of the smallest word of the source, Tw is
the fundamental triangle defined in (2) and Λ(s) is defined in (10).

J. Clément, T. H. Nguyen Thi, and B. Vallée 607

The constants a(S), c(S) and h(S) are easy to compute for any memoryless source.
For the unbiased source Mr, or for the source Bp on the alphabet {0, 1}, with p := p0,
one has: a(Mr) = c(Mr) = r

r−1 , h(Mr) = log r, a(Bp) = 1
1−p , c(Bp) = 1

2p(1−p) and
h(Bp) = −p log p− (1− p) log(1− p). The constant b(S) is more difficult to compute even in
the memoryless case. But, for the sourceMr, one has (see [11] for details)

b(Mr) =
∑
`≥0

(
1 + 1

r`

r`−1∑
k=1

log k

r`

)
, b(M2) .= 2.639689120.

2.3 Final step
I Theorem 10. Consider a general source S. For selection algorithms QuickMin, SelMin,
we assume the source to be weakly–tame, and, for sorting algorithms QuickSort, InsSort,
BubSort, we assume the source to be Λ–tame. Then, the mean number S(n) of symbol
comparisons performed by each algorithm on a sequence of n words independently drawn from
the same source S admits the asymptotic behaviour described in Table 3. Here, the constants
κi in the subdominant terms4 involve the Euler constant γ together with the subdominant
constant of the source5 d(S):

κ0 = 2
h(S) (γ − 2) + 2d(S), κ1 = 1

8h(S) (2γ − 3) + d(S)
4 .

The errors terms E(n), F (n) are not of the same type for sorting algorithms and selection
algorithms.

For selection algorithms, still assuming the source is weakly tame. The error term F (n)
is of order O(n1−δ), with δ = 1/3 for QuickMin. For SelMin, the constant δ depends on the
exponent a (if it exists) attached to the source.

For sorting algorithms, assuming a Λ–tame source with a given shape, we have
– if the source has a S–shape with abscissa δ, then E(n) = O(n1−δ);
– if the source has a H–shape with exponent ρ, then E(n) = n · O (exp[−(logn)ρ]);
– if the source has a P–shape with abscissa δ, then E(n) = n ·Φ(n)+O(n1−δ) where n ·Φ(n)

is the expansion given by the family of imaginary poles (sk).

Discussion. We now compare the asymptotic estimates for the two mean numbers, the
mean number K(n) of key–comparisons (column 2 of Table 3) and the mean number S(n)
(column 3 of Table 3). There are two types of algorithms

(a) The “robust” algorithms for which K(n) and S(n) are of the same order. This is
the case for three algorithms: InsSort, QuickMin and SelMin. Of course, the constants are
different for K(n) and S(n), and the ratios S(n)/K(n) involve coincidences of various types
always between two words, respectively uniform coincidence c(S), logarithmic-coincidence
b(S), or min-coincidence a(S).

(b) The algorithms for which S(n) and K(n) are not of the same order, here QuickSort
and BubSort. In both cases, the ratio S(n)/K(n) is asymptotic to [1/(2h(S))] logn.

(c) This ratio also appears in lower bounds: Combining results due to Seidel [16], with
our methods, we obtain a lower bound for the number of symbol comparisons of any sorting

4 The constant κ2 is not computed here. Note that the computation of the subdominant term for InsSort
needs the singular expansion of $(s)/(s− 1) at s = 1.

5 This constant, defined as the constant term in the singular expansion of Λ(s) at s = 1, is easy to
compute for any source Bp: d(Bp) = (1/h(Bp))2(p log2 p+ (1− p) log2(1− p)).

STACS’13

608 Realistic analysis of algorithms

algorithm on a source S, asymptotic to S0(n) = [1/(2h(S))]n log2 n. Comparing with the
well-known lower bound for the number of key comparisons, asymptotic to K0(n) = n logn,
we observe that the ratio S0(n)/K0(n) is also asymptotic to [1/(2h(S))] logn.

Algorithms π(i, j) K(n) σ0 $(s, u, t), <s > σ0

QuickSort
2

j − i+ 1 2n logn 1 2(t− u)s−2

InsSort
1
2 + 1

(j − i+ 1)(j − i)
n2

4 2 (s− 1)(t− u)s−2

BubSort
1
2 + 1

(j − i+ 1)(j − i)+ n2

2 2 (s− 1)(t− u)s−3[t− (s− 1)u]

+ 2(i− 1)
(j − i+ 2)(j − i+ 1)(j − i)

QuickMin
2
j

2n 1 2ts−2

SelMin
1

i(i+ 1) + 1
j(j − 1) n 1 (s− 1)[us−2 + ts−2]

(a) Table 1: results for Steps 1 and 2 (Section 2.1)

Algorithms $(s) σ0 Main term of $(s)/(s− σ0)

QuickSort
2Λ(s)
s(s− 1) 1 2

h(S)
1

(s− 1)3

InsSort
Λ(s)
s

2 c(S)
2

1
(s− 2)

BubSort −Λ[F0](s− 1) = −
∑

w∈Σ?
awp

s−1
w 2 − 1

2h(S)
1

(s− 2)2

QuickMin 2
∑

w∈Σ?

∫ bw

aw

(t− aw)ts−2dt 1 2b(S) 1
s− 1

SelMin (s− 1)
∑

w∈Σ?
(bw − aw)

∫ bw

aw

us−2du 1 a(S) 1
s− 1

(b) Table 2: results for Step 3 (Section 2.2)

Algorithms K(n) Dom. term of S(n) Subdominant terms Rem. term

QuickSort 2n logn 1
h(S) n log2 n κ0n logn + κ2n E(n)

InsSort
n2

4
c(S)

4 n2 1
h(S)n logn +

(
κ0 −

c(S)
4

)
n E(n)

BubSort
n2

2
1

4h(S) n
2 logn

(
κ1 + c(S)

4

)
n2 nE(n)

QuickMin 2n 2b(S)n F (n)

SelMin n a(S)n F (n)

(c) Table 3: results for Theorem 1 (Section 2.3). Nota. Rem.: Remainder, Dom.: Dominant.

Figure 1 Tables summarizing results.

Conclusion. We show here the applicability of the method which has been described in
the paper [18]. We describe a new point of view on the basic algorithms, and their analysis,
which can be (partially) automatized. Our dream is to revisit all standard algorithms from a
student book, with this point of view, and perform their realistic analysis.

J. Clément, T. H. Nguyen Thi, and B. Vallée 609

Acknowledgements. This paper greatly benefited from many discussions we had with
Philippe Flajolet, on the topics of the Rice formula and the tameness of sources. For these,
we are truly grateful.

References
1 E. Cesaratto and B. Vallée. Gaussian distribution of trie depth for dynamical sources.

submitted, 2012.
2 D. Dolgopyat. On decay of correlations in Anosov flows. Ann. of Math., 147(2):357–390,

1998.
3 D. Dolgopyat. Prevalence of rapid mixing in hyperbolic flows. Ergod. Th. & Dynam. Sys.,

18:1097–1114, 1998.
4 J. A. Fill. Distributional convergence for the number of symbol comparisons used by

Quicksort. Ann. Appl. Probab. (2012), to appear.
5 J. A. Fill and S. Janson. The number of bit comparisons used by quicksort: an average-case

analysis. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 300–307, 2004. Long version Electron. J. Probab. 17, Article 43, 1-22 (2012).

6 J. A. Fill and T. Nakama. Analysis of the expected number of bit comparisons required by
quickselect. Algorithmica, 58(3):730–769, 2010.

7 J. A. Fill and T. Nakama. Distributional convergence for the number of symbol comparisons
used by Quickselect. CoRR, abs/1202.2599, 2012. submitted.

8 P. Flajolet, M. Roux, and B. Vallée. Digital trees and memoryless sources: from arithmetics
to analysis. Proceedings of AofA’10, DMTCS, proc AM, pages 231–258, 2010.

9 P. Flajolet and R. Sedgewick. Mellin transforms and asymptotics: Finite differences and
Rice’s integrals. Theor. Comput. Sci., 144(1&2):101–124, 1995.

10 P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
11 P. J. Grabner and H. Prodinger. On a constant arising in the analysis of bit comparisons

in Quickselect. Quaestiones Mathematicae, 31(4):303–306, 2008.
12 N. E. Nörlund. Leçons sur les équations linéaires aux différences finies. In Collection de

monographies sur la théorie des fonctions. Gauthier-Villars, Paris, 1929.
13 N. E. Nörlund. Vorlesungen über Differenzenrechnung. Chelsea Publishing Company, New

York, 1954.
14 M. Roux and B. Vallée. Information theory: Sources, dirichlet series, and realistic analyses

of data structures. In Proceedings 8th International Conference Words 2011, volume 63 of
EPTCS, pages 199–214, 2011.

15 R. Sedgewick. Algorithms in C, Parts 1–4. Addison–Wesley, Reading, Mass., 1998. 3rd ed.
16 R. Seidel. Data-specific analysis of string sorting. In Proceedings of the Twenty-First Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1278–1286, 2010.
17 B. Vallée. Dynamical sources in information theory: Fundamental intervals and word

prefixes. Algorithmica, 29(1/2):262–306, 2001.
18 B. Vallée, J. Clément, J. A. Fill, and P. Flajolet. The number of symbol comparisons in

QuickSort and QuickSelect. In S. A. et al., editor, Proceedings of ICALP 2009, Part I,
volume 5555 of Lecture Notes in Computer Science, pages 750–763. Springer-Verlag, 2009.

STACS’13

	Main steps for the ``realistic'' analysis of a sorting algorithm
	The classical probabilistic model: permutations and arrival times
	General sources
	Coincidence
	Average-case analysis – various models
	Exact formula for the mean number of symbol comparisons
	Asymptotic estimates for the mean number of symbol comparisons
	Tameness of sources

	Summary of our results.
	Summary of the results for Steps 1 and 2
	Summary of the results for Step 3 – the mixed Dirichlet series
	Final step

