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We prove an Eyring-Kramers law for the small eigenvalues and mean first-passage times of a metastable Markovian jump process which is invariant under a group of symmetries. Our results show that the usual Eyring-Kramers law for asymmetric processes has to be corrected by a factor computable in terms of stabilisers of group orbits. Furthermore, the symmetry can produce additional Arrhenius exponents and modify the spectral gap. The results are based on representation theory of finite groups.

Introduction

The Eyring-Kramers law characterises the mean transition times between local minima of a diffusion in a potential landscape. Consider the stochastic differential equation

dx t = -∇V (x t ) dt + √ 2ε dW t , (1.1) 
where V : R d → R is a confining potential, and W t is a d-dimensional standard Brownian motion. If V has just two quadratic local minima x * and y * , separated by a quadratic saddle z * , the Eyring-Kramers law states that the expected first-passage time τ from x * to a small ball around y * is given by

E x * [τ ] = 2π |λ 1 (z ⋆ )| |det(∇ 2 V (z ⋆ ))| det(∇ 2 V (x ⋆ )) e [V (z ⋆ )-V (x ⋆ )]/ε [1 + O(ε 1/2 |log ε| 3/2 )] . (1.2) 
Here ∇ 2 V (x ⋆ ) and ∇ 2 V (z ⋆ ) denote the Hessian matrices of V at x ⋆ and z ⋆ respectively, and λ 1 (z ⋆ ) is the unique negative eigenvalue of ∇ 2 V (z ⋆ ) (z ⋆ is called a saddle of Morse index 1). A critical point is called quadratic if the Hessian matrix is non-singular. The exponential behaviour in e [V (z ⋆ )-V (x ⋆ )]/ε of (1.2) was first proposed by van t'Hoff, and justified physically by Arrhenius [START_REF] Arrhenius | On the reaction velocity of the inversion of cane sugar by acids[END_REF]. The more precise formula with the prefactors depending on Hessians was introduced by Eyring [START_REF] Eyring | The activated complex in chemical reactions[END_REF] and Kramers [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF]. Mathematical proofs for these formulas are much more recent. The Arrhenius law has first been justified by Wentzell and Freidlin, using the theory of large deviations [START_REF] Ventcel | Small random perturbations of a dynamical system with stable equilibrium position[END_REF][START_REF] Ventcel | Small random perturbations of dynamical systems[END_REF]. The first rigorous proof of the full Eyring-Kramers law (1.2) was provided by Bovier, Eckhoff, Gayrard and Klein, using potential-theoretic methods [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF][START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF]. These methods have also been applied to lattice models [START_REF] Bovier | Metastability and low lying spectra in reversible Markov chains[END_REF][START_REF] Hollander | Metastability under stochastic dynamics[END_REF] and used to extend the Eyring-Kramers law to systems with nonquadratic saddles [START_REF] Berglund | The Eyring-Kramers law for potentials with nonquadratic saddles[END_REF] and to stochastic partial differential equations [START_REF] Berglund | Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers' law and beyond[END_REF]2]. Other approaches to proving (1.2) include an analysis of Witten Laplacians acting on p-forms [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF][START_REF] Le Peutrec | Precise Arrhenius law for p-forms: The Witten Laplacian and Morse-Barannikov complex[END_REF]. See for instance [START_REF] Berglund | Kramers' law: Validity, derivations and generalisations[END_REF] for a recent survey.

If the potential V has N > 2 local minima, the characterisation of metastable timescales becomes more involved. It has been known for a long time that the diffusion's generator admits N exponentially small eigenvalues, and that they are connected to metastable timescales [START_REF] Mathieu | Spectra, exit times and long time asymptotics in the zero-white-noise limit[END_REF][START_REF] Miclo | Comportement de spectres d'opérateurs de Schrödinger à basse température[END_REF][START_REF] Kolokol | Asymptotic spectral analysis of a small diffusion operator and the life times of the corresponding diffusion process[END_REF][START_REF] Kolokoltsov | Semiclassical analysis for diffusions and stochastic processes[END_REF]. A method introduced by Wentzell, cf [START_REF] Ventcel | The asymptotic behavior of the eigenvalues of matrices with elements of the order exp{-V ij /(2ε 2 )}[END_REF] and [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF]Chapter 6], based on so-called W -graphs, provides a way to compute the logarithmic asymptotics of these eigenvalues. That is, Wentzell's algorithm yields Arrhenius exponents H k such that the k-th small eigenvalue λ k behaves like -e -H k /ε , in the sense that ε log(-λ k ) converges to -H k as ε → 0. In fact, the W -graph algorithm does not require the drift term to be in gradient form, as in (1.1).

However, for the gradient system (1.1), much more precise estimates are available. Indeed, results in [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF][START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF] provide expressions of the form λ k = -C k (ε) e -H k /ε , where C k (0) is known explicitly. Furthermore, one can order the local minima x * 1 , . . . , x * N of V in such a way that the mean transition time from each x * k to the set {x * 1 , . . . , x * k-1 } of its predecessors is close to the inverse of λ k .

The only limitation of these results is that they require a non-degeneracy condition to hold. In short, all relevant saddle heights have to be different (see Section 2.2 for a precise formulation). While this condition holds for generic potentials V , it will fail whenever the potential is invariant under a symmetry group G. Let us mention two examples of such potentials, which will serve as illustrations of the theory throughout this work.

Example 1.1. The papers [START_REF] Berglund | Metastability in interacting nonlinear stochastic differential equations: I. From weak coupling to synchronization[END_REF]6] introduce a model with N particles on the periodic lattice Λ = Z N := Z /N Z , which are coupled harmonically to their nearest neighbours, and subjected to a local double-well potential U (y) = 1 4 y 4 -1 2 y 2 . The associated potential reads

V γ (x) = i∈Λ U (x i ) + γ 4 i∈Λ (x i+1 -x i ) 2 .
(1.

3)

The potential V γ is invariant under the group G generated by three transformations: the cyclic permutation r : x → (x 2 , . . . , x N , x 1 ), the reflection s : x → (x N , . . . , x 1 ) and the sign change c : x → -x. The transformations r and s generate the dihedral group D N of isometries preserving a regular N -gon, and since c commutes with r and s, G is the direct product D N × Z 2 .

It has been shown in [START_REF] Berglund | Metastability in interacting nonlinear stochastic differential equations: I. From weak coupling to synchronization[END_REF] that for weak coupling γ, the model behaves like an Ising model with Glauber spin-flip dynamics [15, Section 3], while for large γ the systems synchronizes, meaning that all components x i tend to be equal.

Example 1.2. Consider a variant of the previous model, obtained by restricting V γ to the space {x ∈ R Λ :

x i = 0}. For weak coupling, this system will mimic a Kawasaki-type dynamics with conserved "particle" number [START_REF] Hollander | Metastability under stochastic dynamics[END_REF]Section 4]. The symmetry group G is the same as in the previous example.

The potential-theoretic approach has been extended to some particular degenerate situations, by computing equivalent capacities for systems of capacitors in series or in parallel [3,Chapter 1.2]. This is close in spirit to the electric-network analogy for random walks on graphs [START_REF] Doyle | Random walks and electric networks[END_REF]. However, for more complicated symmetric potentials admitting many local minima, the computation of equivalent capacities becomes untractable. This is why we develop in this work a general approach based on Frobenius' representation theory for finite groups. The basic idea is that each irreducible representation of the group G will yield a subset of the generator's eigenvalues. The trivial representation corresponds to initial distributions which are invariant under G, while all other representations are associated with non-invariant distributions.

In the present work, we concentrate on the case where the process itself is a Markovian jump process, with states given by the local minima, and transition probabilities governed by the Eyring-Kramers law between neighbouring minima. The study of jump processes is also of independent interest: see for instance [START_REF] Hwang | Singular perturbed Markov chains and exact behaviors of simulated annealing processes[END_REF][START_REF] Chiang | Asymptotic behavior of eigenvalues and random updating schemes[END_REF][START_REF] Trouvé | Cycle decompositions and simulated annealing[END_REF] for applications to simulated annealing and image processing. We expect that the results can be extended to diffusions of the form (2.1), is a similar way as in the asymmetric case. The main results are Theorems 3.2, 3.5 and 3.9 in Section 3, which provide sharp estimates for the eigenvalues and relate them to mean transition times. More precisely, we show that the generator's eigenvalues are of the form

λ k = -C k e -H k /ε [1 + O(e -θ/ε )] (1.4)
for some θ > 0, with explicit expressions of the C k and H k in terms of group orbits and stabilisers. While the H k can also be obtained by algorithms based on W -graphs, our approach provides in addition the prefactors C k at a comparable computational cost. The results show in particular that a phenomenon of clustering of eigenvalues takes place: there are in general many eigenvalues sharing the same Arrhenius exponent H k , but having possibly different prefactors C k . The precise determination of the C k is thus important in order to be able to distinguish eigenvalues in a same cluster. We also provide a probabilistic interpretation for this clustering. The remainder of the article is organised as follows. In Section 2, we define the main objects, recall results from the asymmetric case, as well as some elements of representation theory of finite groups. Section 3 contains the results on eigenvalues and transition times for processes that are invariant under a group of symmetries. These results are illustrated in Section 4 for two cases of Example 1.2. The remaining sections contain the proofs of these results. Section 5 collects all proofs related to representation theory, Section 6 contains the estimates of eigenvalues, and Section 7 establishes the links with mean transition times. Finally Appendix A gives some information on the computation of the potential landscape of Example 1.2.

Notations:

We denote by a∧b the minimum of two real numbers a and b, and by a∨b their maximum. If A is a finite set, |A| denotes its cardinality, and 1 A (x) denotes the indicator function of x ∈ A. We write 1l for the identity matrix, and 1 for the constant vector with all components equal to 1. The results concern Markovian jump processes {X t } t 0 on finite sets X , defined on a filtered probability space (Ω, F, P, {F t } t 0 ). We denote their generator by L, that is, L is a matrix with non-negative off-diagonal elements, and zero row sums. The law of X t starting with an initial distribution µ is denoted P µ {•}, and E µ [•] stands for associated expectations. If µ = δ i is concentrated in a single point, we write

P i {•} and E i [•].

Setting

Metastable markovian jump processes

Let X be a finite set, and let L be the generator of an irreducible Markovian jump process on X . We assume that the elements of L can be written in the form

L ij = c ij m i e -h ij /ε , i, j ∈ X , i = j , (2.1) 
where ε > 0, c ij = c ji > 0, m i > 0 and 0 < h ij +∞ (it will be convenient to write h ij = +∞ to indicate that L ij = 0). In addition, we assume that there exists a function V : X → R + such that L is reversible with respect to the measure m e -V /ε :

m i e -V i /ε L ij = m j e -V j /ε L ji ∀i, j ∈ X . (2.2)
Since we assume c ij = c ji , this is equivalent to

V i + h ij = V j + h ji ∀i, j ∈ X . (2.3)
Our aim is to understand the behaviour as ε → 0 of the Markov process X t of generator L, when L is invariant under a group G of bijections g : X → X . Let G = (X , E) be the undirected graph with set of edges E = {(i, j) ∈ X 2 : L ij > 0}. It will be convenient to associate with an edge e = (i, j) ∈ E the height of the saddle between i and j defined by V e = V i + h ij = V j + h ji , and to write c e = c ij = c ji . In particular, this convention justifies the graphical representation used e.g. in Figure 1 below, in which we draw a function V (x) with local minima at height V i and saddles at height V e .

A widely used method for determining the logarithmic asymptotics of the eigenvalues λ k of the generator L relies on so-called W -graphs [START_REF] Ventcel | The asymptotic behavior of the eigenvalues of matrices with elements of the order exp{-V ij /(2ε 2 )}[END_REF]. Given a subset W ⊂ X , a W -graph is a directed graph with set of vertices X , such that every point i ∈ X \ W is the origin of exactly one path ending in a point j ∈ W . Then one has

H k = -lim ε→0 ε log(-λ k ) = V (k) -V (k+1) , (2.4) 
where each V (k) involves a minimum over all W -graphs with k elements. The quantity to be minimized is the sum of h ij over all edges of the graph. This is the continuous-time analogue of [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF]Theorem 7.3], see for instance [START_REF] Cameron | Flows in complex networks: theory, algorithms, and application to Lennard-Jones cluster rearrangement[END_REF]Section 4.3]. However, our aim is to determine the Eyring-Kramers prefactor of the eigenvalues as well, that is, to obtain the constants

C k = lim ε→0 (-λ k ) e H k /ε . (2.5)
In the "general position" case, i.e. when the relevant potential differences are all different, the C k can be determined from the graph G and the notions of communication height and metastable hierarchy [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF][START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF]. We explain this approach in the next two subsections, before turning to the more difficult case where the generator L is invariant under a symmetry group.

Metastable hierarchy

Definition 2.1 (Communication heights). Let i = j ∈ X . For p 1, the (p + 1)-step communication height from i to j is defined inductively by 

h ik 1 ...kpj = h ik 1 ...kp ∨ (h ik 1 -h k 1 i + h k 1 k 2 -h k 2 k 1 + • • • + h kpj ) (2.6) 2 3 1 h 23 h 32 h 31 h 231 h 13 V 2 V (1,3) 2 3 1 Figure 1.
h 231 = V (1,3) -V 2 .
(see Figure 1). The communication height from i to j = i is defined by

H(i, j) = min γ:i→j h γ , (2.7) 
where the minimum runs over all paths γ = (i, k 1 , . . . , k p , j) of length p + 1 1. Any such path realising the minimum in (2.7) is called a minimal path from i to j. If i ∈ A ⊂ X , we define the communication height from i to A as

H(i, A) = min j∈A H(i, j) . (2.8) 
Using (2.3) and induction on p, it is straightforward to show that communication heights can be equivalently defined in terms of heights of saddles, by

h ik 1 ...kpj + V i = V (i,k 1 ) ∨ V (k 1 ,k 2 ) ∨ • • • ∨ V (kp,j) .
(2.9)

Thus H(i, j) + V i is the minimum over all paths γ from i to j of the maximal saddle height encountered along γ.

Example 2.2. Consider the generator

L =     -c 13 m 1 e -h 13 /ε 0 c 13 m 1 e -h 13 /ε 0 -c 23 m 2 e -h 23 /ε c 23 m 2 e -h 23 /ε c 13 m 3 e -h 31 /ε c 23 m 3 e -h 32 /ε -c 13 m 3 e -h 31 /ε -c 23 m 3 e -h 32 /ε     (2.10)
where we assume h 32 < h 31 , h 32 < h 23 and h 23 -h 32 + h 31 < h 13 . The associated graph and potential are shown in Figure 1. We have for instance

h 231 = h 23 ∨ (h 23 -h 32 + h 31 ) = h 23 -h 32 + h 31 = V (1,3) -V 2 , (2.11)
which is the height difference between state 2 and the saddle connecting states 1 and 3.

The communication height from 2 to 1 is given by

H(2, 1) = h 21 ∧ h 231 = h 231 , (2.12 
) (2.13)

The following non-degeneracy assumption is the central condition for being in what we will call the asymmetric case. It is a weak form of similar "general position" assumptions, found e.g. in [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF]Section 6.7], [21, p. 225] or [START_REF] Cameron | Computing the asymptotic spectrum for networks representating energy landscapes using the minimal spanning tree[END_REF]Assumption 1].

Assumption 2.3 (Metastable hierarchy). The elements of X = {1, . . . , n} can be ordered in such a way that if M k = {1, . . . , k},

H(k, M k-1 ) min i<k H(i, M k \ {i}) -θ , k = 2, . . . , n (2.14) 
for some θ > 0. We say that the order 1 ≺ 2 ≺ • • • ≺ n defines the metastable hierarchy of X (see Figure 2). Furthermore, for each k there is a unique edge e * (k) such that any minimal path γ : k → M k-1 reaches height H(k, M k-1 ) + V k only on the edge e * (k). Finally, any non-minimal path γ : k → M k-1 reaches at least height V e * (k) + θ.

Condition (2.14) means that in the lower-triangular part of the matrix of communication heights H(i, j), the minimum of each row is smaller, by at least θ, than the minimum of the row above. Such an ordering will typically only exist if L admits no nontrivial symmetry group.

Example 2.4. Returning to the previous example, we see that H(3, {1, 2}) = h 32 is smaller than both H(1, {2, 3}) = h 13 and H(2, {1, 3}) = h 23 . Furthermore, H(2, {1}) = h 231 is smaller than H(1, {2}) = h 13 . Thus the system admits a metastable order given by 1 ≺ 2 ≺ 3, where θ is the minimum of h 13 -h 32 , h 23 -h 32 and h 13 -h 213 (Figure 2). The associated highest edges are e * (3) = (2, 3) and e * (2) = [START_REF] Arrhenius | On the reaction velocity of the inversion of cane sugar by acids[END_REF]3).

Note that the relevant communication heights H(k, M k-1 ) are indeed given by the minima of the corresponding row in the subdiagonal part of the matrix (2.13). See the next section for algorithms allowing to determine the metastable order in an effective way.

The following result is essentially equivalent to [START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF]Theorem 1.2], but we will provide a new proof that will be needed for the symmetric case.

Theorem 2.5 (Asymptotic behaviour of eigenvalues). If Assumption 2.3 holds, then for sufficiently small ε, the eigenvalues of L are given by λ 1 = 0 and

λ k = - c e * (k) m k e -H(k,M k-1 )/ε 1 + O(e -θ/ε ) , k = 2, . . . , n . (2.15) Furthermore, let τ M k-1 = inf{t > 0 : X t ∈ M k-1 } be the first-hitting time of M k-1 .
Then for k = 2, . . . , n,

E i τ M k-1 = 1 |λ k | 1 + O(e -θ/ε ) (2.16
)

holds for all initial values i ∈ X \ M k-1 .
Example 2.6. The theorem shows that the eigenvalues of the generator (2.10) satisfy

λ 1 = 0 , λ 2 = - c 13 m 2 e -h 231 /ε 1 + O(e -θ/ε ) , λ 3 = - c 23 m 3 e -h 32 /ε 1 + O(e -θ/ε ) .
This can of course be checked by an explicit computation in this simple case. The interest of Theorem 2.5 is that is works for arbitrarily large systems, at a relatively modest computational cost.

Computational cost of the algorithm

Let us denote by n = |X | the number of states, and by m = |E| the number of edges of G.

Since we assume the chain to be irreducible, we obviously have n-1 m 1 2 n(n-1). Note that the number of possible W -graphs on X is at least 2 n (the number of subsets of X ), so that applying (2.4) directly to compute the exponents H k can be very time-consuming. However, in the reversible case the method can be substantially improved.

The basic steps of an algorithm determining the metastable hierarchy, and hence both the prefactors C k and exponents H k of the eigenvalues, are as follows [13, Section 4.3]:

• Find the smallest (1-step) communication height h ij . The state i will then be the last in the metastable hierarchy. • Remove state i and all edges containing i from the graph; recompute the 1-step communication heights, in the sense that for each j, k = i, h jk is replaced by its minimum with h jik (cf. Figure 3). • Repeat until there are no edges left.

One way of doing this efficiently goes as follows. For any site i ∈ X , we call successor of i any site s(i) such that inf

j =i h ij = h is(i) .
(2.17)

If a metastable hierarchy exists, then the last site in the hierarchy has a unique successor. Define the graph of successors to be the oriented graph with set of vertices X and edges i → s(i) (Figure 2). Reversibility implies that this graph cannot have cycles of length larger than 2. Furthermore, there has to be at least one cycle of length 2. If (i, j) is a 2-cycle and V i < V j , we say that i is at the bottom of the cycle and j is at the top of the cycle. Our algorithm reads

• Determine the graph of successors.

• Find all cycles of length 2. Determine the top of each cycle. Erase all sites which are at the top of a cycle and the corresponding edge, and update the h jk as above. • Repeat until there are no more edges. This algorithm yields the so-called disconnectivity tree, which encodes the metastable hierarchy. The leaves of the tree are the states in X . Two branches join whenever they belong to a 2-cycle at some step of the algorithm. By plotting each leaf i at height V i and joining top and bottom of a cycle at height V (i,s(i)) , the Arrhenius exponents and the e * (k) determining the prefactors C k can be read off the tree (Figure 2). Jacobi's eigenvalue algorithm allows to diagonalise a general symmetric matrix in O(n 3 ) steps [START_REF] Rutishauser | Handbook Series Linear Algebra: The Jacobi method for real symmetric matrices[END_REF]. The computational cost of the above algorithm, by contrast, is between O(m) and O(n 2 ) at most. Indeed, the graph of successors can be determined by finding, for each i ∈ X , the minimum of the h ij , which requires 2m steps. The cost of determining all 2-cycles is of order n and thus negligible. Finally, updating communication heights and graph of successors after removing one site has a cost O(n) at most, and has to be done for n -1 sites in total. Since 2m < n 2 , the claim follows.

An alternative algorithm for determining the metastable hierarchy is discussed in [START_REF] Cameron | Computing the asymptotic spectrum for networks representating energy landscapes using the minimal spanning tree[END_REF]. Though it has been derived in order to determine the exponents H k only, Theorem 2.5 shows that it can be used to compute the prefactors C k as well. The algorithm consists in first computing the minimal spanning tree of the graph (minimal in terms of communication heights), and then removing edges from the spanning tree. The computational cost given in [START_REF] Cameron | Computing the asymptotic spectrum for networks representating energy landscapes using the minimal spanning tree[END_REF] is at least O(n log n) and at most O(n 2 ). Hence the costs of both algorithms discussed here have comparable bounds, though in specific situations one or the other algorithm may perform substantially better.

Symmetry groups and their representations

Let G be a finite group of bijections g : X → X . We denote by π(g) the permutation matrix

π(g) ab = 1 if g(a) = b , 0 otherwise . (2.18)
From now on we assume that the generator L is invariant under G, that is,

π(g)L = Lπ(g) ∀g ∈ G . (2.19)
This is equivalent to assuming L ab = L g(a)g(b) for all a, b ∈ X and all g ∈ G.

Let us recall a few definitions from basic group theory.

Definition 2.7. 1. For a ∈ X , O a = {g(a) : g ∈ G} ⊂ X is called the orbit of a. 2. For a ∈ X , G a = {g ∈ G : g(a) = a} ⊂ G is called the stabiliser of a. 3. For g ∈ G, X g = {a ∈ X : g(a) = a} ⊂ X is called the fixed-point set of g.
The following facts are well known:

• The orbits form a partition of X , denoted X /G.

• For any a ∈ X , the stabiliser G a is a subgroup of G.

• For any a ∈ X , the map ϕ : gG a → g(a) provides a bijection from the set G/G a of left cosets to the orbit O a of a, and thus |G|/|G a | = |O a |. • For any g ∈ G and any a ∈ X , one has G g(a) = gG a g -1 , i.e. stabilisers of a given orbit are conjugated. • Burnside's lemma:

g∈G |X g | = |G||X /G|. We will denote the orbits of G by A 1 , . . . , A n G . The value of the communication height H(a, A j ) is the same for all a ∈ A i , and we will denote it H(A i , A j ). Similarly, we write V A i for the common value of all V a , a ∈ A i . We shall make the following two non-degeneracy assumptions:

Assumption 2.8 (Metastable order of orbits). Let M k = A 1 ∪ • • • ∪ A k .
One can order the orbits in such a way that

H(A k , M k-1 ) min i<k H(A i , M k \ A i ) -θ , k = 2, . . . , n G (2.20)
for some θ > 0. We indicate this by writing

A 1 ≺ A 2 ≺ • • • ≺ A n G . Furthermore, for each k = 2, . . . , n G , there is an edge e * (k) ∈ E such that H(A k , M k-1 ) + V A k = V (a,b) ⇔ ∃g ∈ G : (g(a), g(b)) = e * (k) . (2.21)
Assumption 2.9 (Absence of accidental degeneracy). Whenever there are elements

a 1 , b 1 , a 2 , b 2 ∈ X such that h a 1 b 1 = h a 2 b 2 , there exists g ∈ G such that g({a 1 , b 1 }) = {a 2 , b 2 }.
We make the rather strong Assumption 2.9 mainly to simplify the expressions for eigenvalues; the approach we develop here can be applied without this assumption, at the cost of more complicated expressions. Assumption 2.9 implies the following property of the matrix elements of L:

Lemma 2.10. For all a, b ∈ X , belonging to different orbits, L ah(b) = L ab if and only if h ∈ G a G b .
Proof: By Assumption 2.9, and since g(a) = b as they belong to different orbits, L ah(b) = L ab if and only if there is a g ∈ G such that g(a) = a and g(b) = h(b). This is equivalent to the existence of a g ∈ G a such that g

(b) = h(b), i.e. b = g -1 h(b). This in turn is equivalent to h ∈ G a G b .
Direct transitions between two orbits A i and A j are dominated by those edges (a, b) for which h ab is minimal. We denote the minimal value

h * (A i , A j ) = inf{h ab : a ∈ A i , b ∈ A j } . (2.

22)

Note that h * (A i , A j ) may be infinite (if there is no edge between the orbits), and that

H(A i , A j ) h * (A i , A j )
. By decreasing, if necessary, the value of θ > 0, we may assume that

h ab > h * (A i , A j ), a ∈ A i , b ∈ A j ⇒ h ab h * (A i , A j ) + θ . (2.23) By Lemma 2.10, if h * (A i , A j ) is finite, each a ∈ A i is connected to exactly |G a G b |/|G b | states in A j ∋ b with transition rate L ab = [c ab /m a ] e -h * (A i ,A j )/ε . Observe that ϕ : G a G b /G b → G a /(G a ∩ G b ) gG b → g(G a ∩ G b ) (2.24)
is a bijection, and therefore the number n a j of states in A j communicating with a can be written in either of the two equivalent forms

n a j = |G a G b | |G b | = |G a | |G a ∩ G b | . (2.25)
The map π defined by (2.18) is a morphism from G to GL(n, C ), and thus defines a representation of G (of dimension dim π = n). In what follows, we will draw on some facts from representation theory of finite groups (see for instance [START_REF] Serre | Linear representations of finite groups[END_REF]):

• A representation of G is called irreducible if there is no proper subspace of C n which is invariant under all π(g). • Two representations π and π ′ of dimension d of G are called equivalent if there exists a matrix S ∈ GL(d, C ) such that Sπ(g)S -1 = π ′ (g) for all g ∈ G.

• Any finite group G has only finitely many inequivalent irreducible representations π (0) , . . . , π (r-1) . Here π (0) denotes the trivial representation,

π (0) (g) = 1 ∀g ∈ G. • Any representation π of G can be decomposed into irreducible representations: π = r-1 p=0 α (p) π (p) , α (p) 0 , r-1 p=0 α (p) dim(π (p) ) = dim(π) = n . (2.26)
This means that we can find a matrix S ∈ GL(n, C ) such that all matrices Sπ(g)S -1 are block diagonal, with α (p) blocks given by π (p) (g). This decomposition is unique up to equivalence and the order of factors. • For any irreducible representation π (p) contained in π, let χ (p) (g) = Tr π (p) (g) denote its characters. Then

P (p) = dim(π (p) ) |G| g∈G χ (p) (g)π(g) (2.27)
is the projector on the invariant subspace of C n associated with π (p) . In particular,

α (p) dim(π (p) ) = Tr P (p) = dim(π (p) ) |G| g∈G χ (p) (g)χ(g) , (2.28) 
where χ(g) = Tr π(g). Note that for the representation defined by (2.18), we have

χ(g) = |X g |.
Example 2.11 (Irreducible representations of the dihedral group). The dihedral group D N is the group of symmetries of a regular N -gon. It is generated by r, the rotation by 2π/N , and s, one of the reflections preserving the N -gon. In fact

D N = id, r, r 2 , . . . , r N -1 , s, rs, r s , . . . , r N -1 s (2.29)
is entirely specified by the conditions r N = id, s 2 = id and rs = sr -1 . If N is even, then D N has 4 irreducible representations of dimension 1, specified by π(r) = ±1 and π(s) = ±1.

In addition, it has N 2 -1 irreducible representations of dimension 2, equivalent to

π(r) = e 2 i πk/N 0 0 e -2 i πk/N , π(s) = 0 1 1 0 , k = 1, . . . N 2 -1 . (2.30)
The associated characters are given by

χ(r i s j ) = Tr π(r i s j ) = 2 cos 2πik N δ j0 , i = 0, . . . , N -1, j = 0, 1 . (2.31) 
There are no irreducible representations of dimension larger than 2. If N is odd, there are 2 irreducible representations of dimension 1, specified by π(r) = 1 and π(s) = ±1, and (N -1)/2 irreducible representations of dimension 2.

Results

The central idea of our approach is to use the decomposition ( 

P (p) L = LP (p) , p = 0, . . . , r -1 , (3.1) 
so that the r images P (p) C n (where n = |X |) are invariant subspaces for L. We can thus determine the eigenvalues of L by restricting the analysis to each restriction L (p) of L to the subspace P (p) C n . All eigenvalues of L are associated with exactly one irreducible representation, so that the procedure will eventually yield the whole spectrum of L.

An equivalent way of stating this is that the projectors P (p) will allow us to construct a basis in which L is block-diagonal. Each block corresponds to a different irreducible representation. After computing the matrix elements of each block, the eigenvalues can be determined by adapting the algorithm of the asymmetric case.

The trivial representation

Let us start by the restriction L (0) of L to the subspace P (0) C n associated with the trivial representation π (0) . Proposition 3.1 (Matrix elements of L (0) for the trivial representation). The subspace P (0) C n has dimension n G and is spanned by the vectors u

(0) i = 1 A i , i = 1, . . . n G .
The off-diagonal matrix element of L (0) for transitions between the orbits A i and A j is given by

L (0) ij := u i , Lu j u i , u i = c * ij m * i e -h * (A i ,A j )/ε [1 + O(e -θ/ε )] , (3.2) 
with c * ij = c ab |G a ∩ G b | , m * i = m a |G a | , (3.3) 
where a ∈ A i and b ∈ A j are such that h ab = h * (A i , A j ). Furthermore, L (0) is a generator, and thus its diagonal elements are given by

L (0) ii =: - j =i L (0) ij . (3.4)
The basis vectors u i are indicator functions on the orbits A i . Thus if the initial distribution µ is uniform on each A i , then it stays uniform on each A i for all times. The process X t is then equivalent to the process on {1, . . . , n G } with transition rates given by L (0) . Applying Theorem 2.5 on the asymmetric case to this process, which is possible thanks to Assumption 2.8, we thus obtain the following Kramers formula for the eigenvalues of L (0) . Theorem 3.2 (Eigenvalues associated with the trivial representation). If Assumptions 2.8 and 2.9 hold true, then for ε small enough, the spectrum of L (0) consists in n G eigenvalues of geometric multiplicity 1, given by λ

(0) 1 = 0 and λ (0) k = c * i(k)j(k) m * k e -H(A k ,M k-1 )/ε 1 + O(e -θ/ε ) , k = 2, . . . , n G , (3.5) 
where i(k) and j(k

) are such e * (k) = (a, b) with a ∈ A i(k) and b ∈ A j(k) (cf (2.21)).
Furthermore, for 2 k n G , let µ be a probability distribution supported on X \ M k-1 which is uniform on each A j . Then

E µ τ M k-1 = 1 |λ k | 1 + O(e -θ/ε ) . (3.6)
The main difference between the Kramers formula (3.5) of the symmetric case and its equivalent (2.15) for the asymmetric case is that the eigenvalues are multiplied by an extra factor

|G c |/|G a ∩ G b |, where c ∈ A k , a ∈ A i(k) and b ∈ A j(k)
, which accounts for the symmetry.

Other irreducible representations of dimension 1

Theorem 3.2 only accounts for a small subset of n G eigenvalues of the generator, associated with distributions that are uniform on each orbit A i . All other eigenvalues of L will be associated to the rate at which non-uniform initial distributions approach the uniform one. We first determine eigenvalues associated with nontrivial representations of dimension 1, which are easier to obtain. The following lemma shows that given such a representation, only part of the orbits may be present in the image of the associated projector. Lemma 3.3. Let π (p) be an irreducible representation of dimension 1 of G, let A i be an orbit of G and fix any a ∈ A i . Denote by π i (g) the permutation induced by g ∈ G on A i and let P (p) i be the associated projector, cf. (2.27). Then one of two following cases holds: Let us call active (with respect to the representation π (p) ) the orbits A i such that Tr P (p) i = 1, and inactive the other orbits. The restriction L (p) of L to the subspace P (p) C n has dimension equal to the number of active orbits, and the following result describes its matrix elements. Proposition 3.4 (Matrix elements for an irreducible representation of dimension 1). For each orbit A i fix an a i ∈ A i . The subspace P (p) C n is spanned by the vectors (u

• either π (p) (h) = 1 for all h ∈ G a ,
(p) i ) A i active with components (u (p) i ) a = π (p) (h) if a = h(a i ) ∈ A i , 0 otherwise . (3.7)
The off-diagonal matrix elements of L (p) between two active orbits A i and A j are again given by

L (p) ij = u (p) i , Lu (p) j u (p) i , u (p) 
i = L (0) ij = c * ij m * i e -h * (A i ,A j )/ε [1 + O(e -θ/ε )] . (3.8)
The diagonal elements of L (p) are given by

L (p) ii = L (0)
ii -

gGa i ∈G/Ga i \Ga i (1 -π (p) (g))L a i g(a i ) . (3.9) 
Using Assumption 2.9, we can obtain a more explicit expression for the diagonal matrix elements. For each orbit A i , we can define a unique successor s(i), which labels the orbit which is easiest to reach in one step from A i :

inf j =i h * (A i , A j ) = h * (A i , A s(i) ) . (3.10)
As a consequence of (3.4), we have

L (0) ii = - c * is(i) m * i e -h * (A i ,A s(i) )/ε [1 + O(e -θ/ε )] . (3.11) 
There are different cases to be considered, depending on whether it is easier, starting from a ∈ A i , to reach states outside

A i or in A i \ a. Let a * be such that h(a, a * ) = inf b h(a, b). Then L (p) ii =      L (0) ii [1 + O(e -θ/ε )] if a * / ∈ A i , -2[1 -Re π (p) (k)]L aa * [1 + O(e -θ/ε )] if a * = k(a) ∈ A i and k = k -1 , -[1 -π (p) (k)]L aa * [1 + O(e -θ/ε )] if a * = k(a) ∈ A i and k = k -1 .
(3.12) Relation (3.9) and the fact that not all orbits are active for a nontrivial representation imply that the matrix L (p) is not a generator if p = 0. We can however add a cemetery state to the set of active orbits, and thus associate to L (p) a Markovian jump process on the augmented space. The cemetery state is absorbing, which reflects the fact that all nonzero initial conditions in P (p) C n are asymmetric and will converge to the symmetric invariant distribution.

Theorem 3.5 (Eigenvalues associated with nontrivial irreducible representations of dimension 1). Let π (p) be a nontrivial irreducible representation of G of dimension 1, and let n p be the number of active orbits associated with π (p) . For sufficiently small ε, the spectrum of L (p) consists in n p eigenvalues of geometric multiplicity 1. They can be determined by applying Theorem 2.5 to the augmented process defined by L (p) , and ignoring the eigenvalue 0.

Irreducible representations of dimension larger than 1

We finally turn to the computation of eigenvalues associated with irreducible representations of higher dimension, which is more involved. The following lemma is an analogue of Lemma 3.3, specifying which orbits will appear in the image of the projector associated with a given representation. Lemma 3.6. Let π (p) be an irreducible representation of G of dimension d 2, and let A i be an orbit of G. Denote by π i (g) the permutation induced by g ∈ G on A i , and let P (p) i be the associated projector, cf. (2.27). Then for arbitrary a ∈ A i ,

Tr(P (p) i ) = dα (p) i , α (p) i = 1 |G a | h∈Ga χ (p) (h) ∈ {0, 1, . . . , d} . (3.13) 
Here χ (p) (h) = Tr π (p) (h) denotes the characters of the irreducible representation.

Let us again call active (with respect to the irreducible representation π (p) ) those orbits for which Tr(P

(p) i ) > 0.
Proposition 3.7 (Matrix elements of L (p) for an irreducible representation π (p) of dimension larger than 1). The subspace P (p) C n is spanned by the vectors (u a i ) i=1,...,m,a∈A i with components

(u a i ) b =      d |G a | g∈Ga χ (p) (gh) if b = h(a) ∈ A i , 0 otherwise . 
(3.14)

The matrix elements of L (p) between two different active orbits A i and A j are given by

u h 1 (a) i , Lu h 2 (b) j u h 1 (a) i , u h 1 (a) i = c * ij α (p) i m * i e -h * (A i ,A j )/ε M (p) h 1 (a)h 2 (b) [1 + O(e -θ/ε )] , (3.15) 
where

a ∈ A i , b ∈ A j , h 1 , h 2 ∈ G, and 
M (p) h 1 (a)h 2 (b) = 1 |G a G b | g∈GaG b χ (p) (h 1 gh -1 2 ) . (3.16)
The diagonal blocks of L (p) are given by the following expressions. Let a ∈ A i and let a * be such that h(a, a * ) = inf b h(a, b). Then where

u h 1 (a) i , Lu h 2 (a) i u h 1 (a) i , u h 1 (a) i =                L (0) ii α (p) i M (p) h 1 (a)h 2 (a) [1 + O(e -θ/ε )] if a * / ∈ A , - L aa * α (p) i M (p) h 1 (a)h 2 (a) [1 + O(e -θ/ε )] if a * ∈ A , (3.17 
M (p) h 1 (a)h 2 (a) = 1 |G a | g∈Ga χ (p) (h 1 gh -1 2 ) (3.18) if a * / ∈ A i , while for a * = k(a) ∈ A i , M (p) 
h 1 (a)h 2 (a) =          1 |G a | g∈Ga 2χ (p) (h 1 gh -1 2 ) -χ (p) (h 1 kgh -1 2 ) -χ (p) (h 1 k -1 gh -1 2 ) if k = k -1 , 1 |G a | g∈Ga χ (p) (h 1 gh -1 2 ) -χ (p) (h 1 kgh -1 2 ) if k = k -1 . (3.19) 
In order to apply this result, we have to choose, for each orbit A i , dα (p) i linearly independent vectors among the (u a i ) a∈A i . This result shows that in an appropriate basis, the matrix L (p) has a block structure, with one block L (p) ij for each pair of active orbits. Each block has the same exponential weight as in the one-dimensional case, but the prefactors are multiplied by a nontrivial matrix M (p) depending only on the representation and on the stabilisers of the two orbits.

In order to determine the eigenvalues, recall the definition (3.10) of the successor A s(i) of an orbit A i . We define an oriented graph on the set of orbits, with oriented edges i → s(i) (see Figure 4). Assumption 2.9 implies that each orbit is either in a cycle of length 2, or in no cycle. If i is in a cycle of length 2 and V i < V s(i) , we say that i is at the bottom of a cycle. We will make the following on-degeneracy assumption: Assumption 3.8. Whenever (i, j) form a cycle in the graph of successors, L (p) jj is invertible and the leading coefficient of the matrix

L (p) ii -L (p) ij L (p) jj -1 L (p) ji (3.20)
has the same exponent as the leading coefficient of

L (p)
ii . Note that this assumption will not hold in the one-dimensional case whenever j = s(i). The reason it holds generically in the present case is that there is no particular reason that the matrix L (p) is a generator. In fact the row sums will typically be different from zero for each active orbit, which can be viewed as the fact that each active orbit communicates with a cemetery state. We will give an example in the next section. Under this assumption, we obtain the following characterisation of eigenvalues. Theorem 3.9 (Eigenvalues associated with representations of dimension larger than 1). If Assumptions 2.8, 2.9 and 3.8 hold and ε is small enough, then the spectrum of L (p) consists, up to multiplicative errors 1 + O(e -θ/ε ), in

• the eigenvalues of the matrices (3.20) for all orbits A i such that i is at the bottom of a cycle and s(i) is active; • the eigenvalues of all other diagonal blocks L (p) ii .

Clustering of eigenvalues and computational cost

The results in the previous subsections show that the eigenvalues of the generator L are of the form λ k = -C k e -H k /ε , where the Arrhenius exponents H k can only be of two (not necessarily disjoint) types:

1. either H k is a communication height occurring in the metastable hierarchy of the orbits

A 1 , . . . , A n G ; 2. or H k is of the form h * (A i , A s(i) )
, where s(i) is the successor of an orbit; this case occurs for irreducible representations of dimension d 2, or for one-dimensional irreducible representations if the orbit A s(i) is inactive.

As a consequence, we see a phenomenon of clustering of eigenvalues: there will in general be groups of several eigenvalues sharing the same Arrhenius exponent H k , but with possibly different prefactors C k .

Note that Arrhenius exponents of the second type may be different from those arising from the trivial representation, which are the only ones seen for G-invariant initial distributions. The associated eigenvalues govern the relaxation of initial distributions that are not uniform on each orbit towards the stationary distribution, which is uniform on each orbit.

The computational cost to determine all n eigenvalues can be estimated as follows:

• The cost for determining the n G eigenvalues associated with the trivial representation is O(n 2 G ) at most, as a consequence of the estimates obtained in Section 2.3. • To determine all eigenvalues associated with nontrivial one-dimensional irreducible representations, one can reuse the graph of successors already computed in the previous step. The only new thing to be done is to determine the active orbits. The cost for this has order r 1 (G)n G , where r 1 (G) is the number of irreducible representations of dimension 1. • For each irreducible representation π (p) of dimension d 2, one can again reuse the already determined graph of successors. It remains to compute the matrices M (p) , at cost O(n G (α (p) d) 2 ), and to diagonalise the blocks L (p)

ii or (3.20). The exact cost is hard to determine, but it can in any case be written as O(β(G)n G ), where β(G) depends only on the symmetry group G.

As a result, we obtain the estimate

O n G [n G + r 1 (G) + β(G)] (3.21)
for the total cost of determining all n eigenvalues, where r 1 (G) and β(G) depend only on the group G. Note that r 1 (G) cannot exceed the order |G| of the group, because of the completeness relation

d r d (G)d 2 = |G|.
If we consider a sequence of processes with a fixed symmetry group G and increasing number of states n, the cost will be O(n G ). We expect that typically, n G = O(n/|G|), though one can construct counterexamples where this number is larger. One can also encounter situations where |G| grows with n; we will discuss such a case in Section 4.3. 
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Examples

We discuss in this section two applications of the previous results, which are motivated by Example 1.2. In Appendix A, we show how the local minima and saddles of that system can be computed for small coupling γ. Here we determine the eigenvalues of the associated markovian jump processes, for the cases N = 4, which is relatively simple and can be solved in detail, and N = 8, which is already substantially more involved (the case N = 6 features degenerate saddles, so we do not discuss it here).

The case N = 4

As explained in Appendix A, for 0 γ < 2/5 the system described in Example 1.2 admits 6 local minima, connected by 12 saddles of index 1. The potential (1.3) is invariant under the symmetry group G = D 4 ×Z 2 = r, s, c , which has order 16 and is generated by the rotation r : (x 1 , x 2 , x 3 , x 4 ) → (x 2 , x 3 , x 4 , x 1 ), the reflection s : (x 1 , x 2 , x 3 , x 4 ) → (x 4 , x 3 , x 2 , x 1 ), and the sign change c : x → -x. The local minima form two orbits The graph of connections forms an octaeder as shown in Figure 5. Note in particular that (2.25) is satisfied. Indeed, |G a ∩ G b | = 2, and each site in

A 1 = (1, 1, -1, -1), (1, -1, -1, 1), (-1, -1, 1, 1), (-1, 1, 1, -1) + O(γ) = a, r(a), r 2 (a), r 3 (a) A 2 = (1, -1, 1, -1), (-1, 1, -1, 1) + O(γ) = b, r(b) , (4.1 
A 1 has |G a |/|G a ∩ G b | = 2 neighbours in A 2 , while each site in A 2 has |G b |/|G a ∩ G b | = 4 neighbours in A 1 .
The associated graph in terms of orbits is also shown in Figure 5.

The analysis of the potential (1.3) shows that the transition probabilities are of the form

L ab = c ab m a e -h ab /ε , L ba = c ab m b e -h ba /ε , L aa ′ = c aa ′ m a e -h aa ′ /ε , (4.3) 
where the exponents satisfy (cf. Table 4 in Appendix A)

h ba < h aa ′ < h ab (4.4)
whenever 0 < γ < 2/5. We set θ = (h aa ′ -h ba ) ∧ (h ab -h aa ′ ). The generator L is of the form

L = L 11 L 12 L 21 L 22 , (4.5) 
with blocks

L 11 =     -2L aa ′ -2L ab L aa ′ 0 L aa ′ L aa ′ -2L aa ′ -2L ab L aa ′ 0 0 L aa ′ -2L aa ′ -2L ab L aa ′ L aa ′ 0 L aa ′ -2L aa ′ -2L ab     , (4.6) 
L 12 =     L ab L ab L ab L ab L ab L ab L ab L ab     , L 21 = L ba L ba L ba L ba L ba L ba L ba L ba , L 22 = -4L ba 0 0 -4L ba .
We can now apply the results of Section 3. From the known irreducible representations of the dihedral group D 4 (cf. Example 2.11) and the fact that c commutes with r and s, we deduce that G has 8 irreducible representations of dimension 1, given by

π ρστ (r i s j c k ) = ρ i σ j τ k , ρ, σ, τ = ±1 , (4.7) 
and two irreducible representation of dimension 2, that we denote π 1,± , with characters

χ 1,± (r i s j c k ) = 2 cos(iπ/2)δ j0 (±1) k . (4.8)
Applying Lemma 3.3 and Lemma 3.6, we obtain Table 1 for active and inactive orbits. Table 1 shows that the permutation representation π induced by G on X = A 1 ∪ A 2 admits the decomposition

π = 2π +++ ⊕ π -++ ⊕ π ---⊕ π 1,-. (4.9) 
We can now determine the eigenvalues associated with each irreducible representation:

• Trivial representation π +++ : The associated subspace has dimension 2, and is spanned by the vectors (1, 1, 1, 1, 0, 0) T and (0, 0, 0, 0, 1, 1) T . The matrix in this basis is given by

L (0) = -2L ab 2L ab 4L ba -4L ba , (4.10) 
as can be checked by a direct computation, and is compatible with Proposition 3.1. The eigenvalues of L (0) are 0 and -4L ba -2L ab , which is also compatible with Theorem 3.2 (giving the leading-order behaviour -4L ba [1 + O(e -θ/ε )]). In particular, we conclude that if µ is the uniform distribution on A 2 , then we have the Eyring-Kramers formula

E µ τ A 1 = 1 4 m b c ab e h ba /ε 1 + O(e -θ/ε ) . (4.11)
Note the prefactor 1/4, which is due to the symmetry.

A 1 A 2 αd π +++ 1 1 2 π ++- 0 0 0 π +-+ 0 0 0 π +-- 0 0 0 π -++ 1 0 1 π -+- 0 0 0 π --+ 0 0 0 π --- 0 1 1 π 1,+ 0 0 0 π 1,- 2 0 2 |A| 4 2 6 
Table 1. Active and inactive orbits and number of eigenvalues for the different irreducible representations when N = 4.

Representation π -++ : From (3.7) we see that the associated subspace is spanned by the vector (1, -1, 1, -1, 0, 0) T . A direct computation shows that the corresponding eigenvalue is -4L aa ′ -2L ab , which is also compatible with (3.12), where we have to apply the second case, and use the fact that π -++ (r) = -1. • Representation π ---: From (3.7) we see that the associated subspace is spanned by the vector (0, 0, 0, 0, 1, -1) T . A direct computation shows that the corresponding eigenvalue is -4L ba , and the same result is obtained by applying (3.12) (first case). • Representation π 1,-: From (3.14) we obtain that the associated subspace is spanned by the vectors (2, 0, -2, 0, 0, 0) T and (0, 2, 0, -2, 0, 0) T . The associated matrix is

L 1,-= -2L aa ′ -2L ab 0 0 -2L aa ′ -2L ab (4.12)
and thus -2L aa ′ -2L ab is an eigenvalue of multiplicity 2. The leading-order behaviour -2L aa ′ [1 + O(e -θ/ε )] is also obtained using (3.17) with a * = r(a) and (3.19) (first case), which shows that M = 21l.

In summary, to leading order the eigenvalues of the generator are given by 0 , -2L aa ′ , -2L aa ′ , -4L aa ′ , -4L ba , -4L ba . (4.13)

They form three clusters sharing an exponent, with possibly different prefactors. Note in particular that the spectral gap is given by 2L aa ′ , which is smaller than in the case of an asymmetric double-well, where it would be L ba . This is due to the fact that the slowest process in the system is the internal dynamics of the orbit A 1 .

The case N = 8

In the case N = 8, the potential is invariant under the group G = D 8 × Z 2 , which has order 32. As explained in Appendix A, there are 182 local minima, connected by 560 saddles of index 1. The local minima form 12 orbits, of cardinality varying between 2 and 32 depending on the size of their stabiliser, see 2 (+, -, +, -, +, -, +, -) {id, rs, r 2 , r 3 s, r 4 , r 5 s, r 6 , r 7 s, sc, rc, r 2 sc, r 3 c, r 4 sc, r 5 c, r 6 sc, r These local minima are connected according to the following rules:

3 × (α ←→ +) 3 × (-α ←→ -) 1 × (β ←→ +) 1 × (-β ←→ -) (4.14) 4 × (β ←→ -) 4 × (-β ←→ +) ,
meaning that each α and one of the βs are connected with a +, and so on. A major simplification will arise from the fact that there are no connections among sites of a same orbit.

We do not attempt to draw the full graph, which has 182 vertices and 560 edges. However, Figure 6 shows the graph on the set of orbits. The metastable hierarchy has been established by computing the height of saddles to second order in γ with the help of computer algebra.

The group G = D 8 × Z 2 has again 8 irreducible representations of dimension 1, given by π ρστ (r i s j c k ) = ρ i σ j τ k , ρ, σ, τ = ±1 , (4.15)

In addition, it has 6 irreducible representations of dimension 2 deduced from those of D 8 , cf. (2.30). We denote them π l,± , l = 1, 2, 3, and their characters satisfy (see (2.31))

χ l,± (r i s j c k ) = 2 cos(ilπ/4)δ j0 (±1) k . (4.16)
Applying Lemma 3.3 and Lemma 3.6, we obtain Table 3 of active and inactive orbits.

It is now possible to determine the eigenvalues associated with each irreducible representation. The trivial representation π +++ will yield 12 eigenvalues, which are given by 2). The eigenvalues associated with other irreducible representations of dimension 1 can be deduced from the metastable hierarchy of the corresponding set of active orbits. For instance, Figure 7 shows the graph obtained for the representation π -++ , which yields 7 eigenvalues. An important difference to the previous case arises from the fact that some communication heights relevant for the eigenvalues are associated with transitions to the cemetery state. In particular, A 1 is no longer at the bottom of the hierarchy (which is occupied by the cemetery state), and thus there will be an eigenvalue of order e -H(A 1 ,A 9 )/ε , because A 9 is the successor of A 1 , of the form

+ + + + - - - - A 1 α α α β β β β β A 9 + + + - + - - - A 4 α β α β α β β β A 11 + - + - + - + - A 7 α α β α β β β β A 12 + + + - - + - - A 3 α α β β α β β β A 8 + + - - + + - - A 2 + + - + - - + - A 5 α β α β β α β β A 10 + + - + - + - - A 6 32 
λ (-++) 1 = -4 c a 1 a 9 m a 1 e -H(A 1 ,A 9 )/ε 1 + O(e -θ/ε ) . (4.18)
Eigenvalues associated with irreducible representations of dimension 2 are given by Theorem 3.9. The graph of successors is shown in Figure 8. Observe that A 1 is at the bottom of the cycle containing A 1 and A 9 . For instance, for the representation π 1,-, applying Proposition 3.7 with the choice of basis (u a i , u a ′ i ) with a ′ = r 2 (a) for each orbit, we obtain

A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 αd π +++ 1 1 1 1 1 1 1 1 1 1 1 1 12 π ++- 0 0 1 0 0 0 0 1 1 1 1 1 6 π +-+ 0 0 0 0 0 0 0 1 0 0 0 1 2 π +-- 0 0 0 1 0 1 0 1 0 0 0 1 4 π -++ 1 1 0 1 1 1 0 1 0 0 0 1 7 π -+- 0 0 0 0 0 0 0 1 0 0 0 1 2 π --+ 0 0 1 0 0 0 0 1 1 1 1 1 6 π --- 0 0 1 1 0 1 1 1 1 1 1 1 9 π 1,+ 0 0 2 2 0 2 0 4 2 2 2 4 20 π 1,- 2 
+ + + + - - - - A 1 + + + - + - - - A 4 α α β α β β β β A 12 α α β β α β β β A 8 + + - - + + - - A 2 + + - + - - + - A 5 + + - + - + - - A 6
+ + + + - - - - A 1 α α α β β β β β A 9 + + + - + - - - A 4 α β α β α β β β A 11 + - + - + - + - A 7 α α β α β β β β A 12 + + + - - + - - A 3 α α β β α β β β A 8 + + - - + + - - A 2 + + - + - - + - A 5 α β α β β α β β A 10 + + - + - + - - A 6
L (1,-) 11 = L (0) 11 1l[1 + O(e -θ/ε )] , L (0) 11 
= -4 c a 1 a 9 m a 1 e -H(A 1 ,A 9 )/ε , L (1,-) 19 = 
L (0) 11 M 19 [1 + O(e -θ/ε )] , L (1,-) 91 = L (0) 99 M 91 [1 + O(e -θ/ε )] , L (0) 99 
= -2 c a 9 a 1 m a 9 e -H(A 9 ,A 1 )/ε , L (1,-) 99 = L (0) 99 1l[1 + O(e -θ/ε )] , (4.19) 
where

M 19 = 1 4 2 + √ 2 √ 2 - √ 2 2 + √ 2 , M 91 = 1 4 2 + √ 2 - √ 2 √ 2 2 + √ 2 . (4.20) 
Thus by Theorem 3.9, the eigenvalues associated with A 1 are those of the matrix

L (1,-) 11 -L (1,-) 19 L 
(1,-) 99

-1 L (1,-) 91 = -(2 - √ 2) c a 1 a 9 m a 1 e -H(A 1 ,A 9 )/ε 1l[1 + O(e -θ/ε )] . (4.21) 
We thus obtain a double eigenvalue given by the Eyring-Kramers law with an extra factor of (2 -√ 2).

Computational cost for arbitrary even N

For general even N , the number n of local minima of the potential is of order 2 N (see Appendix A), while the symmetry group G has order 4N . However, all irreducible representations have dimension 1 or 2; in fact (cf. Example 2.11), there are exactly r 1 (G) = 8 irreducible representations of dimension 1, and r 2 (G) = N -2 irreducible representations of dimension 2. This implies that the coefficient

β(G) in (3.21) satisfies β(G) = O(N ).
As a consequence, the computational cost for determining all eigenvalues is at most O(2 2N ), where we only have used the trivial bound n G n = O(2 N ). It is possible that a more detailed analysis will reveal that actually n G = O(2 N /N ), which would decrease the cost by a factor N 2 .

Proofs -Group theory

In this section, we give the proofs of the different expressions for the matrix elements of L restricted to the subspaces P (p) i C n associated with the irreducible representations π (p) . Although we have introduced the results by starting with the trivial representation, then moving to other representations of dimension 1, and finally to higher-dimensional representations, it will be more straightforward to give directly proofs in the case of a general irreducible representation of arbitrary dimension d, and then to particularize to the cases d = 1 and p = 0.

To simplify notations, we will fix an irreducible representation π = π (p) , orbits A = A i , B = A j , and elements a ∈ A and b ∈ B. We write α i = α (p) i and χ = χ (p) . Recall that π i (g) denotes the permutation matrix induced by g on the orbit A (we will consider π i as a linear map on C n which is identically zero on X \ A). The associated projector P i = P (p) i is given by (cf. (2.27))

P i = d |G| g∈G χ(g)π i (g) . (5.1) 
The only nonzero matrix elements of P i are those between elements in A, and they can be written as

(P i ) ah(a) = d |G| g∈Ga χ(gh) ∀a ∈ A, ∀h ∈ G . (5.2) 
We write P j = P (p) j

for the similarly defined projector associated with the orbit B.

Proof of Lemma 3.6. Taking the trace of (5.1), we obtain

α i d = Tr(P i ) = d |G| g∈G χ(g) Tr(π i (g)) . (5.3) 
Note that Tr(π i (g)) = |A g | = |A|1 {g∈Ga} . Therefore,

α i = |A| |G| g∈Ga χ(g) = 1 |G a | g∈Ga χ(g) . (5.4) 
Since we have at the same time

α i ∈ N 0 and χ(g) ∈ [-d, d], so that α i ∈ [-d, d], we conclude that necessarily α i ∈ {0, 1, . . . d}.
Proof of Lemma 3.3. In the particular case d = 1, Lemma 3.6 reduces to

α i = 1 |G a | g∈Ga χ(g) ∈ {0, 1} . (5.5) 
This leaves only two possibilities: either α i = 1 and all χ(g) = π(g) are equal to 1 for g ∈ G a , or α i = 0 and the above sum is equal to 0.

Note that in the particular case of the trivial representation π = π (0) , we are always in the case α i = 1. Thus all orbits are active for the trivial representation.

We now proceed to construct basis vectors for P i C n . Let e a denote the canonical basis vector of C n associated with a ∈ A, and let u a ∈ im P i be defined by

u a = |G| |G a | P i e a . (5.6) 
By (5.2), its nonzero components are given by

(u a ) h(a) = |G| |G a | (P i ) ah(a) = d |G a | g∈Ga χ(gh) . (5.7) 
This expression is equivalent to (3.14). For one-dimensional representations, it reduces to (3.7). Indeed χ(gh) = π(gh) = π(g)π(h) in dimension 1, and we can apply Lemma 3.3.

For the trivial representation, (u a ) h(a) is identically equal to 1.

In order to compute matrix elements of L, we introduce the inner product on

C n u, v = 1 |G| g∈G u g(a) v g(a) = |G a | |G| g∈G/Ga u g(a) v g(a) , (5.8) 
where g ∈ G/G a is a slight abuse of notation for gG a ∈ G/G a (it means that we pick one representative for each coset gG a ). Strictly speaking, only the restriction of •, • to the orbit A is an inner product, since it is not positive definite on all of C n .

Lemma 5.1. The vector u a is normalised in such a way that u a , u a = α i d. Furthermore, for v b defined in an analogous way, 

u a , Lv b u a , u a = d α i |G||G b | g∈G g ′ ∈G χ(g)χ(g ′ )L g(a)g ′ (b) . ( 5 
i ) aa = d |G a | h∈Ga χ(h) = α i d , (5.10) 
where we have used the fact that P i is a hermitian projector. Before turning to the numerator of (5.9), note that for a matrix M ∈ C n×n one has (5.12) Now we have

(P i LP j ) ab = g∈G/Ga g ′ ∈G/G b (P i ) ag(a) L g(a)g ′ (b) (P j ) g ′ (b)b = d 2 |G| 2 g∈G/Ga g ′ ∈G/G b h∈Ga h ′ ∈G b χ(gh) χ((g ′ ) -1 h ′ )L g(a)g ′ (b) . (5.13) Since χ((g ′ ) -1 h ′ ) = χ(g ′ (h ′ ) -1
), the result follows by replacing first (h ′ ) -1 by h ′ in the sum, and then gh by g and g ′ h ′ by g ′ .

The expression (5.9) for the matrix elements can be simplified with the help of the following identity. Proof: Let G act on a set X such that G x = {id} for all x ∈ X. By (5.2) we have

(P X ) x,h(x) = d |G| χ(h) . (5.15) 
This implies

(P 2 X ) xh(x) = g∈G (P X ) xg(x) (P X ) g(x)h(x) = d 2 |G| 2 g∈G χ(g)χ(h -1 g) .
(5.16)

Since P X is a projector, the two above expressions are equal.

Corollary 5.3. The expressions (5.9) of the matrix elements simplify to

u a , Lv b u a , u a = 1 α i |G b | g∈G χ(g)L ag(b) .
(5.17)

Proof: This follows by setting g ′ = gh in (5.9), using L g(a)gh(b) = L ah(b) and applying the lemma. This is possible since χ(gh) = Tr(π(g)π(h)) = Tr(π(h)π(g)) = χ(hg).

By the non-degeneracy Assumption 2.9, the sum in (5.17) will be dominated by a few terms only. Using this, general matrix elements of L can be rewritten as follows.

Proposition 5.4. Let A and B be two different orbits, and assume that a ∈ A and b ∈ B are such that h ab = h * (A, B), the minimal exponent for transitions from A to B. Then for any h 1 , h 2 ∈ G,

u h 1 (a) , Lv h 2 (b) u h 1 (a) , u h 1 (a) = L ab α i |G b | g∈GaG b χ(h 1 gh -1 2 )[1 + O(e -θ/ε )] . (5.18) 
Furthermore, elements of diagonal blocks can be written as

u h 1 (a) , Lu h 2 (a) u h 1 (a) , u h 1 (a) = 1 α i |G a | g∈Ga χ(h 1 gh -1 2 )L aa + k∈G/Ga\Ga χ(h 1 kgh -1 2 )L ak(a) . (5.

19)

Proof: It follows from (5.17) that

u h 1 (a) , Lv h 2 (b) u h 1 (a) , u h 1 (a) = 1 α i |G h 2 (b) | g∈G χ(g) L h 1 (a) gh 2 (b) =L a h -1 1 gh 2 (b) = 1 α i |G b | k∈GaG b χ(h 1 kh -1 2 )L ab [1 + O(e -θ/ε )] , (5.20) 
where we have set k = h -1 1 gh 2 , and used (2.23) and Lemma 2.10. This proves (5.18). Relation (5.19) follows from (5.17) after replacing g ∈ G by kg, with g ∈ G a and k ∈ G/G a , and singling out the term k = id.

If the reversibility assumption (2.3) holds, then (6.1) is satisfied. However (6.1) is slightly weaker, because it only concerns minimal transition paths. We do not assume reversibility for site 1, since this will allow us to cover situations associated with nontrivial representations. Thus the first row of L may be identically zero, making 1 an absorbing state.

Our aim is to construct a linear change of variables transforming L into a triangular matrix. The change of variables is obtained by combining n -1 elementary transformations to block-triangular form. Given some 1 m < n, we write L in the form

L = L 11 L 12 L 21 A , (6.2) 
with blocks L 11 ∈ R (n-m)×(n-m) , A ∈ R m×m , L 12 ∈ R (n-m)×m and L 21 ∈ R m×(n-m) , and we assume det(A) = 0. We would like to construct matrices S, T ∈ R n×n satisfying

LS = ST (6.3)
where T is block-triangular. More precisely, we impose that

S = 1l S 12 0 1l and T = T 11 0 T 21 Ã , (6.4) 
with blocks of the same dimensions as the blocks of L. Plugging (6.4) into (6.3) yields the relations If we manage to prove that (6.6) admits a solution, then we will have shown that L is similar to the block-diagonal matrix T , and the eigenvalues of L are those of T 11 and Ã. In the sequel, the size of matrices is measured in the operator sup-norm,

T 11 = L 11 -S 12 L 21 , Ã = A + L 21 S 12 , (6.5) 
L = sup x ∞=1 Lx ∞ , x ∞ = sup i |x i | . (6.7) 
Proposition 6.1. If L 12 A -1 is sufficiently small, then (6.6) admits a solution S 12 , such that S 12 = O( L 12 A -1 ).

Proof: For fixed blocks A, L 21 , consider the function

f : R (n-m)×m × R (n-m)×n → R (n-m)×m (X, (L 11 , L 12 )) → L 11 XA -1 -X -XL 21 XA -1 + L 12 A -1 . (6.8)
Then f (0, 0) = 0, and the Fréchet derivative of f with respect to X at (0, 0) is given by ∂ X f (0, 0) = -id. Hence the implicit-function theorem applies, and shows the existence of a map X * : R (n-m)×n → R (n-m)×m such that f (X * , (L 11 , L 12 )) = 0 in a neighbourhood of (0, 0). Then S 12 = X * (L 11 , L 12 ) solves (6.6). Furthermore, S 12 = O( L 12 A -1 ) follows from the expression for the derivative of the implicit function.

The first-order Taylor expansion of S 12 reads

S 12 = L 12 A -1 + O L 12 A -1 L 11 A -1 + L 21 L 12 A -2 .
(6.9)

We will start by analysing the first-order approximation obtained by using S 12 0 = L 12 A -1 . The resulting transformed matrix is

T 0 = T 11 0 0 L 21 Ã0 = L 11 -L 12 A -1 L 21 0 L 21
A + L 21 L 12 A -1 (6.10) Lemma 6.2. The matrix T 11 0 is still a generator.

Proof: The fact that L is a generator implies L 11 1 + L 12 1 = 0 and L 21 1 + A1 = 0, where 1 denotes the constant vector of the appropriate size. It follows that

L 12 A -1 L 21 1 = L 12 A -1 (-A1) = -L 12 1 = L 11 1 , (6.11) 
and thus T 11 0 1 = 0.

We will see that T 11 0 can be interpreted as the generator of a jump process in which the sites i > n -m have been "erased". Our strategy will be to show that this reduced process has the same communication heights as the original one, and then to prove that higher-order terms in the expansion of S 12 do not change this fact. We can then apply the same strategy to the block T 11 , and so on until the resulting matrix is block-triangular with blocks of size m. The diagonal blocks of this matrix then provide the eigenvalues of L.

The one-dimensional case

We consider in this section the case m = 1, which allows to cover all one-dimensional representations. The lower-right block A of L is then a real number that we denote a (= L nn ), and we write ã instead of Ã.

The first-order approximation

The matrix elements of T 11 0 are given by (c.f. (6.10))

T 0 ij = L ij - 1 a L in L nj , i, j = 1, . . . n -1 . (6.12) Assumption 2.3 implies that there is a unique successor k = s(n) ∈ {1, n -1} such that h nk = min j∈{1,n-1} h nj . Since L is a generator, we have a = -e -h nk /ε [1 + O(e -θ/ε )], and 
thus T 0 ij = e -hij /ε where hij = h0 ij + O(ε e -θ/ε ) with h0 ij = h ij ∧ (h in -h nk + h nj ) . ( 6 

.13)

The new exponent h0 ij can be interpreted as the lowest cost to go from site i to site j, possibly visiting n in between.

We denote by H 0 (i, j) the new communication height between sites i, j ∈ {1, . . . , n -1}, defined in the same way as H(i, j) but using h0 ij instead of h ij (p-step communication heights are defined analogously). In order to show that the new communication heights are in fact equal to the old ones, we start by establishing a lower bound. Lemma 6.3. For all i = j ∈ {1, . . . , n -1},

h0 ij h ij ∧ h inj , (6.14) 
with equality holding if i = k or j = k. As a consequence, H 0 (i, j) H(i, j) for these i, j.

Proof: Recall from Definition 2.1 that the two-step communication height i → n → j is given by h inj = h in ∨ (h in -h ni + h nj ). We consider three cases:

• If i = k, then h knj = h kn -h nk + h nj because h nj > h nk ,

and thus h0

kj = h kj ∧ h knj . • If j = k, then h ink = h in because h nk < h ni , and thus h0 ik = h ik ∧ h in = h ik ∧ h ink . • If i = k = j, then h in -h nk + h nj > h inj because h nk < h ni , h nj and (6.14) holds.
The consequence on communication heights follows by comparing maximal heights along paths from i to j. Proposition 6.4. For all i = j ∈ {1, . . . , n -1} and sufficiently small ε, H 0 (i, j) = H(i, j) + O(ε e -θ/ε ) .

(6.15)

Proof: Let γ be a minimal path between two sites i 0 and j 0 . In view of Lemma 6.3, it is sufficient to construct a path γ from i 0 to j 0 , which does not include n, such that h0 γ = h γ . This new path is obtained by applying the following replacement rules (see Figure 9): 1. leave as is each segment i → j with i, j = k, n; 2. replace any segment k → n → j with j = k, n by k → j; 3. replace any segment i → n → k with i = k, n by i → k; 4. replace any segment i → n → j with i, j = k, n by the concatenation of a minimal path γ 1 : i → k and a minimal path γ 2 : k → j. If one of these paths contains n, apply rules 2. or 3.

It is sufficient to show that each of these modifications leaves invariant the local communication height.

1. Segment i → j with i, j = k, n: h ij h inj because the path is minimal; thus either h ij h in and thus h0

ij = h ij ∧ (h in -h nk + h nj ) = h ij because h nk < h nj . Or h ij h in -h ni + h nj < h in -h nk + h nj and thus again h0 ij = h ij . 2. Segment k → n → j with j = k, n: Then h0 kj = h kj ∧ (h kn -h nk + h nj ) = h kn -h nk + h nj because the path k → n → j
is minimal, and we have seen in the previous lemma that this is equal to h knj . Thus h0 kj = h knj . 3. Segment i → n → k with i = k, n: Here h0 ik = h ik ∧ h in . We have seen in the previous lemma that h in = h ink , which must be smaller than h ik because the path is minimal. We conclude that h0 ik = h ink .

4. Segment i → n → j with i, j = k, n: In this case we have h0 ikj = h inj + O(ε e -θ/ε ). Indeed,

• By minimality of the path, h in H(i, k)∨(H(i, k)-H(k, i)+h kn ). The reversibility assumption (6.1) and the minimality of γ 1 and n → k yield

H(i, k) -H(k, i) + h kn = V n -V i + h nk + O(ε e -θ/ε ) = h in -h ni + h nk + O(ε e -θ/ε ) < h in + O(ε e -θ/ε ) (6.16)
and thus h in H(i, k) h ik for sufficiently small ε. This implies • By assumption (6.1),

h0 ik = h ik ∧ h in = h in . ( 6 
h kn -h nk + h ni = H(k, i) -H(i, k) + h in + O(ε e -θ/ε ) H(k, i) + O(ε e -θ/ε ) h ki + O(ε e -θ/ε ) , (6.19) 
since h in H(i, k), so that

h0 ki = h kn -h nk + h ni + O(ε e -θ/ε ) . (6.20) 
Combining (6.17), (6.18) and (6.20), we obtain h0 ikj = h inj + O(ε e -θ/ε ), concluding the proof.

The full expansion

It remains to extend the previous results from the first-order approximation S 12 0 to the exact solution S 12 . Proposition 6.5. For sufficiently small ε, the matrix S 12 satisfying (6.6) is given by the convergent series Note that S 12 L 21 /a is a scalar of order e -θ/ε . It follows that

S 12 = ∞ p=0 1 a p+1 L 11 p L 12 1 + O(e -θ/ε ) . ( 6 
S 12 = 1 a 1l - 1 a L 11 -1 L 12 1 + O(e -θ/ε ) , (6.23) 
and the conclusion follows by writing the inverse as a geometric series. Theorem 6.9 (Eigenvalues of a metastable generator). Let L be a generator satisfying Assumption 2.3 on existence of a metastable hierarchy and the reversibility condition for minimal paths (6.1). For sufficiently small ε, the eigenvalues of L are given by λ 1 = 0 and

λ k = -e -H(k,M k-1 )/ε 1 + O(e -θ/ε ) , k = 2, . . . , n . (6.30) 
Proof: Since L is a generator, necessarily λ 1 = 0. Furthermore, L has the same eigenvalues as

T = T 11 0 T 12 ã , (6.31) 
where ã = a + L 21 S 12 . Assumption 2.3 and the fact that L is a generator imply that

a = e -h nk /ε 1 + O(e -θ/ε ) , (6.32) 
with h nk = h ns(n) = H(n, M n-1 ). Furthermore, we have L 21 = O(a) and Proposition 6.1 shows that S 12 = O( L 12 a -1 ) = O(e -θ/ε ). Thus ã = a(1 + O(e -θ/ε )), which proves (6.30) for k = n.

The remaining eigenvalues λ 2 , . . . , λ n-1 are those of T 11 . Adding, if necessary, a cemetery state, we can make T 11 a generator (meaning that we add an identically zero first row to T 11 and a first column such that the row sums are all zero). Corollary 6.8 shows that T 11 admits the same metastable hierarchy as L, up to negligible error terms. Thus the result follows by induction on the size of L.

We have thus proved Relation (2.15) in Theorem 2.5, and by extension the corresponding statements in Theorem 3.2 and Theorem 3.5.

The higher-dimensional case

We consider now the case of an irreducible representation of dimension d 2. Then the generator L has a block structure, with blocks whose dimensions are multiples of d. We add a cemetery state to the system in such a way that the row sums of L vanish. We associate with L an auxiliary matrix L * which has only one element e -h * (A i ,A j )/ε for each pair (i, j) of active orbits, plus the cemetery state.

Applying to L the triangularisation algorithm described in Section 6.1 changes the blocks of L to leading order according to

L ij → L ij = L ij -L in L -1 nn L nj . (6.33)
The algorithm induces a transformation on L * which is equivalent to the one-dimensional algorithm discussed in the previous section. Thus we conclude from Theorem 6.9 that communication heights of L * are preserved. Let us examine the following two cases.

• Assume j = s(i) is the successor of i. Then

-If n = s(i), then L ij = L ij [1 + O(e -θ/ε )], because L nj is at most of order L nn , and L in is negligible with respect to L ij . -If n = s(i), then either j = s(n), and then again L ij = L ij [1+O(e -θ/ε )], because L nj is negligible with respect to L nn . Or j = s(n), and then L in L -1 nn L nj is comparable to L ij .

We thus conclude that L ij = L ij [1 + O(e -θ/ε )], unless the graph of successors contains a path i → n → j, in which case the leading term of L ij is modified according to (6.33).

• Consider now the case j = i. By the previous point, L ii is modified to leading order by the triangularisation algorithm if and only if the graph of successors contains a cycle i → n → i. Note that in this case, the modification involves the two matrices L in and L ni . These matrices cannot have been modified to leading order at a previous step. Indeed, L in has been modified if and only if there exists a m ≻ n such that the graph of successors contains a path i → m → n. Assumption 2.9 implies that this is incompatible with the fact that the graph contains i → n → i. A similar argument applies to L ni .

It follows that at each step of the triangularisation algorithm, the diagonal blocks L ii are preserved to leading order, unless i is at the bottom of a cycle in the graph of successors. This proves Theorem 3.9.

7 Proofs -Expected first-hitting times 

L BB = L 11 L 12 L 21 a , (7.5) 
with blocks L 11 ∈ R (m-1)×(m-1) , L 12 ∈ R (m-1)×1 , L 21 ∈ R 1×(m-1) and a ∈ R . Using (6.3) and (6.4), we see that which concludes the proof.

L -1 BB 1 = ST -1 S -1 = 1l S 12 0 
We point out that (7.4) does not hold, in general, when A is not a set M k of the metastable hierarchy. For a counterexample, for instance [START_REF] Berglund | Kramers' law: Validity, derivations and generalisations[END_REF]Example 3.2].

This completes the proof of Theorem 2.5, and thus also of Theorem 3.2 and Theorem 3.5.

A Critical points of the constrained system

We give in this appendix a brief description of how we obtained the local minima and saddles of index 1 for Example 1.2 (a more detailed analysis of this system will be published elsewhere). The case N = 4 was first studied in [START_REF] Hun | Metastability in interacting nonlinear stochastic differential equations[END_REF].

We look for extrema of the potential (1, -1, 1, -1) (x, -x, x, -x)

x = √ 1 -2γ -(1 -2γ) 2 a-a ′
(1, 0, -1, 0) (x, 0, -x, 0)

x = √ 1 -γ -1 2 (1 -γ) 2 a-b
(1, -1, 0, 0) (x, -x, y, -y) x, y = √ 2-γ± √ 2-5γ √ 8

-1 8 (4 -12γ + 7γ 2 ) Table 4. Local minima and saddles of index 1 for the case N = 4, with the value of the potential. The relevant heights are h ab = V γ (a-b) -V γ (a), h ba = V γ (a-b) -V γ (b), and h aa ′ = V γ (a-a ′ ) -V γ (a).

Since the Hessian is nondegenerate at the stationary points listed by Theorem A.1, the implicit-function theorem applies, and shows that these points persist, with the same stability, for sufficiently small positive γ. In the case N = 4, the coordinates can even be computed explicitly (Table 4), drawing on the fact that they keep the same symmetry as for γ = 0.

The value of the potential at the stationary points can then be computed, exactly for N = 4 and perturbatively to second order in γ for N = 8, which allows to determine the metastable hierarchy.

  and then Tr P (p) i = 1; • or h∈Ga π (p) (h) = 0, and then Tr P (p) i = 0.
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 4 Figure 4. Example of a graph of successors, with two cycles (2, 4) and (1, 5), and associated potential.

Figure 5 .

 5 Figure 5. The graph G = (X , E) for the case N = 4 has 6 nodes and 12 edges, forming an octaeder. The associated graph on the set of orbits has two sites and one edge.

) where we have chosen a = ( 1 , 1 ,

 11 -1, -1) + O(γ) and b = (1, -1, 1, -1) + O(γ) as representatives. The associated stabilisers are G a = id, r 2 s, sc, r 2 c G b = id, rs, r 2 , r 3 s, sc, rc, r 2 sc, r 3 c . (4.2)

•

  those with 4 coordinates equal to 1 + O(γ), and 4 coordinates equal to -1 + O(γ); we denote these coordinates + and -; • and those with 3 coordinates equal to ±α and 5 coordinates equal to ±β, where α = 5/ √ 19 + O(γ) and β = -3/ √ 19 + O(γ).
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 7 Figure 7. Graph for the case N = 8 associated with the representation π -++ .

Figure 8 .

 8 Figure 8. The graph of successors for N = 8.

  e a , M e b = |G a | |G| M ab . (5.11)Therefore,u a , Lv b = |G| 2 |G a ||G b | P i e a , LP j e b = |G| 2 |G a ||G b | e a , P i LP j e b = |G| |G b | (P i LP j ) ab .

Lemma 5 . 2 .

 52 For any h ∈ G, d |G| g∈G χ(g)χ(hg) = χ(h) . (5.14)

T 21 =

 21 L 21 , and L 11 S 12 -S 12 A -S 12 L 21 S 12 + L 12 = 0 . (6.6)

2 Figure 9 .

 29 Figure 9. Replacement rules for minimal paths.

FixProposition 7 . 1 (

 71 a subset A ⊂ X , and let w A (x) = E x [τ A ] be the first-hitting time of A when starting in a point x ∈ B = X \ A. It is well known (see for instance[START_REF] Norris | Markov chains, volume 2 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] Chapter 3]) that for anyx ∈ B, y∈B L xy w A (y) = -1 . (7.1)If write L asL = L AA L AB L BA L BB , Expected first-hitting time).If L satisfies the assumptions of Theorem 2.5 and A = M k = {1, . . . k} with k 1, thenE x [τ A ] = 1 |λ k+1 | [1 + O(e -θ/ε )] (7.4)holds for all x ∈ A c .Proof:The proof is by induction on the size m = n -k of L BB . The result is obviously true if m = 1, since the lower-right matrix element of L is equal to the eigenvalue λ n , up to an error 1 + O(e -θ/ε ). Thus assume m > 1 and write

1 (T 11 1 1 1 = 1l S 12 0 1 ( 1 = 1l S 12 0 1 (T 11 )L 21 (T 11 ) -1 1 = L 21 1 |λ k+1 | 1 +

 1111111111211111 ) -1 0 -ã -1 L 21 (T 11 ) -1 ã-1 1l -S 12 0 T 11 ) -1 0 -ã -1 L 21 (T 11 ) -1 ã-1 1 -S 12 -1 [1 + O(e -θ/ε )] ã-1 1 -L 21 (T 11 ) -1 1(1 + O(e -θ/ε )) . (7.6)By induction, we may assume that(T 11 ) -1 1 = 1 |λ k+1 | 1 1 + O(e -θ/ε ) , O(e -θ/ε ) = |λ n | |λ k+1 | 1 + O(e -θ/ε ) . (7.8)Plugging this into (7.6) and using the fact that |λ k+1 |/|λ n | = O(e -θ/ε ) we obtainL -1 BB 1 = 1l S 12 0 1 |λ k+1 | -1 1 1 + O(e -θ/ε ) |λ k+1 | -1 1 + O(e -θ/ε ) = 1 |λ k+1 | 1 1 + O(e -θ/ε ) ,(7.9)

1 .

 1 -x i ) 2 (A.[START_REF] Arrhenius | On the reaction velocity of the inversion of cane sugar by acids[END_REF] where U (x) = 1 4 x 4 -1 2 x 2 , under the constrainti∈Z /N Z x i = 0 . (A.2)We will apply a perturbative argument in γ, and thus start by considering the case γ = 0.Then the extremalisation problem is equivalent to solving∇V 0 (x) = λ1 on { x i = 0}, or equivalently f (x i ) = λ ∀i ∈ Z /N Z , (A.3) where f (x) = U ′ (x) = x 3 -xand λ is the Lagrange multiplier. There are three cases to consider: If |λ| > 2/(3 √ 3), then f (x) = λ admits only one real solution, different from zero, and the constrained problem has no solution. 2. If |λ| = 2/(3 √ 3), then f (x) = λ admits two real solutions, given by ±1/ √ 3 and ∓2/ √ 3. Then solutions exist only if N is a multiple of 3 (and they may give rise to degenerate families of stationary points).

1 ,

 1 -1, -1) (x, x, -x, -x) x = √ 1 -γ -(1 -γ) 2 b

  The graph G and potential associated with Example 2.2. The communication height H(2, 1) from state 2 to state 1 is given by

  Disconnectivity tree and metastable hierarchy for Example 2.2. State 3 is at the top of a 2-cycle in the graph of successors, and is removed after one step. State 2 is at the top of a 2-cycle of the resulting graph of successors. The Arrhenius exponents of eigenvalues are the lengths of thick vertical segments. The rightmost segment is considered as infinitely long and corresponds to the eigenvalue 0. The graphs of successors are shown for the original system, and for the system in which state 3 has been removed.

			e * (2)	s	
	e * (3)			2	3	s	1
	H(2, 1)	3	H(3, {1, 2})	s	s
				2	3	1
					s
	2				
			1		
	Figure 2. because h 21 = +∞, and paths of length larger than 3 have a larger cost, as they contain
	several copies of at least one edge. Proceeding similarly for the other communication heights,
	we obtain that the matrix of H(i, j) is given by		
			  h 231 * h 23 * h 13 h 13 h 31 h 32 *	  .	

  The operation of removing one state from the system can be viewed as filling its potential well, up to the height of the lowest reachable saddle. On the directed graph with weights h ij , this amounts to subtracting h i,s(i) from all edges starting in the state i to be removed, and replacing any h jk for j, k = i by h jk ∧ (h ji + h ik ).

		h 23	h 31
	2	3	1
		h 32	h 13
		h 23	h 31 -h 32
	2	3	1
	3	0	h 13
		h 231	
	2	3	1
	2		
	1	h 13	
	Figure 3.		

Table 2 .

 2 Local minima occur in two types: -, -, -, -) {id, r 4 s, r 4 c, sc} A 2 4 (+, +, -, -, +, +, -, -) {id, r 2 s, r 4 , r 6 s, sc, r 2 c, r 4 sc, r 6 c} A 3 16 (+, +, +, -, -, +, -, -) {id, r 3 s} A

	A A 1 8 (+, +, +, +, 4 a |A| 16 (+, -, -, -, +, +, +, -) {id, sc} G a A 5 8 (+, -, -, +, -, +, +, -) {id, r 4 s, r 4 c, sc} A 6 16 (+, +, -, +, -, +, -, -) {id, sc} A 7

Table 2 .

 2 Orbits A i for the case N = 8 with their cardinality, one representative a and its stabiliser G

	7 c}

a . The symbols ± stand for ±1 + O(γ), while α = ±5/ √ 19 + O(γ) and β = ∓3/ √ 19 + O(γ). Stabilisers of other elements a ′ = g(a) of any orbit are obtained by conjugation with g.

  Graph on the set of orbits for the case N = 8. Each node displays a particular representative of the orbit. Figures next to the edges denote the total number of connections between elements of the orbits. Note that there is a kind of hysteresis effect, in the sense that going around a loop on the graph, following the connection rules, one does not necessarily end up with the same representative of the orbit. ∈ A 7 and a 11 ∈ A 11 , because |G a 7 | = 16 and |G a 7 ∩ G a 11 | = 2 (cf. Table

	32			
			32	
				32
	32	16		32
	32		64	32	16
	32	16		32
	32		32	32
	32			
	Figure 6. (0) 7 = 8	c a 7 a 11 m a 7	e -H(A 7 ,A 11 )/ε 1 + O(e -θ/ε )	(4.17)
	where a 7			

Theorem 3.2. The only difference with the Eyring-Kramers formula of the asymmetric case is an extra factor of the form |G c |/|G a ∩ G b |, where (a, b

) is the highest edge of an optimal path from A k to M k-1 , and c ∈ A k . For instance, the optimal path from A 7 to M 6 is A 7 → A 11 → A 4 , and its highest edge is A 7 → A 11 . We thus obtain λ

Table 3 .

 3 Active and inactive orbits and number of eigenvalues for the different irreducible representations when N = 8. There are 182 eigenvalues in total, 48 associated with 1dimensional irreducible representations, and 134 associated with 2-dimensional irreducible representations.

			0	2	2	2	2	0	4	2	2	2	4	24
	π 2,+	2	0	2	2	2	2	0	4	2	2	2	4	24
	π 2,-	0	2	2	2	0	2	0	4	2	2	2	4	22
	π 3,+	0	0	2	2	0	2	0	4	2	2	2	4	20
	π 3,-	2	0	2	2	2	2	0	4	2	2	2	4	24
	|A|	8	4	16 16	8	16	2	32 16 16	16	32	182

  .9) Proof: We start by computing the norm of u a : u a , u a = |G| 2 |G a | 2 P i e a , P i e a = |G| 2 |G a | 2 e a , P i * P i e a = |G| 2 |G a | 2 e a , P i e a

	=	|G| |G a |	g∈G/Ga	e a g(a) (P i e a ) g(a) =	|G| |G a |	(P

  .17)• Minimality also yields h nj h nk ∨ (h nk -h kn + H(k, j)) = h nk -h kn + H(k, j), where we have used h nj > h nk . Thus h kn -h nk +h nj H(k, j) h kj , which implies h0 kj = h kn -h nk + h nj .

	(6.18)

  .21) Proof: First observe that by Assumption 2.3,L 21 A -1 = |a| -1 L 21 = O(e -θ/ε). Thus by Proposition 6.1, (6.6) admits a solution S 12 of order e -θ/ε . This solution satisfies

	S 12 =	1 a	L 12 +	1 a	L 11 S 12 -	S 12 L 21 a	S 12 .	(6.22)

Expression (5.18) is equivalent to (3.15) in Proposition 3.7, taking into account the definition (3.3) of c * ij and m * i . Particularising to one-dimensional representations yields (3.8) and (3.2).

It thus remains to determine the diagonal blocks. For one-dimensional representations, using χ(kg) = π(kg) = π(k)π(g) and Lemma 3.3 in (5.19) shows that L (p)

ii := u a , Lu a u a , u a = L aa + k∈G/Ga\Ga π(k)L ak(a) .

(5.21)

Subtracting L (0) for the trivial representation from L (p) proves (3.9). Furthermore, let 1 be the constant vector with all components equal to 1. Since L is a generator, we have

which proves (3.4).

Finally let a * be such that h(a, a * ) = inf b h(a, b). We distinguish two cases:

1. Case a * / ∈ A. Then the right-hand side of (5.21) is dominated by the first term, and we have L

The sum inside the brackets in (5.19) is also dominated by the first term, which implies the first lines in (3.17) and in (3.12).

Case a

ii is negligible with respect to L aa * , and thus

Thus for one-dimensional representations, we obtain from (5.21) that

The sum is dominated by k = k 0 and k = k -1 0 , which implies the last two lines of (3.12). For general representations, we obtain from (5.19) that

(5.25) which implies the second line in (3.17).

6 Proofs -Estimating eigenvalues

Block-triangularisation

We consider in this section a generator L ∈ R n×n with matrix elements L ij = e -h ij /ε , satisfying Assumption 2.3 on existence of a metastable hierarchy. In this section, we have incorporated the prefactors in the exponent, i.e., we write

In addition, we assume the reversibility condition for minimal paths

Plugging (6.21) into (6.5), we obtain

L 11 and the term p = 0 correspond to the first-order approximation T 11 0 . It follows that the matrix elements of T 11 are of the form e -hij /ε where hij = h0 ij ∧ inf

In order to control the remainder terms, we establish the following estimate. Lemma 6.6. For any p 1, any i, l 1 , . . . , l p ∈ {1, . . . , n -1} and j ∈ {1, . . . , n}, 

To prove the second inequality (6.27) for p = 1, we use that if

so that the conclusion follows from (6.26) and the fact that h nj h nk . Otherwise we have h ilnj = h il -h li + h ln -h nl + h nj and h il + h ln + h nj -2h nk = h ilnj + (h li -h nk ) + (h nl -h nk ), which is greater or equal h ilnj + θ. The proof then extends by induction to general p. Corollary 6.7. For all i = j ∈ {0, . . . , n -1},

Proof: This follows directly from (6.25), (6.27) and the definition (2.7) of the communication height H(i, j).

Corollary 6.8. Communication heights are preserved to leading order in ε, that is,

.29)

Proof: Corollary 6.7 and Proposition 6.4 directly yield H(i, j) H(i, j) + O(ε e -θ/ε ) since hij h0 ij + O(ε e -θ/ε ) implies that maximal heights encountered along paths do not increase. To show equality, consider an optimal path γ : i → j. Relation (6.28) applied to each segment of γ shows that γ is also an optimal path for the original generator.

Note that this result shows in particular that assumption (6.12) on reversibility for optimal paths is satisfied by the new communication heights. We can now state the main result of this section, which characterises the eigenvalues of a generator admitting a metastable hierarchy.

3. If |λ| < 2/(3 √ 3), then f (x) = λ admits three different real solutions α 0 , α 1 and α 2 . We denote by n i ∈ N 0 the number of x i equal to α i , and reorder the α i in such a way that n 0 n 1 n 2 . Then the constrained problem is equivalent to

with n 0 + n 1 + n 2 = N . This can be seen to be equivalent to

where

This shows that if N is not a multiple of 3, then all solutions of the constrained problem can be indexed by ordered triples (n 0 , n 1 , n 2 ) of non-negative integers whose sum is N . By examining the Hessian of the potential (taking into account the constraint), one can prove the following result.

Theorem A.1. Assume N 5 is not a multiple of 3. Then for γ = 0 1. all local minima are given by ordered triples (0, n 1 , N -n 1 ) with 3n 1 > N ; 2. all saddles of index 1 are given by ordered triples (1, n 1 , N -n 1 -1) with 3n 1 > N .

If N = 4, then all local minima are given by the triple (0, 2, 2) and all saddles of index 1 by the triple (1, 1, 2).

Using the De-Moivre-Laplace formula, one can show that for large N , the number of local minima grows like 2 N , while the number of saddles of index 1 grows like N 2 N .

In the case N = 4,

• the triple (0, 2, 2) yields 6 local minima, having each two coordinates equal to 1 and two coordinates equal to -1; • the triple (1, 1, 2) yields 12 saddles of index 1, having each two coordinates equal to 0, one coordinate equal to 1 and the other one equal to -1.

One can check the octahedral structure of the associated graph by constructing paths from each saddle to two different local minima, along which the potential decreases. For instance, the path {(1, t, -t, -1) : -1 t 1} interpolates between the local minima (1, -1, 1, -1) and (1, 1, -1, -1) via the saddle (1, 0, 0, -1), and the value of the potential along this path is 2U (t), which is decreasing in |t| on [-1, 1].

In the case N = 8,

• the triple (0, 4, 4) yields The connection rules stated in Section 4.2 can again be checked by constructing paths along which the potential decreases.