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Introduction

A wide variety of theoretical models for concrete are available in the literature. They can be divided into two principal classes: models in the context of fracture mechanics and models in the context of continuum damage mechanics. The paper addresses the latter case in which damage is represented by phenomenological internal variables. The advantages and the drawbacks of a continuum model have been exhaustively treated in the literature and are not discussed here. It is well established that damage in brittle materials is inherently a nonisotropic phenomenon and a number of anisotropic damage models for concrete have also been proposed introducing 4th or more frequently 2nd order tensors. Since experimental evidence on concrete shows different crisis mechanisms according to the stress state [START_REF] Van Mier | Strain softening of concrete under multiaxial loading conditions[END_REF], usually limit criteria in terms of all three invariants of the stress tensor are used, like Willam or Ottosen criteria or others [START_REF] Chen | Plasticity in Reinforced concrete[END_REF]), eventually coupled with a limit cap for tensile stresses and/or for volumetric compression. In addition a damage activation law must be provided. Anisotropic models still present two order of problems: firstly, the number of the material parameters is higher than in standard scalar models and secondly, it is usually difficult to identify all of them directly from experiments; furthermore, in the computational implementation dramatic convergence problems are often met. For these reasons many authors still use and propose isotropic damage formulations, based on a single scalar damage variable [START_REF] Brenchic | Isotropic damage model with different tensile-compressive response for brittle materials[END_REF]Gambarotta 2001, Salari et al 2004) or, alternatively, two damage scalar variables, in an attempt to distinguish between tension and compression damage mechanisms [START_REF] Comi | Fracture energy based bi-dissipative damage model for concrete[END_REF][START_REF] Marfia | Softening behavior of reiforced concrete beams under cyclic loading[END_REF][START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF]. Isotropic damage models have been shown to be sufficiently accurate in a wide range of practical applications, provided that the load path does not excessively rotate during the simulation.

In a previous work the authors presented a framework of elastic-plastic damaging model for concrete under multiaxial stress states [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF], where an extensive-although not exhaustive-close examination of the concerning literature is reported. Distinctive features of that proposal are the introduction of fully coupled damage and plasticity multiple crisis criteria, ruling simultaneously the activation of all the irreversible phenomena, i.e. hardening, damage and fracture-like deformations. Therefore the limit strength is predicted by the model and turns out to be dependent on the load history; the different behaviour of concrete in tension and compression is modelled by means of a generalization of Curnier's bimodular materials [START_REF] Curnier | Conewise linear elastic materials[END_REF], considering an extended kinematic space that contains, in addition to the elastic strains, the damage internal variables. In the previous paper the strain space is divided into a compression domain and a tension domain and the separating interface is defined by the deviatoric plane, as in the original Curnier proposal, so that the elastic energy takes different forms according to the sign of the trace of the elastic strain tensor. This choice is commonly assumed in isotropic damage models [START_REF] Comi | Fracture energy based bi-dissipative damage model for concrete[END_REF]Perego 2001, Faria et al 1998). It was shown that this decomposition yields very reasonable results in many simple cases. However, some limitations were also underlined, about the prediction of the lateral strain in confined compression tests and the simulation of cyclic tests, where the change in the slope of the unloading stress-strain curve not necessarily occurs at zero stress, since it is ruled by the sign of the trace of the elastic strain tensor. It is finally recalled that in nonisotropic damage models the separating interfaces are generally defined as the eigenvalues of the elastic strain tensor, often splitting it into its tensile and compressive components by means of a polar decomposition [START_REF] Papa | Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete[END_REF]. The same decomposition is adopted by [START_REF] Lubarda | Damage model for brittle elastic solids with unequal tensile and compressive strengthsEng[END_REF].

The dependence of the elastic energy, and then of the elastic stiffness, on the variation of sign of a principal strain appears intuitively to have a sound physical basis. Although this decomposition is also possible in conjunction with isotropic models, in the literature it cannot be found a comparison with the decomposition based on the trace of the strain tensor. The purpose of the present paper is to perform such a comparison, implementing the new decomposition based on the sign of the principal strains in the general framework presented in [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF], in order to verify whether it can overcome some of the drawbacks previously highlighted. With this aim a new definition of the elastic energy is introduced, employing the decomposition of the elastic strain tensor in its positive and negative components performed by means of a spectral representation. However, classical spectral decompositions cannot be safely used, since in typical load condition such as uniaxial or hydrostatic states the eigenvectors are not univocally defined, because the eigenvalues presents, respectively, double or triple coalescence and the usual split of the strain tensor cannot be performed. This difficulty can be overcome by making use of the so-called basis-free representation based on a spectral decomposition in term of eigenprojections [START_REF] Carlson | The derivative of a tensor-values function of a tensor Q[END_REF]. This representation of the strain tensor has the advantage that it avoids a numerically expensive determination of eigenvectors and is univocally defined also in the case of defective eigenvalues. The derivation of the elastic constitutive equations and of the elastic tangent moduli is rather complex since it requires the determination of the first and second derivative of the positive and negative component of the strain tensor, i.e. it is necessary to calculate the derivative of a tensor-valued tensor function with respect to its argument. The mathematical treatment of this topic is beyond the purposes of this paper and will not be presented. Since the goal of the work is to perform a comparison of the two formulations for simple loading processes, only the relevant expressions in a principal axes representation will be reported, in the case that the classical spectral decomposition can be used, i.e. for distinct eigenvalues. In this way formulas become much simpler and can be more easily analysed.

After the introduction of the field variables in section 2, in section 3 the functional ruling the reversible behaviour is described and the derivation of the generalized elastic constitutive equations is presented. In section 4 the limit criteria are reported. Section 5 contains comparisons of the present model with the one based on the trace of the elastic strain tensor and some applications.

Field variables and definition of the problem

We refer to the model presented in [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF]. It is a continuum damage model that falls within the category of simple material models [START_REF] Germain | Mécanique des Milieux Continues[END_REF]. The variables of the model are

ε ∈ D macroscopic strain σ ∈ D stress α ∈ R isotropic hardening χ ∈ R hardening internal forces α v ∈ R volumetric hardening χ v ∈ R volumetric hardening internal forces ω 1 ∈ R tensile damage ζ 1 ∈ R tensile damage driving forces ω 2 ∈ R compressive damage ζ 2 ∈ R compressive damage driving forces
D being the space of the 2nd order symmetric tensors.

Note that the internal variables are all scalar functions, since kinematic hardening is not considered important for concrete. As mentioned in the introduction the damage variables are considered as scalars: this is an obvious limitation, but it allows computational simplifications. Two different scalar damage variables in principle associated with tensile and compressive strain processes are used.

The model is implemented in the hypothesis of small deformations and each kinematic variable is additively decomposed in a reversible and an irreversible component, in a classic way:

ε = ε e + ε p α = α e + α p = 0 α v = α v e + α v p = 0 ω 1 = ω 1 e + ω 1 p = 0, ω 2 = ω 2 e + ω 2 p = 0.
Note that the definition of traditional damage models of the damage variables ω i p = -ω i e ∈ [1, 0] has been employed.

With compact notation the state of the system is described by the two sets of dual kinematic and static state variables η and τ :

η = (ε,α,α v ,ω 1 ,ω 2 ) = η e + η p τ = (σ,χ,χ v ,ζ 1 ,ζ 2 ).
The evolution of the state of the material is ruled by two functionals, the internal energy e(η e ) and the rate of dissipation d( ηp ). The apparently redundant distinction between reversible and irreversible components of the internal damage variables (i.e. ω e =-ω p ) is mainly motivated by the intention of distinguishing the kinematic variables that are responsible for storage energy and for dissipation, as stated in [START_REF] Contrafatto | A new thermodynamically consistent continuum model for hardening plasticity coupled with damage[END_REF].

By standard thermodynamic arguments the driving forces τ , dual to the kinematic variables η e , are obtained differentiating the free energy

τ ∈ ∂ η e e(η e ), (1) 
where the symbol ∂ denotes sub-differentiation, in order to account for non-smooth energy functionals.

The model closely follows the framework of paper [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF] and the reader is cross-referred to the cited paper for details and physical motivations. However the main ingredients and the essential equations for the comprehension of the development of the present model will be recalled in sections 3 and 4.

Internal stored energy potential

The stored energy, function of the reversible components of all the kinematic variables, is given by the sum of the elastic deformation energy φ(ε e ,ω 1 e ,ω 2 e ) and of the hardening (configuration) energy ψ 1 (α e ,ω 1 e ,ω 2 e ) + ψ 2 (α v e ), both coupled with damage: e(ε e ,α e ,α v e ,ω 1 e ,ω 2 e ) = φ(ε e ,ω 1 e ,ω 2 e ) + ψ 1 (α e ,ω 1 e ,ω 2 e ) + ψ 2 (α v e )

+ ind W 1 (ω 1 e ) + ind W 2 (ω 2 e ), W 1 = ω 1 e : -1 ω 1 e 0 W 2 = ω 2 e : -1 ω 2 e 0 , ind W(ω e ) = 0i f ω e ∈ W, +∞ if ω e / ∈ W, (2) 
where the last two terms enforce the admissibility constraints for the damage variables.

Hardening potentials

The hardening potential ψ 1 (α e ,ω 1 e ,ω 2 e ) that rules the evolution of the elastic domain is taken in the same form as in [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF])

ψ 1 (α e ,ω 1 e ,ω 2 e ) = 1 2 Hf (ω 1 e ,ω 2 e )α 2 e , f(ω 1 e ,ω 2 e ) = p 1 (1+ω 1 e ) n 1 + p 2 (1+ω 2 e ) n 2 , p 1 + p 2 = 1 p 1 ,p 2 ∈ R. (3) 
In (3) H is the hardening modulus, p 1 and p 2 are weight scalars setting the influence degree of tensile and compressive damage on hardening. Thanks to the structure of formula (3)itis possible to model the non linear ascending branch of the stress-strain behaviour of concrete, without introducing ad hoc rules. Moreover, the onset of damage, observed well before the peak stress is reached, is correctly reproduced.

The volumetric hardening potential ψ 2 (α v e ) accounts for the recovery of stiffness following initial degradation when concrete is loaded along the hydrostatic compression axis. According to experimental observations it has been defined as [START_REF] Resende | A damage mechanics constitutive theory for the inelastic behaviour of concrete[END_REF])

ψ 2 (α v e ) = D a -α v e a ln a -α v e a -1 , ( 4 
)
where a is the maximum degree of compaction and D has the dimension of an elastic stiffness.

The dimensionless ratio a-α v e a ranges between 0 and 1.

Elastic energy potential

The elastic energy potential φ(ε e ,ω 1 e ,ω 2 e ) is function of the elastic strains and of both the damage variables, so that the elastic moduli evolve differently for tensile or compressive processes. This result can be achieved following a general methodology for bimodular elastic materials introduced by [START_REF] Curnier | Conewise linear elastic materials[END_REF]. It consists in subdividing the strain space into a compression domain D -and a tension domain D + , separated by an hypersurface (separating interface) z(ε e ) and in assigning a different form of the elastic energy in each sub-domain:

φ = φ + (ε e ,ω 1 e ,ω 2 e ) = 1 2 2G + ε e : ε e + λ + tr 2 ε e if z(ε e ) 0, φ -(ε e ,ω 1 e ,ω 2 e ) = 1 2 2G -ε e : ε e + λ -tr 2 ε e if z(ε e ) 0, (5) 
where G + , G -, λ + , λ -are the generalized Lame coefficients, all depending on the pair (ω 1 e ,ω 2 e ).I n ( 5) the internal product : between 2nd-order tensors introduces a double contraction of the indices.

The values of the elastic moduli have to comply with some physical conditions indicated by Curnier:

• the separating interface z(ε e ) must contain the origin of the strain space;

• the positive and negative subdomains D + and D -must be simply connected;

• the elastic energy must be continuous across the interface φ(ε e ,ω 1 e ,ω 2 e ) = φ + (ε e ,ω 1 e ,ω 2 e ) = φ -(ε e ,ω 1 e ,ω 2 e ) ∀ε e : z(ε e ) = 0

• the gradient of the elastic energy must be continuous across the interface (continuity of the stress-strain law)

[φ + ], ε e = [φ -], ε e ⇒ σ + (ε e ,ω 1 e ,ω 2 e ) = σ -(ε e ,ω 1 e ,ω 2 e ) ∀ε e : z(ε e ) = 0
• the jump in the hessian of the elastic energy (elastic tensor) across the interface must be normal to the interface (i.e. there is no tangential discontinuity)

[σ + ], ε e -[σ -], ε e = s(η e )[z(ε e )], ε e ⊗[z(ε e )], ε e ∀ε e : z(ε e ) = 0
in which s(η e ) is a scalar function of the elastic kinematic variables.

In [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF] the trace of the elastic strain tensor was used as separating interface. This approach has also been followed by [START_REF] Comi | Fracture energy based bi-dissipative damage model for concrete[END_REF], [START_REF] Faria | A strain-based plastic viscous-damage model for massive concrete structures[END_REF]. In such a way the elastic energy takes different forms according to the sign of the trace of the elastic strain tensor. After imposing the continuity and the jump conditions it was found that the shear modulus is constant across the interface trε e = 0, i.e. G + (ω 1 e ,ω 2 e ) = G -(ω 1 e ,ω 2 e ), i.e. it evolves in the same way for tensile and compressive processes; consequently only three parameters could be assigned independently. The following choice for the elastic moduli was made

G + (ω 1 e ,ω 2 e ) = G -(ω 1 e ,ω 2 e ) = G(ω 1 e ,ω 2 e ) = G 0 (1+ω 1 e ) n 1 (1+ω 2 e ) n 2 , λ + (ω 1 e ,ω 2 e ) = K 0 -2 3 G 0 (1+ω 2 e ) n 2 (1+ω 1 e ) n 1 , λ -(ω 1 e ,ω 2 e ) = K 0 -2 3 G 0 (1+ω 1 e ) n 1 (1+ω 2 e ) n 2 . (6) 
G 0 and K 0 being the undamaged elastic constants. The elastic constitutive equations were finally given by (1): 

σ = σ + = 2Gε e + λ + trε e trε e 0, σ -= 2Gε e + λ -trε e trε e 0, χ = Hf (ω 1 e ,ω 2 e )α e , χ v = D a ln a a -α v e , ζ 1 =        ζ + 1 = 1 2 2 ∂G ∂ω
ζ 2 = ζ + 2 = ζ - 2 = 1 2 2 ∂G ∂ω 2 e ε e • ε e + ∂λ + ∂ω 2 e tr 2 ε e + 1 2 Hα 2 e ∂f ∂ω 2 e + ζ 2 a . (7) 
where

ζ 1 a ∈ ∂indW 1 (ω 1 e ), ζ 2 a ∈ ∂indW 2 (ω 2 e )
In the remaining part of this paper this model will be referred to as model MI.

An alternative choice is investigated in this work: the elastic strain tensor is split into its tensile and compressive components by means of some polar decomposition [START_REF] Lubarda | Damage model for brittle elastic solids with unequal tensile and compressive strengthsEng[END_REF][START_REF] Papa | Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete[END_REF][START_REF] Carlson | The derivative of a tensor-values function of a tensor Q[END_REF].

Classical theories are based on the usual spectral decomposition

ε e = 3 a=1 e a n a ⊗ n a |n a | = 1 (8)
e a being the distinct eigenvalues, i.e. the principal strain, and n a the normalized eigenvectors of the elastic strain tensor ε e , i.e. the principal direction of strain. The positive (tensile) component of the strain tensor can be obtained removing the negative eigenvalues from (8) and vice versa for the negative (compressive) component. If we introduce the Heaviside step function h(x), such that

h(e a ) = 1 e a > 0, 0 e a < 0, h(-e a ) = 0 e a > 0, 1 e a < 0, (9) they are given by:

ε + e = 3 a=1 e a h(e a )n a ⊗ n a ε - e = 3 a=1
e a h(-e a )n a ⊗ n a (10) and it results ε e = ε + e + ε - e . This decomposition is valid provided that all eigenvalues are non-defective so that their algebraic multiplicity coincides with the geometric multiplicity, i.e. with the number of associated linearly independent eigenvectors. However it presents computational difficulties related to the cases of repeated eigenvalues, typical of uniaxial traction or compression (e 2 = e 3 ) or of hydrostatic states (e 1 = e 2 = e 3 ). In such situation the eigenvectors are not univocally defined so that the usual split of the strain tensor cannot be performed.

When this situation occurs, the FE codes fail. It is remarkable that none of the authors that have used a similar decomposition has explicitly indicated a correct alternative procedure holding for defective eigenvalues.

For overcoming this inconvenience the so-called basis-free representation based on a spectral decomposition in term of eigenprojections is needed. This representation has the advantage that it avoids a numerically expensive determination of eigenvectors. In addition it is univocally defined also in the case of defective eigenvalues. Accordingly, the elastic strain tensor ε e is decomposed as it follows:

ε e = ε + e + ε - e ε e = p a=1 e a M a , (11) 
where e a are the p distinct eigenvalues of ε e (0 <p 3) and M a are the eigenprojection univocally given by Silvester's formula: 

The mathematical background of the decomposition in terms of eigenprojections can be found, for instance, in [START_REF] Carlson | The derivative of a tensor-values function of a tensor Q[END_REF], [START_REF] Itskov | A closed-form representation for the derivative of non-symmetric tensor power series[END_REF], [START_REF] Itskov | The derivative with respect to a tensor: some theoretical aspects and applications ZAMM[END_REF] and Xiao et al (1998).

Let G 0 and λ 0 be the Lamè constants of a linearly elastic isotropic material and

K 0 = ( 2 3 G 0 + λ 0 ) the bulk modulus. The standard quadratic isotropic elastic energy functional u(ε e ) = 1 2 2G 0 ε e : ε e + λ 0 tr 2 ε e (14) 
can be rewritten introducing the decomposition (13) of the elastic strain tensor in the form

u(ε e ) = 1 2 2G 0 (ε + e + ε - e ) : (ε + e + ε - e ) + λ 0 tr 2 (ε + e + ε - e ) = 1 2 2G 0 ε + e : ε + e +2G 0 ε - e : ε - e + λ 0 (tr 2 ε + e + tr 2 ε - e +2trε + e trε - e ) = 1 2 2G 0 dev(ε + e ) : dev(ε + e ) +2G 0 dev(ε - e ) : dev(ε - e ) + 1 2 K 0 tr 2 ε + e + K 0 tr 2 ε - e +2λ 0 trε + e trε - e , (15) 
where the split in the deviator and the hydrostatic component of the strain tensor is highlighted.

In the present model the elastic moduli independently evolve with damage. Therefore, the five parameters appearing in the five terms of (15) can be assumed, in principle, as independent constitutive parameters, so that the following expression for the elastic internal energy is introduced:

φ(ε e ,ω 1 e ,ω 2 e ) = 1 2 2G 1 dev(ε + e ) : dev(ε + e ) + K 1 tr 2 ε + e + 1 2 2G 2 dev(ε - e ) : dev(ε - e ) + K 2 tr 2 ε - e +2λ 12 trε + e trε - e , (16) 
where G 1 , G 2 , K 1 , K 2 , λ 12 are generalized Lamè coefficients, all depending on the damage pair (ω 1 e ,ω 2 e ).

The function ( 16) has to satisfy the continuity and jump conditions introduced for the bimodular material. As mentioned in the introduction, in order to reduce the algebraic complexity of the expressions, these conditions are here presented in principal axes representation in the case of distinct eigenvalues. The conclusions, however, possess general validity. The strain tensor components are then given by ( 10) The stress tensor is obtained by the derivative of the elastic energy potential (16) w.r.t. the elastic strain tensor: σ = φ(ε e ,ω 1 e ,ω 2 e ) , ε e = φ(ε e ,ω 1 e ,ω 2 e ) , ε + e : H + + φ(ε e ,ω 1 e ,ω 2 e ) , ε - e : H - = 2G 1 dev(ε + e ) + K 1 tr(ε + e )I + λ 12 tr(ε - e )I :

ε + e =  
H + + 2G 2 dev(ε - e ) + K 2 tr(ε - e )I + λ 12 tr(ε + e )I : H -, (17) 
where H + and H -represent the derivatives of the positive and negative component of the elastic strain w.r.t. the elastic strain tensor:

H + = ε + e , ε e H -= ε - e , ε e . ( 18 
)
It can be shown that in the principal axes representation the generic components of the stress tensor σ and of the tangent elastic tensor C, in the case of distinct eigenvalues, are, respectively, given by: (20a)

σ aa = 2G 1 2 3 e a h(
C aaaa = ∂σ aa ∂ε e bb ≡ ∂σ aa ∂e b = ( 4 3 G 1 + K 1 )h(e a ) + ( 4 3 G 2 + K 2 )h(-e a )a = b. (20b) 
The continuity condition of the stress-strain law implies lim e a →0 + σ aa = lim e a →0 -σ aa . From (22a) it derives that

- 2 3 G 1 + K 1 h(e a ) + λ 12 h(-e a ) = - 2 3 G 2 + K 2 h(-e a ) + λ 12 h(e a )
so that

λ 12 =-2 3 G 1 + K 1 ife a > 0 λ 12 =-2 3 G 2 + K 2 ife a < 0. ( 23 
)
Using ( 19) condition ( 21) is satisfied provided that

- 2 3 G 1 + K 1 =- 2 3 G 2 + K 2 . ( 24 
)
From ( 23) it follows that the expression of λ 12 (ω 1 e ,ω 2 e ) is the same for e a < 0 and e a > 0.

The jump condition (22b), using (20b) and introducing equation ( 24), becomes

2G 1 -2G 2 = s(η e ). (25) 
Conditions ( 23) and ( 24) imply that only three of the five parameters can be assigned independently and equation ( 25) imposes that the shear modulus must take distinct values across the interfaces.

The following choice for the elastic moduli is accordingly made

G 1 (ω 1 e ,ω 2 e ) = G 0 (1+ω 1 e ) n 1 (1+ω 2 e ) n 2 , G 2 (ω 1 e ,ω 2 e ) = G 0 (1+ω 2 e ) n 2 , K 1 (ω 1 e ,ω 2 e ) = K 0 (1+ω 1 e ) n 1 . ( 26 
)
The choice is motivated by experimental evidence: in fact, the bulk modulus K 0 remains undamaged in hydrostatic compression if no previous tensile damage is present, i.e. if ω 1 e = 0 → K 2 = K 0 . Moreover the tensile shear modulus degrades with either compressive or tensile damage, while tensile damage does not affect the shear parameter in compression G 2 .

According to equations ( 23) and ( 24) the parameters K 2 and λ 12 take the form:

K 2 (ω 1 e ,ω 2 e ) = K 0 (1+ω 1 e ) n 1 + 2 3 G 0 (1+ω 2 e ) n 2 1 -(1+ω 1 e ) n 1 , λ 12 (ω 1 e ,ω 2 e ) = K 0 -2 3 G 0 (1+ω 2 e ) n 2 (1+ω 1 e ) n 1 . ( 27 
)
Note that, as in model MI, for undamaged processes (i.e. ω 1 e = ω 2 e = 0), the material constants ( 26) and ( 27) coincide with the classical elastic moduli.

From definitions ( 16), ( 26), ( 3) and ( 4) the expressions of the generalized elastic energy potential and of the constitutive equations follow: (

φ(ε e ,ω 1 e ,ω 2 e ) = 1 2 2G 1 ε + e : ε + e +2G 2 ε - e : ε - e + λ 12 tr 2 ε e . ( 28 
) σ = 2G 1 ε + e : H + +2G 2 ε - e : H -+ λ 12 trε e χ = Hf (ω 1 e ,ω 2 e )α e χ v = D a ln a a -α v e ζ 1 =
) 29 
where

ζ 1 a ∈ ∂indW 1 (ω 1 e ), ζ 2 a ∈ ∂indW 2 (ω 2 e )
In the sequel formulas ( 28) and ( 29) will be denoted as model MII.

The inelastic behaviour

A generalized elastic domain is defined in the extended space of stresses, thermodynamic forces and conjugated damage variables, given by the convex hull of three elastic limit surfaces:

g 1 (σ,χ,ζ 2 ) = f(I 1 ,J 2 ,J 3 ,χ,ζ 2 ), g(τ) = max {g 1 ,g 2 ,g 3 } g 2 (σ, ζ 1 ) = f(I 1 ,J 2 ) + ζ 1 -ζ 0 , g 3 (σ, χ v ) =-σ m + σ c m -χ v , I 1 = trσ J 2 = 1 2 devσ • devσ J 3 = det devσ ζ 0 ,σ c m ∈ Rσ m = 1 3 I 1 .
No change has been introduced in the limit criterion with respect to paper [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF]. The function g 1 is a plastic yield criterion, able to model the behaviour of concrete in the range of triaxial compression with low lateral confinement; the introduction of the isotropic hardening variable χ and of the static damage variable ζ 2 causes the initial expansion, followed by the contraction of the domain when damage in compression is active. Specifically an extended Ottosen criterion has been adopted:

g 1 (σ,χ,ζ 2 ) = b 1 I 1 (σ ) + b 2 f * c J 2 (σ ) + λ(cos 3θ(σ)) √ J 2 (σ ) -f * c , f * c = (f c + χ -k ζ ζ). (30) 
In ( 30) θ(σ) is the Lode angle and b 1 , b 2 , k 1 and k 2 are material constants defining the amplitude and the shape of the deviatoric sections. The compressive strength f * c is a function of the compression elastic limit f c , the hardening χ and the damage ζ 2 . The parameter k ζ represents an adjustable damage rate.

The hardening and damage variables evolve according to the elastic constitutive equations. The static variables (σ,χ,ζ 2 ) follow a complex path in the generalized stress space; therefore the Ottosen limit state is rather different from the classical one proposed by [START_REF] Ottosen | A failure criterion for concrete[END_REF] and it depends also on the form chosen for the internal energy, that links the evolution of the damage energy to the stress state.

The function g 2 is a damage-like criterion for tensile stresses, the limit ζ 0 being related to the fracture energy and f = αI 1 (σ ) + β √ J 2 (σ ) α, β ∈ R. The function g 3 represents a volumetric cap along the hydrostatic axis translating with the hardening conjugated variable χ v .

Details about the admissible domain and the determination of the relevant parameters are givenin [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF].

Comparison of the models and discussion

Elastic constitutive equations

The particularization of the generalized elastic relations ( 7) and ( 29) for uniaxial and spherical stress states is reported in tables 1-3.

A strong difference in the elastic relations between the two models is met in hydrostatic compression: in the case of model MI the process is purely elastic and the damage forces are zero while with the model MII the equivalent tangent bulk modulus undergoes a progressive reduction if ω 1 e = 0, i.e. if some tensile damage (crack-like) had been previously suffered by the material. On the contrary, the two models present identical elastic behaviour in hydrostatic tension. Table 4 reports the values of the damage forces at the elastic limit, for some simple processes. The limit value of ζ 2 is always the same for the two models. Recalling that for an undamaged (i.e. purely elastic) process the material parameters reduce to the elastic moduli, it follows that the same elastic limit in compression is predicted according to criterion g 1 for both models. Therefore the material parameters of Ottosen criterion can be evaluated with the same procedure described in [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF]. However, this consideration is not true for the tensile damage variable ζ 1 . Since the fracture-like criterion g 2 depends on the evolution of ζ 1 , it follows that the two models, for fixed material parameters, predict a different elastic limit in tension. Consequently the constitutive parameters in g 2 take different values for the two models.

Figure 1 presents a plot of the deformation energy of models MI and MII in plane strain for the two values of the damage variables, ω 1 e =-0.8 and ω 2 e =-0.8. The most remarkable difference is that for model MI the stored energy is smaller in the region trε e > 0, while for 
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model MII the amount of the stored energy changes in each quadrant, according to the sign of the principal strains.

Figures 2 and 3 refer to uniaxial tension and compression processes, respectively. Figures 2(a) and (b) compare the adimensional tangent modulus in uniaxial tension as a function of tensile damage at fixed values of the compressive damage. Similar plots for the Poisson ratio are shown in figures 2(c) and (d). While the evolution of the longitudinal stiffness is similar in the two cases, the lateral deformations evolve in a rather different fashion: model MI predicts a value of the Poisson ratio that is not affected by the tensile damage, while the same tends to decrease for model MII, according to the evolution of a fracture process, that occurs with concentrated displacement and at constant lateral strains. Thus this appears to be an improvement of the new proposal.

Also in uniaxial compression there are differences; in model MI the compression modulus is highly reduced by tensile damage. This effect is much lower in model MII. This implies that in cyclic processes Model II predicts a sharp change in the slope of the stress-strain curve upon reversal of the load. 
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Table 3. Generalized damaged static variables in hydrostatic stress states.

Hydrostatic compression MI model

σ m = 3K 0 ε m ζ 1 = 0 ζ 2 = 0 MII model σ m = 3K 0 (1+ω 1e ) n 1 -2G 0 ((1+ω 1e ) n 1 -1)(1+ω 2e ) n 2 ε m ζ 1 = n 1 2 (1+ω 1e ) n 1 -1 K 0 - 2 3 G 0 (1+ω 2e ) n 2 ε 2 m ζ 2 =- n 2 2 2 3 G 0 ((1+ω 1e ) n 1 -1)(1+ω 2e ) n 2 -1 ε 2 m Hydrostatic tension MI model σ m = 3K 0 (1+ω 1e ) n 1 ε m ζ 1 = n 1 2 K 0 (1+ω 1e ) n 1 -1 ε 2 m ζ 2 = 0 MII model σ m = 3K 0 (1+ω 1e ) n 1 ε m ζ 1 = n 1 2 K 0 (1+ω 1e ) n 1 -1 ε 2 m ζ 2 = 0
Similarly, model MII yields a value of the Poisson ratio that remains unaffected by the tensile damage. Both models, however, predict that for very high compressive damage the deformation tends to become isochoric, and this again is compatible with the rupture that occurs for sliding of the fractures. 
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Limit domain

In the subsequent applications the set of material properties given in table 5 has been used, from which the following material parameters have been derived:

a = 1.1463 b = 3.5462 k 1 = 12.6900 k 2 = 0.9750.
The limit elastic Ottosen domain assumes the same shape in both decompositions MI and MII because the damage variable ζ 2 has the same functional expression, as it can be observed in table 4.

The meridian sections of the elastic domain, valid for both the models MI and MII, are shown in figure 4, for the two values of the Lode angle ϑ = 0 • and ϑ = 60 • , corresponding to code (Taylor 2002). The load paths were defined by a fixed ratio between the stresses or a fixed ratio between the strains. Figure 5 compares the elastic and the limit Ottosen domain for biaxial stress states with Van Mier's data [START_REF] Van Mier | Strain softening of concrete under multiaxial loading conditions[END_REF]. No difference can be observed between models MI and MII. Note that the experimental data relative to the limit elastic state do not exactly lay on the elastic surface, since the parameters that define the models have been determined minimizing the interpolation error.

As underlined in the previous section, the fracture limit predicted by function g 2 is different in models MI and MII. In order to analyse the influence of the new form introduced for the elastic energy, the biaxial fracture domain has been plotted for three cases:

g 2 0 (σ, ζ 1 ) = ζ 1 -ζ 0 , (31a) 
g 2 a (σ, ζ 1 ) = αI 1 (σ ) + ζ 1 -ζ 0 , (31b) 
g 2 b (σ, ζ 1 ) = αI 1 (σ ) + β √ J 2 (σ ) + ζ 1 -ζ 0 . (31c) 
Function (31a) consists in a bound for ζ 1 , i.e. it models mode I fracture processes. The second form (31b) allows to couple the effects of damage and isotropic stress through the presence of the first invariant of the stress tensor I 1 , while in the third function (31c) the dependence on the second invariant of the stress deviator J 2 includes the presence of shear across the fracture interfaces.

The predictions for the biaxial limit stresses obtained using fracture criteria g 2 with models MI and MII are compared in figure 6.

The pure damage model is almost isotropic in the tensile and compressive regions, and thus is not useful for real predictions. Criteria g 2 a and g 2 b show different limits for various stress ratios. Therefore models MI and MII give different predictions. The deviatoric sections of the fracture criterion are circular if model MI is used. In contrast, using model MII triangular deviatoric sections are obtained. The high compressive limit value predicted can be related to the crisis of materials that show no plastic damage due to microcracks coalescence in a compression process. This is typical of highly compact rocks, as marble or basalt that collapse with abrupt explosions, or some type of high strength concrete. The combined biaxial elastic limit domain in the range of biaxial tension is shown in figure 7 for model MII. It seems to agree better than model MI with experimental trends since it does not show an excessive reduction of the tensile strength for biaxial tensile stress states with respect to the uniaxial tensile strength.

Uniaxial tests

In the introduction it is observed that among the main limitations of the original model is the accurate prediction of experiments with reversed load. It is pointed out in section 5.1 that the present model predicts a change in the slope of the stress-strain curve upon reversal of the load. This behaviour has been tested using Reinhardt's tensile experiment [START_REF] Reinhardt | Fracture mechanics of an elastic softening material like concrete[END_REF], simulated at constitutive level (figure 8(b)). The results show the change in the stress-strain slope changing the sign of the stress so that for negative stress values the elastic modulus is recovered, as in the experimental test (figure 8(a)). However, the slack part of the stressstrain diagram resulting from the unilateral closure of the crack is not reproduced due to the continuum nature of the present model.

Conclusions

In this paper a modification of an elastic-plastic damaging model for concrete presented in [START_REF] Contrafatto | A framework of elastic-plastic damaging model for concrete under multiaxial stress states[END_REF], introducing a different expression for the internal energy based on the spectral decomposition in terms of eigenprojections of the elastic strain tensor has been investigated. Although the modification appears to be of minor relevance, significant consequences have been found, especially in the behaviour of the material after heavy damage, and in cyclic responses, apparently yielding results closer to the experimental observations. The predictions for the peak strength are little affected by the modification: in compression are not affected at all, while some improvements have been found in tension. This is encouraging, since already the first form of the model showed a good performance in predicting the peak stresses. An improvement is found in tensile processes in the simulation of the slope of the stress-strain curve for reversed loads. Further differences between the two models can be found for loading paths close to the deviator regime. However, since it is difficult to find experimental evidences, these cases could be tested only with full structural simulations, that are beyond the aims of this paper. The model has been presented here in principal directions only. The complete expressions of the constitutive equations for the general case will be the object of future developments.
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 1 Generalized damaged static variables in uniaxial tension.

	Uniaxial tension	
	MI model	σ 1

Table 2 .

 2 Generalized damaged static variables in uniaxial compression.

	Uniaxial compression	
	MI model	σ 1

Table 4 .

 4 Elastic limit value of damage variables in simple load processes.

	Elastic limit value of damage variables	
	Uniaxial tension	
	MI model	ζ

Table 5 .

 5 Constitutive parameters.

	Initial Young's modulus Initial hardening modulus Initial Poisson's ratio Uniaxial elastic compressive strength Uniaxial limit tensile strength Equi-biaxial elastic compressive strength Maximum principal stress in a pure shear test f s = 1.10 MPa E 0 = 22, 000 MPa H 0 = 20, 000 MPa ν 0 = 0.25 f c = 11.87 MPa f t = 1.09 MPa f bc = 1.30 -fc = 15.43 MPa Damage parameters k ς = 60 -n 2 = 2

the tensile and the compressive meridian, respectively. Recall that the first meridian represents stress states characterized by the two equal principal stresses smaller than the third, the other represents stress states characterized by the two equal principal stresses greater than the third. The gap between the curves results in a marked triangular shape of the deviatoric sections. However, for large values of the confinement pressure, i.e. moving farther along the isotropic compression axis, the shape of the deviatoric section gets more rounded, asymptotically tending to circular.

A numerical procedure has been used for calculating the evolution of the stresses up to the peak for several load paths. The constitutive model has been implemented in the FEAP