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1. Introduction

A wide variety of theoretical models for concrete are available in the literature. They can be

divided into two principal classes: models in the context of fracture mechanics and models

in the context of continuum damage mechanics. The paper addresses the latter case in

which damage is represented by phenomenological internal variables. The advantages and

the drawbacks of a continuum model have been exhaustively treated in the literature and are

not discussed here. It is well established that damage in brittle materials is inherently a non-

isotropic phenomenon and a number of anisotropic damage models for concrete have also been

proposed introducing 4th or more frequently 2nd order tensors. Since experimental evidence

on concrete shows different crisis mechanisms according to the stress state (Van Mier 1984),

usually limit criteria in terms of all three invariants of the stress tensor are used, like Willam

or Ottosen criteria or others (Chen 1982), eventually coupled with a limit cap for tensile

stresses and/or for volumetric compression. In addition a damage activation law must be

provided. Anisotropic models still present two order of problems: firstly, the number of

the material parameters is higher than in standard scalar models and secondly, it is usually

difficult to identify all of them directly from experiments; furthermore, in the computational

implementation dramatic convergence problems are often met. For these reasons many authors

still use and propose isotropic damage formulations, based on a single scalar damage variable

(Brenchic and Gambarotta 2001, Salari et al 2004) or, alternatively, two damage scalar

variables, in an attempt to distinguish between tension and compression damage mechanisms

(Comi and Perego 2001, Marfia et al 2004, Contrafatto and Cuomo 2006). Isotropic damage

models have been shown to be sufficiently accurate in a wide range of practical applications,

provided that the load path does not excessively rotate during the simulation.

In a previous work the authors presented a framework of elastic-plastic damaging

model for concrete under multiaxial stress states (Contrafatto and Cuomo 2006), where

an extensive—although not exhaustive—close examination of the concerning literature is

reported. Distinctive features of that proposal are the introduction of fully coupled damage

and plasticity multiple crisis criteria, ruling simultaneously the activation of all the irreversible

phenomena, i.e. hardening, damage and fracture-like deformations. Therefore the limit

strength is predicted by the model and turns out to be dependent on the load history; the different

behaviour of concrete in tension and compression is modelled by means of a generalization of

Curnier’s bimodular materials (Curnier et al 1993), considering an extended kinematic space

that contains, in addition to the elastic strains, the damage internal variables. In the previous

paper the strain space is divided into a compression domain and a tension domain and the

separating interface is defined by the deviatoric plane, as in the original Curnier proposal, so

that the elastic energy takes different forms according to the sign of the trace of the elastic strain

tensor. This choice is commonly assumed in isotropic damage models (Comi and Perego 2001,

Faria et al 1998). It was shown that this decomposition yields very reasonable results in many

simple cases. However, some limitations were also underlined, about the prediction of the

lateral strain in confined compression tests and the simulation of cyclic tests, where the change

in the slope of the unloading stress–strain curve not necessarily occurs at zero stress, since it

is ruled by the sign of the trace of the elastic strain tensor. It is finally recalled that in non-

isotropic damage models the separating interfaces are generally defined as the eigenvalues of

the elastic strain tensor, often splitting it into its tensile and compressive components by means

of a polar decomposition (Papa and Taliercio 1996). The same decomposition is adopted by

Lubarda et al (1994).

The dependence of the elastic energy, and then of the elastic stiffness, on the variation

of sign of a principal strain appears intuitively to have a sound physical basis. Although



this decomposition is also possible in conjunction with isotropic models, in the literature

it cannot be found a comparison with the decomposition based on the trace of the strain

tensor. The purpose of the present paper is to perform such a comparison, implementing

the new decomposition based on the sign of the principal strains in the general framework

presented in (Contrafatto and Cuomo 2006), in order to verify whether it can overcome some

of the drawbacks previously highlighted. With this aim a new definition of the elastic energy

is introduced, employing the decomposition of the elastic strain tensor in its positive and

negative components performed by means of a spectral representation. However, classical

spectral decompositions cannot be safely used, since in typical load condition such as uniaxial

or hydrostatic states the eigenvectors are not univocally defined, because the eigenvalues

presents, respectively, double or triple coalescence and the usual split of the strain tensor

cannot be performed. This difficulty can be overcome by making use of the so-called

basis-free representation based on a spectral decomposition in term of eigenprojections

(Carlson and Hoger 1986). This representation of the strain tensor has the advantage that

it avoids a numerically expensive determination of eigenvectors and is univocally defined also

in the case of defective eigenvalues. The derivation of the elastic constitutive equations and of

the elastic tangent moduli is rather complex since it requires the determination of the first and

second derivative of the positive and negative component of the strain tensor, i.e. it is necessary

to calculate the derivative of a tensor-valued tensor function with respect to its argument. The

mathematical treatment of this topic is beyond the purposes of this paper and will not be

presented. Since the goal of the work is to perform a comparison of the two formulations for

simple loading processes, only the relevant expressions in a principal axes representation will

be reported, in the case that the classical spectral decomposition can be used, i.e. for distinct

eigenvalues. In this way formulas become much simpler and can be more easily analysed.

After the introduction of the field variables in section 2, in section 3 the functional ruling

the reversible behaviour is described and the derivation of the generalized elastic constitutive

equations is presented. In section 4 the limit criteria are reported. Section 5 contains

comparisons of the present model with the one based on the trace of the elastic strain tensor

and some applications.

2. Field variables and definition of the problem

We refer to the model presented in (Contrafatto and Cuomo 2006). It is a continuum damage

model that falls within the category of simple material models (Germain 1973). The variables

of the model are

ε ∈ D macroscopic strain σ ∈ D stress

α ∈ R isotropic hardening χ ∈ R hardening internal forces

αv ∈ R volumetric hardening χv ∈ R volumetric hardening internal forces

ω1 ∈ R tensile damage ζ1 ∈ R tensile damage driving forces

ω2 ∈ R compressive damage ζ2 ∈ R compressive damage driving forces

D being the space of the 2nd order symmetric tensors.

Note that the internal variables are all scalar functions, since kinematic hardening is not

considered important for concrete. As mentioned in the introduction the damage variables are

considered as scalars: this is an obvious limitation, but it allows computational simplifications.

Two different scalar damage variables in principle associated with tensile and compressive

strain processes are used.

The model is implemented in the hypothesis of small deformations and each kinematic

variable is additively decomposed in a reversible and an irreversible component, in a classic



way:

ε = εe + εp

{

α = αe + αp = 0

αv = αv
e + αv

p = 0

{

ω1 = ω1e
+ ω1p

= 0,

ω2 = ω2e
+ ω2p

= 0.

Note that the definition of traditional damage models of the damage variables ωip =
−ωie ∈ [1, 0] has been employed.

With compact notation the state of the system is described by the two sets of dual kinematic

and static state variables η and τ :

η = (ε, α, αv, ω1, ω2) = ηe + ηp τ = (σ, χ, χv, ζ1, ζ2).

The evolution of the state of the material is ruled by two functionals, the internal energy

e(ηe) and the rate of dissipation d(η̇p). The apparently redundant distinction between reversible

and irreversible components of the internal damage variables (i.e. ωe = −ωp) is mainly

motivated by the intention of distinguishing the kinematic variables that are responsible for

storage energy and for dissipation, as stated in (Contrafatto and Cuomo 2002).

By standard thermodynamic arguments the driving forces τ , dual to the kinematic variables

ηe, are obtained differentiating the free energy

τ ∈ ∂ηe
e(ηe), (1)

where the symbol ∂ denotes sub-differentiation, in order to account for non-smooth energy

functionals.

The model closely follows the framework of paper (Contrafatto and Cuomo 2006) and the

reader is cross-referred to the cited paper for details and physical motivations. However the

main ingredients and the essential equations for the comprehension of the development of the

present model will be recalled in sections 3 and 4.

3. Internal stored energy potential

The stored energy, function of the reversible components of all the kinematic variables, is

given by the sum of the elastic deformation energy φ(εe, ω1e
, ω2e

) and of the hardening

(configuration) energy ψ1(αe, ω1e
, ω2e

) + ψ2(α
v
e ), both coupled with damage:

e(εe, αe, α
v
e , ω1e

, ω2e
) = φ(εe, ω1e

, ω2e
) + ψ1(αe, ω1e

, ω2e
) + ψ2(α

v
e )

+ ind W1(ω1e
) + ind W2(ω2e

),

W1 =
{

ω1e
: −1 � ω1e

� 0
}

W2 =
{

ω2e
: −1 � ω2e

� 0
}

,

ind W(ωe) =
{

0 if ωe ∈ W,

+∞ if ωe /∈ W,

(2)

where the last two terms enforce the admissibility constraints for the damage variables.

3.1. Hardening potentials

The hardening potential ψ1(αe, ω1e
, ω2e

) that rules the evolution of the elastic domain is taken

in the same form as in (Contrafatto and Cuomo 2006)

ψ1(αe, ω1e
, ω2e

) = 1
2
Hf (ω1e

, ω2e
)α2

e ,

f (ω1e
, ω2e

) = p1(1 + ω1e
)n1 + p2(1 + ω2e

)n2 ,

p1 + p2 = 1 p1, p2 ∈ R.

(3)

In (3) H is the hardening modulus, p1 and p2 are weight scalars setting the influence degree

of tensile and compressive damage on hardening. Thanks to the structure of formula (3) it is

possible to model the non linear ascending branch of the stress–strain behaviour of concrete,



without introducing ad hoc rules. Moreover, the onset of damage, observed well before the

peak stress is reached, is correctly reproduced.

The volumetric hardening potential ψ2(α
v
e ) accounts for the recovery of stiffness following

initial degradation when concrete is loaded along the hydrostatic compression axis. According

to experimental observations it has been defined as (Resende 1987)

ψ2(α
v
e ) = D

a − αv
e

a

[

ln
a − αv

e

a
− 1

]

, (4)

where a is the maximum degree of compaction and D has the dimension of an elastic stiffness.

The dimensionless ratio
a−αv

e

a
ranges between 0 and 1.

3.2. Elastic energy potential

The elastic energy potential φ(εe, ω1e
, ω2e

) is function of the elastic strains and of both the

damage variables, so that the elastic moduli evolve differently for tensile or compressive

processes. This result can be achieved following a general methodology for bimodular elastic

materials introduced by Curnier et al (1993). It consists in subdividing the strain space into a

compression domain D
− and a tension domain D

+, separated by an hypersurface (separating

interface) z(εe) and in assigning a different form of the elastic energy in each sub-domain:

φ =
{

φ+(εe, ω1e
, ω2e

) = 1
2

[

2G+εe : εe + λ+tr2εe

]

if z(εe) � 0,

φ−(εe, ω1e
, ω2e

) = 1
2

[

2G−εe : εe + λ−tr2εe

]

if z(εe) � 0,
(5)

where G+, G−, λ+, λ− are the generalized Lame coefficients, all depending on the pair

(ω1e
, ω2e

). In (5) the internal product : between 2nd-order tensors introduces a double

contraction of the indices.

The values of the elastic moduli have to comply with some physical conditions indicated

by Curnier:

• the separating interface z(εe) must contain the origin of the strain space;

• the positive and negative subdomains D
+ and D

− must be simply connected;

• the elastic energy must be continuous across the interface

φ(εe, ω1e
, ω2e

) = φ+(εe, ω1e
, ω2e

) = φ−(εe, ω1e
, ω2e

) ∀εe : z(εe) = 0

• the gradient of the elastic energy must be continuous across the interface (continuity of

the stress–strain law)

[φ+],εe
= [φ−],εe

⇒ σ +(εe, ω1e
, ω2e

) = σ−(εe, ω1e
, ω2e

) ∀εe : z(εe) = 0

• the jump in the hessian of the elastic energy (elastic tensor) across the interface must be

normal to the interface (i.e. there is no tangential discontinuity)

[σ +],εe
−[σ−],εe

= s(ηe)[z(εe)],εe
⊗[z(εe)],εe

∀εe : z(εe) = 0

in which s(ηe) is a scalar function of the elastic kinematic variables.

In (Contrafatto and Cuomo 2006) the trace of the elastic strain tensor was used as

separating interface. This approach has also been followed by Comi and Perego (2001),

Faria et al (1998). In such a way the elastic energy takes different forms according to the

sign of the trace of the elastic strain tensor. After imposing the continuity and the jump

conditions it was found that the shear modulus is constant across the interface trεe = 0,

i.e. G+(ω1e
, ω2e

) = G−(ω1e
, ω2e

), i.e. it evolves in the same way for tensile and compressive



processes; consequently only three parameters could be assigned independently. The following

choice for the elastic moduli was made

G+(ω1e
, ω2e

) = G−(ω1e
, ω2e

) = G(ω1e
, ω2e

) = G0(1 + ω1e
)n1(1 + ω2e

)n2 ,

λ+(ω1e
, ω2e

) =
[

K0 − 2
3
G0(1 + ω2e

)n2
]

(1 + ω1e
)n1 ,

λ−(ω1e
, ω2e

) = K0 − 2
3
G0(1 + ω1e

)n1(1 + ω2e
)n2 .

(6)

G0 and K0 being the undamaged elastic constants.

The elastic constitutive equations were finally given by (1):

σ =
{

σ + = 2Gεe + λ+trεe trεe � 0,

σ− = 2Gεe + λ−trεe trεe � 0,

χ = Hf (ω1e
, ω2e

)αe,

χv =
D

a
ln

(

a

a − αv
e

)

,

ζ1 =















ζ +
1 = 1

2

[

2
∂G

∂ω1e

εe · εe +
∂λ+

∂ω1e

tr2εe

]

+ 1
2
Hα2

e

∂f

∂ω1e

+ ζ1a
trεe � 0,

ζ−
1 = 1

2

[

2
∂G

∂ω1e

εe · εe +
∂λ−

∂ω1e

tr2εe

]

+ 1
2
Hα2

e

∂f

∂ω1e

+ ζ1a
trεe � 0,

ζ2 = ζ +
2 = ζ−

2 = 1
2

[

2
∂G

∂ω2e

εe · εe +
∂λ+

∂ω2e

tr2εe

]

+ 1
2
Hα2

e

∂f

∂ω2e

+ ζ2a
.

(7)

where ζ1a
∈ ∂indW1(ω1e

), ζ2a
∈ ∂indW2(ω2e

)

In the remaining part of this paper this model will be referred to as model MI.

An alternative choice is investigated in this work: the elastic strain tensor is split

into its tensile and compressive components by means of some polar decomposition

(Lubarda et al 1994, Papa and Taliercio 1996, Carlson and Hoger 1986).

Classical theories are based on the usual spectral decomposition

εe =
3

∑

a=1

eana ⊗ na |na| = 1 (8)

ea being the distinct eigenvalues, i.e. the principal strain, and na the normalized eigenvectors of

the elastic strain tensor εe, i.e. the principal direction of strain. The positive (tensile) component

of the strain tensor can be obtained removing the negative eigenvalues from (8) and vice versa

for the negative (compressive) component. If we introduce the Heaviside step function h(x),

such that

h(ea) =
{

1 ea > 0,

0 ea < 0,
h(−ea) =

{

0 ea > 0,

1 ea < 0,
(9)

they are given by:

ε+
e =

3
∑

a=1

eah(ea)na ⊗ na ε−
e =

3
∑

a=1

eah(−ea)na ⊗ na (10)

and it results εe = ε+
e + ε−

e .

This decomposition is valid provided that all eigenvalues are non-defective so that their

algebraic multiplicity coincides with the geometric multiplicity, i.e. with the number of

associated linearly independent eigenvectors. However it presents computational difficulties

related to the cases of repeated eigenvalues, typical of uniaxial traction or compression

(e2 = e3) or of hydrostatic states (e1 = e2 = e3). In such situation the eigenvectors are

not univocally defined so that the usual split of the strain tensor cannot be performed.



When this situation occurs, the FE codes fail. It is remarkable that none of the authors

that have used a similar decomposition has explicitly indicated a correct alternative procedure

holding for defective eigenvalues.

For overcoming this inconvenience the so-called basis-free representation based on a

spectral decomposition in term of eigenprojections is needed. This representation has the

advantage that it avoids a numerically expensive determination of eigenvectors. In addition it

is univocally defined also in the case of defective eigenvalues. Accordingly, the elastic strain

tensor εe is decomposed as it follows:

εe = ε+
e + ε−

e εe =
p

∑

a=1

eaMa, (11)

where ea are the p distinct eigenvalues of εe (0 < p � 3) and Ma are the eigenprojection

univocally given by Silvester’s formula:

Ma =
b

∏

b �= a

a = 1

εe − eaI

ea − eb

p > 1,

Ma = I p = 1,

p
∑

a=1

Ma = I, MaMb =
{

Ma a = b,

0 a �= b.
(12)

I being the identity tensor.

For each component the spectral decomposition yields

ε+
e =

p
∑

a=1

eah(ea)Ma ε−
e =

p
∑

a=1

eah(−ea)Ma. (13)

The mathematical background of the decomposition in terms of eigenprojections can be

found, for instance, in Carlson and Hoger (1986), Itskov and Aksel (2002), Itskov (2002) and

Xiao et al (1998).

Let G0 and λ0 be the Lamè constants of a linearly elastic isotropic material and

K0 = ( 2
3
G0 +λ0) the bulk modulus. The standard quadratic isotropic elastic energy functional

u(εe) = 1
2

[

2G0εe : εe + λ0tr
2εe

]

(14)

can be rewritten introducing the decomposition (13) of the elastic strain tensor in the form

u(εe) = 1
2

[

2G0(ε
+
e + ε−

e ) : (ε+
e + ε−

e ) + λ0tr
2(ε+

e + ε−
e )

]

= 1
2

[

2G0ε
+
e : ε+

e + 2G0ε
−
e : ε−

e + λ0(tr
2ε+

e + tr2ε−
e + 2trε+

e trε−
e )

]

= 1
2

[

2G0dev(ε+
e ) : dev(ε+

e ) + 2G0dev(ε−
e ) : dev(ε−

e )
]

+ 1
2

[

K0tr
2ε+

e + K0tr
2ε−

e + 2λ0trε
+
e trε−

e

]

,

(15)

where the split in the deviator and the hydrostatic component of the strain tensor is highlighted.

In the present model the elastic moduli independently evolve with damage. Therefore, the five

parameters appearing in the five terms of (15) can be assumed, in principle, as independent

constitutive parameters, so that the following expression for the elastic internal energy is

introduced:

φ(εe, ω1e
, ω2e

) = 1
2

[

2G1dev(ε+
e ) : dev(ε+

e ) + K1tr
2ε+

e

]

+
1
2

[

2G2dev(ε−
e ) : dev(ε−

e ) + K2tr
2ε−

e + 2λ12trε
+
e trε−

e

]

,
(16)

where G1, G2, K1, K2, λ12 are generalized Lamè coefficients, all depending on the damage

pair (ω1e
, ω2e

).

The function (16) has to satisfy the continuity and jump conditions introduced for the

bimodular material. As mentioned in the introduction, in order to reduce the algebraic

complexity of the expressions, these conditions are here presented in principal axes



representation in the case of distinct eigenvalues. The conclusions, however, possess general

validity. The strain tensor components are then given by (10)

ε+
e =





eah(ea)

ebh(eb)

ech(ec)



 ε−
e =





eah(−ea)

ebh(−eb)

ech(−ec)



 .

The stress tensor is obtained by the derivative of the elastic energy potential (16) w.r.t. the

elastic strain tensor:

σ =
[

φ(εe, ω1e
, ω2e

)
]

,εe
=

[

φ(εe, ω1e
, ω2e

)
]

,ε+
e

: H + +
[

φ(εe, ω1e
, ω2e

)
]

,ε−
e

: H−

=
[

2G1dev(ε+
e ) + K1tr(ε

+
e )I + λ12tr(ε

−
e )I

]

: H +

+
[

2G2dev(ε−
e ) + K2tr(ε

−
e )I + λ12tr(ε

+
e )I

]

: H−,

(17)

where H + and H− represent the derivatives of the positive and negative component of the

elastic strain w.r.t. the elastic strain tensor:

H + =
[

ε+
e

]

,εe
H− =

[

ε−
e

]

,εe
. (18)

It can be shown that in the principal axes representation the generic components of the

stress tensor σ and of the tangent elastic tensor C, in the case of distinct eigenvalues, are,

respectively, given by:

σaa =
{

2G1

[

2
3
eah(ea) − 1

3
ebh(eb) − 1

3
ech(ec)

]

+ K1tr(ε
+
e )

}

h(ea)

+
{

2G2

[

2
3
eah(−ea) − 1

3
ebh(−eb) − 1

3
ech(−ec)

]

+ K2tr(ε
−
e )

}

h(−ea)

+ λ12

[

tr(ε+
e )h(−ea) + tr(ε−

e )h(ea)
]

.

(19)

Caabb =
∂σaa

∂εebb

≡
∂σaa

∂eb

=
[

− 2
3
G1h(eb) + K1h(eb)

]

h(ea)+

+
[

− 2
3
G2h(−eb) + K2h(−eb)

]

h(−ea)+ a �= b

+λ12 [h(eb)h(−ea) + h(−eb)h(ea)] .

(20a)

Caaaa =
∂σaa

∂εebb

≡
∂σaa

∂eb

= ( 4
3
G1 + K1)h(ea) + ( 4

3
G2 + K2)h(−ea) a = b. (20b)

The continuity condition of the stress–strain law implies

lim
ea→0+

σaa = lim
ea→0−

σaa. (21)

The jump condition across the interfaces implies

lim
eb→0+

∂σaa

∂eb

= lim
eb→0−

∂σaa

∂eb

a �= b, (22a)

lim
eb→0+

∂σaa

∂eb

− lim
eb→0−

∂σaa

∂eb

= s(ηe) a = b (22b)

From (22a) it derives that
[

−
2

3
G1 + K1

]

h(ea) + λ12h(−ea) =
[

−
2

3
G2 + K2

]

h(−ea) + λ12h(ea)

so that

λ12 = − 2
3
G1 + K1 ifea > 0

λ12 = − 2
3
G2 + K2 ifea < 0.

(23)

Using (19) condition (21) is satisfied provided that

−
2

3
G1 + K1 = −

2

3
G2 + K2. (24)



From (23) it follows that the expression of λ12(ω1e
, ω2e

) is the same for ea < 0 and ea > 0.

The jump condition (22b), using (20b) and introducing equation (24), becomes

2G1 − 2G2 = s(ηe). (25)

Conditions (23) and (24) imply that only three of the five parameters can be assigned

independently and equation (25) imposes that the shear modulus must take distinct values

across the interfaces.

The following choice for the elastic moduli is accordingly made

G1(ω1e
, ω2e

) = G0(1 + ω1e
)n1(1 + ω2e

)n2 ,

G2(ω1e
, ω2e

) = G0(1 + ω2e
)n2 ,

K1(ω1e
, ω2e

) = K0(1 + ω1e
)n1 .

(26)

The choice is motivated by experimental evidence: in fact, the bulk modulus K0 remains

undamaged in hydrostatic compression if no previous tensile damage is present, i.e. if

ω1e
= 0 → K2 = K0. Moreover the tensile shear modulus degrades with either compressive

or tensile damage, while tensile damage does not affect the shear parameter in compression

G2.

According to equations (23) and (24) the parameters K2 and λ12 take the form:

K2(ω1e
, ω2e

) = K0(1 + ω1e
)n1 + 2

3
G0(1 + ω2e

)n2
[

1 − (1 + ω1e
)n1

]

,

λ12(ω1e
, ω2e

) =
[

K0 − 2
3
G0(1 + ω2e

)n2
]

(1 + ω1e
)n1 .

(27)

Note that, as in model MI, for undamaged processes (i.e. ω1e
= ω2e

= 0), the material

constants (26) and (27) coincide with the classical elastic moduli.

From definitions (16), (26), (3) and (4) the expressions of the generalized elastic energy

potential and of the constitutive equations follow:

φ(εe, ω1e
, ω2e

) =
1

2

[

2G1ε
+
e : ε+

e + 2G2ε
−
e : ε−

e + λ12tr
2εe

]

. (28)

σ = 2G1ε
+
e : H + + 2G2ε

−
e : H− + λ12trεe

χ = Hf (ω1e
, ω2e

)αe

χv =
D

a
ln

(

a

a − αv
e

)

ζ1 = 1
2

[

2
∂G1

∂ω1e

ε+
e : ε+

e + 2
∂G2

∂ω1e

ε−
e : ε−

e +
∂λ12

∂ω1e

tr2εe

]

+ 1
2
Hα2

e

∂f

∂ω1e

+ ζ1a
,

ζ2 = 1
2

[

2
∂G1

∂ω2e

ε+
e : ε+

e + 2
∂G2

∂ω2e

ε−
e : ε−

e +
∂λ12

∂ω2e

tr2εe

]

+ 1
2
Hα2

e

∂f

∂ω2e

+ ζ2a
.

(29)

where ζ1a
∈ ∂indW1(ω1e

), ζ2a
∈ ∂indW2(ω2e

)

In the sequel formulas (28) and (29) will be denoted as model MII.

4. The inelastic behaviour

A generalized elastic domain is defined in the extended space of stresses, thermodynamic forces

and conjugated damage variables, given by the convex hull of three elastic limit surfaces:

g1(σ, χ, ζ2) = f (I1, J2, J3, χ, ζ2),

g(τ ) = max {g1, g2, g3} g2(σ, ζ1) = f̄ (I1, J2) + ζ1 − ζ0,

g3(σ, χv) = −σm + σ c
m − χv,

I1 = trσ J2 = 1
2
devσ · devσ J3 = det devσ ζ0, σ

c
m ∈ R σm = 1

3
I1.



No change has been introduced in the limit criterion with respect to paper

(Contrafatto and Cuomo 2006). The function g1 is a plastic yield criterion, able to model

the behaviour of concrete in the range of triaxial compression with low lateral confinement;

the introduction of the isotropic hardening variable χ and of the static damage variable ζ2 causes

the initial expansion, followed by the contraction of the domain when damage in compression

is active. Specifically an extended Ottosen criterion has been adopted:

g1(σ, χ, ζ2) = b1I1(σ ) + b2

f ∗
c
J2(σ ) + λ(cos 3θ(σ ))

√
J2(σ ) − f ∗

c ,

f ∗
c = (fc + χ − kζ ζ ).

(30)

In (30) θ(σ ) is the Lode angle and b1, b2, k1 and k2 are material constants defining the

amplitude and the shape of the deviatoric sections. The compressive strength f ∗
c is a function

of the compression elastic limit fc, the hardening χ and the damage ζ2. The parameter kζ

represents an adjustable damage rate.

The hardening and damage variables evolve according to the elastic constitutive equations.

The static variables (σ, χ, ζ2) follow a complex path in the generalized stress space; therefore

the Ottosen limit state is rather different from the classical one proposed by Ottosen (1977)

and it depends also on the form chosen for the internal energy, that links the evolution of the

damage energy to the stress state.

The function g2 is a damage-like criterion for tensile stresses, the limit ζ0 being related to

the fracture energy and f̄ = αI1(σ ) + β
√

J2(σ ) α, β ∈ R.

The function g3 represents a volumetric cap along the hydrostatic axis translating with the

hardening conjugated variable χv .

Details about the admissible domain and the determination of the relevant parameters are

given in (Contrafatto and Cuomo 2006).

5. Comparison of the models and discussion

5.1. Elastic constitutive equations

The particularization of the generalized elastic relations (7) and (29) for uniaxial and spherical

stress states is reported in tables 1–3.

A strong difference in the elastic relations between the two models is met in hydrostatic

compression: in the case of model MI the process is purely elastic and the damage forces are

zero while with the model MII the equivalent tangent bulk modulus undergoes a progressive

reduction if ω1e
�= 0, i.e. if some tensile damage (crack-like) had been previously suffered by

the material. On the contrary, the two models present identical elastic behaviour in hydrostatic

tension. Table 4 reports the values of the damage forces at the elastic limit, for some simple

processes. The limit value of ζ2 is always the same for the two models. Recalling that for an

undamaged (i.e. purely elastic) process the material parameters reduce to the elastic moduli,

it follows that the same elastic limit in compression is predicted according to criterion g1 for

both models. Therefore the material parameters of Ottosen criterion can be evaluated with the

same procedure described in (Contrafatto and Cuomo 2006). However, this consideration is

not true for the tensile damage variable ζ1. Since the fracture-like criterion g2 depends on the

evolution of ζ1, it follows that the two models, for fixed material parameters, predict a different

elastic limit in tension. Consequently the constitutive parameters in g2 take different values

for the two models.

Figure 1 presents a plot of the deformation energy of models MI and MII in plane strain

for the two values of the damage variables, ω1e
= −0.8 and ω2e

= −0.8. The most remarkable

difference is that for model MI the stored energy is smaller in the region trεe > 0, while for



Table 1. Generalized damaged static variables in uniaxial tension.

Uniaxial tension

MI model σ1 =
9G0K0(1 + ω1e )

n1 (1 + ω2e )
n2

3K0 + G0(1 + ω2e )
n2

εe1

ζ1 =
n1

2

9G0K0(1 + ω1e )
n1−1(1 + ω2e )

n2

3K0 + G0(1 + ω2e )
n2

ε2
e1

ζ2 =
n2

2

27G0K
2
0 (1 + ω1e )

n1 (1 + ω2e )
n2−1

[

3K0 + G0(1 + ω2e )
n2

]2
ε2
e1

ν+ =
3K0 − 2G0(1 + ω2e )

n2

2
[

3K0 + G0(1 + ω2e )
n2

]

MII model σ1 =
G0(1 + ω1e )

n1 (1 + ω2e )
n2

[

3K0(2(1 + ω1e )
n1 + 1) − 4G0((1 + ω1e )

n1 − 1)(1 + ω2e )
n2

]

3K0(1 + ω+e )
n1 − G0(2(1 + ω1e )

n1 − 3)(1 + ω2e )
n2

εe1

ζ1 =
n1

2

G0(1 + ω1e )
n1−1(1 + ω2e )

n2

[

2(1 + ω1e )
n1

[

3K0 − 2G0(1 + ω2e )
n2

]2
]

[

−3K0(1 + ω1e )
n1 + G0(1 + ω2e )

n2 (2(1 + ω1e )
n1 − 3)

]2
ε2
e1

+

n1

2

G0(1 + ω1e )
n1−1(1 + ω2e )

n2
[

12G0(1 + ω1e )
n1 (1 + ω2e )

n2
[

3K0 − 2G0(1 + ω2e )
n2

]]

[

−3K0(1 + ω1e )
n1 + G0(1 + ω2e )

n2 (2(1 + ω1e )
n1 − 3)

]2
ε2
e1

+

n1

2

G0(1 + ω1e )
n1−1(1 + ω2e )

n2
[

3G0(1 + ω2e )
n2

[

3K0 + 4G0(1 + ω2e )
n2

]]

[

−3K0(1 + ω1e )
n1 + G0(1 + ω2e )

n2 (2(1 + ω1e )
n1 − 3)

]2
ε2
e1

ζ2 =
n2

2
G0(1 + ω1e )

n1 (1 + ω2e )
n2−1 9K2

0 (1 + ω1e )
n1 (2(1 + ω1e )

n1 + 1)
[

−3K0(1 + ω1e )
n1 + G0(1 + ω2e )

n2 (2(1 + ω1e )
n1 − 3)

]2
ε2
e1

−

n2

2
G0(1 + ω1e )

n1 (1 + ω2e )
n2−1 24G0K0(1 + ω1e )

n1 (1 + ω2e )
n2 ((1 + ω1e )

n1 − 1)
[

−3K0(1 + ω1e )
n1 + G0(1 + ω2e )

n2 (2(1 + ω1e )
n1 − 3)

]2
ε2
e1

+

n2

2
G0(1 + ω1e )

n1 (1 + ω2e )
n2−1

4G2
0

[

2(1 + ω1e )
2n1 − 5(1 + ω1e )

n1 + 3
]

(1 + ω2e )
2n2

[

−3K0(1 + ω1e )
n1 + G0(1 + ω2e )

n2 (2(1 + ω1e )
n1 − 3)

]2
ε2
e1

ν+ =
3K0 − 2G0(1 + ω2e )

n2

2
[

3K0(1 + ω1e )
n1 − 2G0(2(1 + ω1e )

n1 − 3)(1 + ω2e )
n2

]

model MII the amount of the stored energy changes in each quadrant, according to the sign of

the principal strains.

Figures 2 and 3 refer to uniaxial tension and compression processes, respectively.

Figures 2(a) and (b) compare the adimensional tangent modulus in uniaxial tension as a

function of tensile damage at fixed values of the compressive damage. Similar plots for the

Poisson ratio are shown in figures 2(c) and (d). While the evolution of the longitudinal stiffness

is similar in the two cases, the lateral deformations evolve in a rather different fashion: model

MI predicts a value of the Poisson ratio that is not affected by the tensile damage, while the

same tends to decrease for model MII, according to the evolution of a fracture process, that

occurs with concentrated displacement and at constant lateral strains. Thus this appears to be

an improvement of the new proposal.

Also in uniaxial compression there are differences; in model MI the compression modulus

is highly reduced by tensile damage. This effect is much lower in model MII. This implies

that in cyclic processes Model II predicts a sharp change in the slope of the stress–strain curve

upon reversal of the load.



Table 2. Generalized damaged static variables in uniaxial compression.

Uniaxial compression

MI model σ1 =
9G0K0(1 + ω1e )

n1 (1 + ω2e )
n2

3K0 + G0(1 + ω1e )
n1 (1 + ω2e )

n2
εe1

ζ1 =
n1

2

27G0K
2
0 (1 + ω1e )

n1−1(1 + ω2e )
n2

[

3K0 + G0(1 + ω1e )
n1 (1 + ω2e )

n2
]2

ε2
e1

ζ2 =
n2

2

27G0K
2
0 (1 + ω1e )

n1 (1 + ω2e )
n2−1

[

3K0 + G0(1 + ω1e )
n1 (1 + ω2e )

n2
]2

ε2
e1

ν− =
3K0 − 2G0(1 + ω1e )

n1 (1 + ω2e )
n2

2
[

3K0 + G0(1 + ω1e )
n1 (1 + ω2e )

n2
]

MII model σ1 =
G0(1 + ω2e )

n2
[

3K0((1 + ω1e )
n1 + 2) − 2G0((1 + ω1e )

n1 − 1)(1 + ω2e )
n2

]

3K0 + G0(1 + ω2e )
n2

εe1

ζ1 =
n1

2

G0(1 + ω1e )
n1−1(1 + ω2e )

n2
[

3K0 − 2G0(1 + ω2e )
n2

]

3K0 + G0(1 + ω2e )
n2

ε2
e1

ζ2 =
n2

2
G0(1 + ω2e )

n2−1

[

27K2
0 (1 + ω1e )

n1 − 2((1 + ω1e )
n1 − 1)

[

3K0 + G0(1 + ω2e )
n2

]2

[

3K0 + G0(1 + ω2e )
n2

]2

]

ε2
e1

ν− =
3K0 − 2G0(1 + ω2e )

n2

2
[

3K0 + G0(1 + ω2e )
n2

]

Table 3. Generalized damaged static variables in hydrostatic stress states.

Hydrostatic compression

MI model σm = 3K0εm

ζ1 = 0

ζ2 = 0

MII model σm =
[

3K0(1 + ω1e )
n1 − 2G0((1 + ω1e )

n1 − 1)(1 + ω2e )
n2

]

εm

ζ1 =
n1

2
(1 + ω1e )

n1−1

[

K0 −
2

3
G0(1 + ω2e )

n2

]

ε2
m

ζ2 = −
n2

2

2

3
G0((1 + ω1e )

n1 − 1)(1 + ω2e )
n2−1ε2

m

Hydrostatic tension

MI model σm = 3K0(1 + ω1e )
n1 εm

ζ1 =
n1

2
K0(1 + ω1e )

n1−1ε2
m

ζ2 = 0

MII model σm = 3K0(1 + ω1e )
n1 εm

ζ1 =
n1

2
K0(1 + ω1e )

n1−1ε2
m

ζ2 = 0

Similarly, model MII yields a value of the Poisson ratio that remains unaffected by the

tensile damage. Both models, however, predict that for very high compressive damage the

deformation tends to become isochoric, and this again is compatible with the rupture that

occurs for sliding of the fractures.



Table 4. Elastic limit value of damage variables in simple load processes.

Elastic limit value of damage variables

Uniaxial tension

MI model ζ1 = n1G0(1 + ν0)ε
2
e1

=
n1

2
E0ε

2
e1

ζ2 = n2

2

3
G0(1 + ν0)

2ε2
e1

=
n2

3
E0(1 + ν0)ε

2
e1

MII model ζ1 = n1G0(1 − ν0)(1 + 2ν0)ε
2
e1

=
n1

2
E0

(1 − ν0)(1 + 2ν0)

(1 + ν0)
ε2
e1

ζ2 = n2

2

3
G0(1 + ν0)

2ε2
e1

=
n2

3
E0(1 + ν0)ε

2
e1

Uniaxial compression

MI model ζ1 = n1

2

3
G0(1 + ν0)

2ε2
e1

=
n1

3
E0(1 + ν0)ε

2
e1

ζ2 = n2

2

3
G0(1 + ν0)

2ε2
e1

=
n2

3
E0(1 + ν0)ε

2
e1

MII model ζ1 = n1G0ν0ε
2
e1

=
n1

2

E0

(1 + ν0)
ν0ε

2
e1

ζ2 = n2

2

3
G0(1 + ν0)

2ε2
e1

=
n2

3
E0(1 + ν0)ε

2
e1

Hydrostatic compression

MI model ζ1 = 0

ζ2 = 0

MII model ζ1 = n1G0

ν0

(1 − 2ν0)
ε2
m =

n1

2

ν0E0

(1 + ν0)(1 − 2ν0)
ε2
m

ζ2 = 0

Hydrostatic tension

MI model ζ1 =
n1

2
K0ε

2
m

ζ2 = 0

MII model ζ1 =
n1

2
K0ε

2
m

ζ2 = 0

Table 5. Constitutive parameters.

Initial Young’s modulus E0 = 22, 000 MPa

Initial hardening modulus H0 = 20, 000 MPa

Initial Poisson’s ratio ν0 = 0.25

Uniaxial elastic compressive strength fc = 11.87 MPa

Uniaxial limit tensile strength ft = 1.09 MPa

Equi-biaxial elastic compressive strength fbc = 1.30 − fc = 15.43 MPa

Maximum principal stress in a pure shear test fs = 1.10 MPa

Damage parameters kς = 60 − n2 = 2

5.2. Limit domain

In the subsequent applications the set of material properties given in table 5 has been used,

from which the following material parameters have been derived:

a = 1.1463 b = 3.5462 k1 = 12.6900 k2 = 0.9750.

The limit elastic Ottosen domain assumes the same shape in both decompositions MI and

MII because the damage variable ζ2 has the same functional expression, as it can be observed

in table 4.

The meridian sections of the elastic domain, valid for both the models MI and MII, are

shown in figure 4, for the two values of the Lode angle ϑ = 0◦ and ϑ = 60◦, corresponding to
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Figure 1. Deformation energy for plane strain. (a) Model MI. (b) Model MII.
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Figure 2. Uniaxial tension process. Uniaxial modulus and Poisson’s ratio as function of tensile

damage. (a) Uniaxial modulus Model MI. (b) Uniaxial modulus Model MII. (c) Poisson’s ratio

Model MI. (d) Poisson’s ratio Model MII.

the tensile and the compressive meridian, respectively. Recall that the first meridian represents

stress states characterized by the two equal principal stresses smaller than the third, the other

represents stress states characterized by the two equal principal stresses greater than the third.

The gap between the curves results in a marked triangular shape of the deviatoric sections.

However, for large values of the confinement pressure, i.e. moving farther along the isotropic

compression axis, the shape of the deviatoric section gets more rounded, asymptotically tending

to circular.

A numerical procedure has been used for calculating the evolution of the stresses up to

the peak for several load paths. The constitutive model has been implemented in the FEAP
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Poisson’s ratio Model MI. (d) Poisson’s ratio Model MII.

-175 -150 -125 -100 -75 -50 -25 0
x

10

20

30

40

50

r

θ = 0

ξ = −80 ξ = −10

ξ = 1,5

θ = π/3 

Figure 4. Ottosen’s criterion meridian sections for models MI and MII.

code (Taylor 2002). The load paths were defined by a fixed ratio between the stresses or a

fixed ratio between the strains. Figure 5 compares the elastic and the limit Ottosen domain

for biaxial stress states with Van Mier’s data (Van Mier 1984). No difference can be observed

between models MI and MII. Note that the experimental data relative to the limit elastic state

do not exactly lay on the elastic surface, since the parameters that define the models have been

determined minimizing the interpolation error.

As underlined in the previous section, the fracture limit predicted by function g2 is different

in models MI and MII. In order to analyse the influence of the new form introduced for the
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elastic energy, the biaxial fracture domain has been plotted for three cases:

g20
(σ, ζ1) = ζ1 − ζ0, (31a)

g2a
(σ, ζ1) = αI1(σ ) + ζ1 − ζ0, (31b)

g2b
(σ, ζ1) = αI1(σ ) + β

√
J2(σ ) + ζ1 − ζ0. (31c)

Function (31a) consists in a bound for ζ1, i.e. it models mode I fracture processes. The

second form (31b) allows to couple the effects of damage and isotropic stress through the

presence of the first invariant of the stress tensor I1, while in the third function (31c) the

dependence on the second invariant of the stress deviator J2 includes the presence of shear

across the fracture interfaces.

The predictions for the biaxial limit stresses obtained using fracture criteria g2 with models

MI and MII are compared in figure 6.

The pure damage model is almost isotropic in the tensile and compressive regions, and

thus is not useful for real predictions. Criteria g2a
and g2b

show different limits for various

stress ratios. Therefore models MI and MII give different predictions. The deviatoric sections

of the fracture criterion are circular if model MI is used. In contrast, using model MII triangular

deviatoric sections are obtained. The high compressive limit value predicted can be related

to the crisis of materials that show no plastic damage due to microcracks coalescence in a

compression process. This is typical of highly compact rocks, as marble or basalt that collapse

with abrupt explosions, or some type of high strength concrete. The combined biaxial elastic

limit domain in the range of biaxial tension is shown in figure 7 for model MII. It seems to agree

better than model MI with experimental trends since it does not show an excessive reduction of

the tensile strength for biaxial tensile stress states with respect to the uniaxial tensile strength.

5.3. Uniaxial tests

In the introduction it is observed that among the main limitations of the original model is the

accurate prediction of experiments with reversed load. It is pointed out in section 5.1 that the
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Model MII.

present model predicts a change in the slope of the stress–strain curve upon reversal of the

load.

This behaviour has been tested using Reinhardt’s tensile experiment (Reinhardt 1984),

simulated at constitutive level (figure 8(b)). The results show the change in the stress–strain

slope changing the sign of the stress so that for negative stress values the elastic modulus is

recovered, as in the experimental test (figure 8(a)). However, the slack part of the stress–

strain diagram resulting from the unilateral closure of the crack is not reproduced due to the

continuum nature of the present model.

6. Conclusions

In this paper a modification of an elastic-plastic damaging model for concrete presented in

(Contrafatto and Cuomo 2006), introducing a different expression for the internal energy based

on the spectral decomposition in terms of eigenprojections of the elastic strain tensor has

been investigated. Although the modification appears to be of minor relevance, significant

consequences have been found, especially in the behaviour of the material after heavy damage,
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Figure 8. Uniaxial cyclic tension test with crack opening and closing. (a) Reinhardt’s experimental

results. (b) Model MII numerical results and Reinhardt’s cyclic testing arrangement.

and in cyclic responses, apparently yielding results closer to the experimental observations.

The predictions for the peak strength are little affected by the modification: in compression are

not affected at all, while some improvements have been found in tension. This is encouraging,

since already the first form of the model showed a good performance in predicting the peak

stresses. An improvement is found in tensile processes in the simulation of the slope of the

stress–strain curve for reversed loads. Further differences between the two models can be

found for loading paths close to the deviator regime. However, since it is difficult to find

experimental evidences, these cases could be tested only with full structural simulations, that

are beyond the aims of this paper. The model has been presented here in principal directions

only. The complete expressions of the constitutive equations for the general case will be the

object of future developments.
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