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Abstract. The first objective of this chapter is to highligsime new Product
Driven Systems (PDS) issues. Effectively, severalsibilities have been pro-
posed to give to products or objects capacitiesdot to environment modifica-
tions (especially in manufacturing and logisticatext here). In particular, bio-
inspired approaches are now promising. All these perspectives lead putting
products in action according to collected informati That's why all technics
leading to exploit and organize data are neces3drg. main objective of the
chapter is addressed in a second part, where wdidfig why learning ma-
chines could be seen as a new way to transformiratseful knowledge.

Keywords: Product Driven Systems, Viable systems, Learniaghines, Neu-
ral network, Data mining.

1 INTRODUCTION

After the second industrial revolution the main gamies’ objective has been produc-
tivity. Ford Motor Company has introduced the cqicef mass production. Since
then, many techniques have been introduced leddipgocess automation and opti-
mization of planning and production control actast Among Manufacturing Plan-
ning and Control Systems, MRP Systems emerged glth@ seventies in order to
solve problems such as those related to delaysders, to intermittent stock con-
sumption or to forecasting of raw materials constiomp However, inertia facing
unexpected events occurring on the shop-floor kg tseen as a residual issue. In
order to compensate for this drawback, a new MR#feation has been proposed
with a closed loop approach [27]. The main charétte of these systems is its multi
decision level horizons structuration. These harizanay be classified into long,
medium, short and very short term. Considering thenr decision levels have been
identified: strategic, tactical, operational an@&xtion one. At the beginning of eight-
ies, new management philosophies appeared whicletingrastic changes in produc-
tion management area. The main goals of these ekangve been to improve the



system reactivity and flexibility, on the one haadd the service quality, on the oth-
er. These challenges are still valid today and Hseen mainly implemented by Just
in Time (JiT) and Theory of Constraints (ToC) pkiphies.

The main idea of JiT philosophy is based on théiefit use of productive re-
sources. Various approaches have been proposedasucban manufacturing [13],
Demand Flow Technology [3] or Six Sigma [18]. Onmuatacturing shop floors, the
main used tool to implement this philosophy anddatrol physical/material flows is
the kanban system. Lean manufacturing and, inquéati, kanban system have led a
great revolution in production system managemeitite Thanagement functions,
which are in centralized and hierarchical MRP? esyst, become, in lean philosophy,
completely or partialy distributed. In spite of tlesults obtained with these decentral-
ized approaches, in the middle of the 80’, Thedrfonstraints (ToC) introduces a
new point of view, different and complementary, dzh®n a global optimum attain-
ment which brings back to a centralized approa¢hT8C induces that organization
has to be evaluated and controlled by using thneécators: profits generated by
sales, operating costs and inventories. In ToGyad dottleneck management is the
key of the success. Finally, the existence of thésee concurrent philosophies of
production management have led to the propositiomany hybrid systems using
techniques coming from MRP2, JiT and distributegrapches or ToC which were
implemented in software such as ERP (Enterpriseoltess Planning), APS (Ad-
vanced Planning Systems), SCM (Supply Chain Managé®ystems)...

In the next section, a brief overview of intelligemanufacturing systems is re-
called with their strengths and weaknesses. Seétipresents a viable system model
for product driven system. Section 4 focuses onnéned of knowledge in these sys-
tems and the learning approaches used to designléage. An illustration of this
approach is presented in section 5 before to cdeclu

2 INTELLIGENT MANUFACTURING SYSTEMS

The development of production management systemdeldato the “Computer Inte-
grated Manufacturing” concept [29]. The main gofthese systems is to intercon-
nect all the information systems included in thedarction system. CIM systems have
to supervise and control all company operationghat time, the paradigm generally
accepted was that the CIM system would be ablecddl la great flexibility when
changes occur and would give the best solutioméoptoblems encountered in pro-
duction system. Nevertheless, first implementatiteasto centralized and too much
rigid structures unable to adapt quickly to changesept some flexible manufactur-
ing systems initiatives which were very producti$e, at the beginning of nineties,
CIM systems were no longer considered as the solwutf all problems of production
companies [1].

Considering the bad results of integrated systentsrins of flexibility and reactiv-
ity, collaborations between research centers, usities and companies have been
initiated in order to design and develop the préiducsystems for the future. The
most important of them was the “Intelligent Manutathg Systems” Project (IMS)



[30]. The basic idea of IMS was the design and @ngntation of decentralized sys-
tems. Its main goal was system flexibility in orderdeal quickly with disturbances

inherent to the production processes. We can matethis function was before allo-

cated to men who, for example, monitored and chéamg®rities of the shop orders

on the shop floor. The idea was to automate all part of this function by using new
communications technologies (Auto-ID, Multi-Agenysgems...). These new systems
have to be robust, reconfigurable and reusable [l#se systems must allow:

— a global integration of heterogenous softwarestardwares in a factory, a virtual
factory or through a supply chain,

— an open architecture allowing to introduce or reensub-systems,

— an efficient communication and cooperation betwiberdifferent departments of a
company or between companies,

— to take into account the human factors,

— to adapt itself quickly to changes or perturbatjons

— to be tolerant to faults at the system level ad a®lto the sub-systems levels in
order to collect the causes of faults and to minartheir impacts on the produc-
tion.

Considering the centralization criterion, the pratthn systems have been divided
into four types [1]: centralized systems, hieracahiones, modified hierarchical ones
and heterarchical systems. Around the design oémtealized systems appeared dif-
ferent types of systems and concepts. The maimtradieed production systems are
bionic, fractal and holonic ones (HMS). This chapteuses on the last one.

HMS consortium has proposed holonic productionesyst based on the holon
concept. A holon is an entity which may be includedther holons [25] and are
organized in holarchies. Holons have the abiliiEautonomy and cooperation. Nev-
ertheless, concepts of agent and holon are oftefused. Although the holon may be
viewed as an agent, the main difference is thatcthwrol part is associated to the
physical part in a holon. In an agent (which isadstract entity), a physical entity
may be merged or modeled by an abstract entitydlRtdriven Systems is an evolu-
tion of holonic system where interoperability anteiligence are improved. In PDS,
products become the company resources controliéis This leads to the intelligent
product concept. This one has been defined asitty equipped with physical and
informational representations, able to affect denis which concern the global sys-
tem and the intelligent product itself [15]. In ptiae, the Radio Frequency identifica-
tion (RFID) is a technology able to link informati@nd physical environment [28].
The central idea is to move from a classical hariaal and centraized control to a
distributed decision making one where a part ofdbeision is made locally, all along
the products life cycle. So, the needed informatforeduced and locally processed.
The PDS have been generally designed as a partidalss of holonic systems. The
main advantages of IMS approaches are feasibibityustness, flexibility, reconfigu-
rability and reusability.

Up to now, many methodologies have been proposedder to model distributed
approaches (PROSA, ADACOR, METAMORPH...). Despitesthio standardized
criterion exists allowing model design. The modglstep may be performed by fo-



cusing on functional, physical or abstract aspgtitsAnd yet, the tools choice, the
criterions choices and the models choices remaked to the abilities and prefer-
ences of designer. This lack of uniformity makes évaluation and the comparison
of different applications in the literature, difilt.

One of the most critical points for the heterarahiapproaches (decentralized)
comparatively to traditional ones (centralized)the global decision optimization.
Heterarchical systems are not able to formally guige their performances in terms
of quantifiable variables, and more particularly,costs. Heterarchical systems are
interested in classical criterions of cost, timesfficiency, but also to goals relating to
flexibility, reconfigurability, reactivity, interogrability... These goals are not easily
quantifiable, and so, the comparison and evaluatiobenefits of such systems are
difficult.

In conclusion, it can be noticed that the two ggairoaches of production plan-
ning and control have strengths and weaknessesialict the conventional ap-
proaches (centralized) insure the efficiency ofdledal system but it is hard for such
systems to attain flexibility and reactivity objeets. At the opposite, the IMS ap-
proaches (distributed) insure flexibility and reaty, but are not able to insure per-
formance and consistency between decisions takdiffévent levels. No matter how
complex could be supply chain or manufacturingesyst, global consistency of them
remains a key issue leading to hybrid (centralized distributed) systems implemen-
tations [19].

In order to associate the advantages of each agiperyal to avoid their limitations,
several initiatives have proposed to associate &Hd/a hierarchical planning system
[26]. The function of HMS is to determine an altsive planning when disturbance
occurs. As previously mentioned, another way wdugdto design hybrid systems
(centralized/distributed). Herrera [12] highligltsat to allow acceptable efficiency
and consistency between different decision levats ta improve the flexibility and
reactivity capabilities of such systems; “Viable &’ could be a good way to struc-
ture their architecture. Moreover these systems havinclude a data acquisition
system in order to collect data from the physigatem to be controlled. These data
must be filtered, analyzed, possibly aggregated..oritler to become exploitable
knowledge. The following part of this chapter foesisiow on this point.

3 VIABLE SYSTEM MODEL FOR PDS

3.1 Viable System Moddl (VSM)

The origins of VSM arise from the works of Beer fjplied to the steel industry in
the fifties. This research can be placed in the ihworks of Norbert Wiener, Warran
McCulloch and Ross Ashby. The main objective okéherorks was to identify and to
explain how systems are viable. Although, VSM igemeral model for the study of
any viable system, the most concerned applicati@asahas been human activity
organizations, i.e., corporations, firms or goveenis. In this domain, VSM changes
the view of the traditional management model basedcommand and control, in
which a control system is designed as a pyramidsaicti decisions are disaggregated



in a top-down manner at different structural levdlse main difference, inspired by
the biological organization, consists in mappinig thierarchy into a structural recur-
sion [12]. The premise of this change of perspectiras inspired from the living be-
ings composition (cells, organs, systems, etcdedul, they have properties of auton-
omy, self-organization and self-regulation, allogvithem to have an independent
existence. The differentiation of their functionsdathe relationships between these
elementary components produce more complex systeitteyut that subsystem es-
sential properties would be lost. However, onehef most important properties of a
viable system is their intrinsic recursion. In faahy viable system contains and is
contained by another viable system. Every subsystamtains its autonomy towards
its environment, but it also contributes to gereeridie viable system in which it is
included. In that way, a viable system and itsedéht subsystems have the same
structural requirements. A viable system suppdst®bjectives thanks to an overall
cohesion and adapts itself by the autonomy of utssgstems. VSM was developed
looking for invariances in organic systems. Thaseiiances allow defining a ho-
momorphism of their functions, organization andicture. Beer defines five elemen-
tary functions that any viable system must havealémentation, coordination, con-
trol, intelligence and policy.

3.2 VSM model of Manufacturing Planning and Control system

The model describes here (Fig. 1) has been propgmséterreraet al.[12]. It is con-
sistent with the five functions of the Manufactgrilanning and Control Systems
which can be described as: Strategic Planning, sSaled Operations Planning
(S&OP), Master Production Planning (MPS), scheduéind execution. Each of these
functions corresponds to a level in the decisiokintaprocess regarding to different
horizons going from a longer to shorter one. Incpcae, these decisions are taken
using a rolling horizon to take into account theqfient changes that occur in the data
(demand, capacity, etc.). Thus and for examplestiaegic planning is revised once
a year, the S&OP is computed monthly, the MPS wesid schedules are performed
daily or more frequently depending on disturbanégs&h function deals with a corre-
sponding aggregation level of products, respegtif@milies, finished products and
items (components). In this context, one of theam&sues is to adapt decisions at
each level when disturbances (internal or exterhafjpen. The frequently resulting
modifications in the decision making process leathe so-called system nervousness
which deteriorates the global system performancedfgctivity and efficiency). One
should notice that the shorter the horizon is,nttoge frequent are the changes. Thus,
the performance is more deteriorated at the loaeell(scheduling level). More pre-
cisely, this model is a generic model based on \W&slling with production planning
considering both MPS level and scheduling (lotastmiang).

In a PDS, the basic unit is the intelligent progdwdtich is able to:

— acquiring and archiving data,
— communicating with its environment,
— interacting with and on it.



So, intelligent products should have necessarynauy, auto-organization and
auto-regulation properties to become the basicystis of a VSM model which is
able to model all levels of a MRP2 system.

QUADRANTI DESIGN IMPLEMENTATION QUADRANT IV

Knowledge (K)
Information (1)
Data (D)

_____I

~7 VIRTUAL } 1]
PHYSICALE :l

QUADRANTII QUADRANTIII

Fig. 1. VSM based product driven control system [11].

Concerning the figure 1 above, we have made thethggis that products are in-
strumented with RFID technology which allows acingr archiving data, and com-
municating and interacting with their environmerie products holarchy is designed
in order to represent the decision levels of a MBRtem. This resulting metamodel
uses the holon concept. This figure is subdivisdd four quadrants (I, II, 1ll, and 1V)
in order to simplify the explanations. The horizinaxis distinguishes the physical
world to the virtual one. The vertical axis distighes the design phase which is a
representation of the system to the implementatttase which performs the decision
making and the knowledge management. Red arrovehéda represent data flowing
from the shop floor to informational system, ilee fquadrant IV (Data Management
System — DMS), when the green (bold) arrows repteiséormational or knowledge
flows into the DMS. To avoid overloading the figuanly some examples of these
flows are shown.

The quadrant | shows the planning system which beagentralized or distributed.
Its decomposition is based on four levels of agatieg of product entities (weekly



production, manufacturing orders, lots and progudis each level, entities are mod-
eled as agents. The product entities are agentsangpecific control/autonomy level
which allow to represent all the hybridization l&vef the system from a pure central-
ized system (product agents transmit informatiorupper level where decision is
made) to a pure heterachical system (agents consatenramong themselves in order
to make decision). The quadrant Il is a concepteipiesentation of the instantiation
phase. It shows the physical implementation andesponds to the instanciation of
products into holons, which lead them to becomelligent and possess functions
allowing them to interact with environment and tmuaire the desired level of auton-
omy. The quadrant Il shows the physical systemwtiich product holons are able to
react according to events impacting their own etmtu The quadrant IV shows the
virtual implementation and corresponds to the fiamnsation process of data (coming
from the shopfloor) to information allowing knowigel to emerge. It is this
knowledge which must be loaded by agents in quadranorder to improve their
adaptation abilities to events with the principfeegperience feedback. The question
that needs to be answered is “How perform this egpee feedback?”

4 DATA MINING AND PDS

As previously said, in the concept of product dniaystem (PDS), product must take
decisions and interact with its environment thattkaecquired knowledge and infor-
mation. The synchronization of physical and infotiorzal flows inherent to PDS
implies that many data may be exploited in ordecreate this knowledge and this
information. These data may be related to prodimsélf, or to the production pro-
cess or resources. So, the question becomes: hexploit these data?

Considering figure 1, green arrows (thick) conrteet elements of quadrant IV to
elements of quadrant I. These connections repreéserknowledge loaded in agents.
So, the first task is to determine which knowledgeeeded by different agent levels
(obviously, a product agent doesn’t need the sanmsvledge than a manufacturing
order agent). So it is necessary to define precigedse needs in order to be able to
answer them. When this is done, it remains to deter how to build this knowledge.
For this, the recursion property of the VSM modelyrbe useful. A first level may be
defined which includes the two physical quadrahtar{d IIl) and the product layer of
the two virtual quadrants (I and 1V). This levelsisrrounded by dotted line. The sec-
ond level (lots) includes the first level and adlis lots layer of quadrants | and IV. It
is surrounded by short dashed line. The third Idwnufacturing order level) in-
cludes lots level and adds the manufacturing ooderof the quadrants | and IV. It is
surrounded by long dashed line. At last, the foartld last level (weekly production
level) includes manufacturing order level and afthdsweekly production layer of the
two virtual quadrants (I and V). It is surroundeyl solid line. This decomposition is
comparable to the concepts of systems and subrsysté the system engineering
which may be used in order to define interfacesvben levels.

Two approaches may be exploited in order to exkaotvledge. The first one is to
extract knowledge from expert interviews. The selcone is to extract knowledge



directly from data. These two approaches may bedi¥e focus here on the second
approach. To each level, the knowledge buildingcess is performed in several
steps:

1. Determination of which knowledge must be loadecgent. As explained previ-
ously, this need is different according to agen¢le

2. Determination and collect of available informationorder to produce knowledge.
This point will be detailed afterwards.

3. The structure of the model (here multilayer penaapthas to be determined.

4. At last, learning and validation phase must begreréd. The failure of the learn-
ing process implies a feedback on the second @t faints.

Let us focus on the product level. In quadrantthg knowledge to load in the agent
must to be built. The main particularity of thivéd is that the entries of knowledge
building process are only data collected on thekslwwp. This process is then a clas-
sical process of knowledge extraction from datee ain difficulty is to know which
data is necessary. It can be noticed that theserday be of continuous or discrete
nature, determinist or stochastic one, and the ledge design process must take into
account the hybrid nature of this data.

When the next level is considered, the entriesnofikedge building process may
be data (aggregated or not) collected on the workshut also information and
knowledge built at the product level. So the doudtiallenge is:

— To determine which data, but also which informatgom which knowledge at the
product level are necessary in order to built thevdedge to be loaded in agent at
the lot level,

— To define a tool allowing to aggregate entitiesdifferent nature (data, infor-
mation, knowledge) in order to built the desiredkiedge.

The desired knowledge to be loaded in agents oémufgvels will be built with a re-
cursive approach by using the preceding procedurs. paper highlights knowledge
building process at the product level in orderampout the main difficulties encoun-
tered and to propose solutions.

5 ILLUSTRATION

Let us consider a simple production process canistlt of sequential work centers
presented by figure 2. One of these work centeasbisttleneck. To simplify the mod-

el and the intelligent product behavior, the onhpWledge which must be loaded in
product agents is the lead time between the matwifiag order release and the prod-
ucts arrival into input queue of bottleneck.
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Fig. 2. Considered production system.

The knowledge building process must be highly aatieeh. So, the data loaded by
holons (quadrants Il and Ill) are collected andleitpd by using multilayer percep-
tron which uses supervised learning. Its strucisiggven by:

LTI 0

=1 h=1

0

where x] are the ginputs of the networkw; are the weights connecting the input

layer to the hidden layeh' are the biases of the hidden neur@gs, is the activation

function of the hidden neurons (here, the hypeddaalngent),w” are the weights con-
necting the hidden neurons to the output dnis, the bias of the output neuron and
is the network output.

The weights and biases are determined by usingargsed learning which can
be performed in two steps [24]:

1. initialization step this initialization may be randomly performedly using more
complex algorithms. This step is crucial in orderavoid local optimum trapping
[21].

2.learning step many learning algorithms exist. One of them is ttevenberg-
Marquardt algorithm. It works as a hessian algaritithen solution is distant and
as a gradient algorithm when solution is near [20].

This neural network must model the lead time betwbe manufacturing order re-
lease and the products arrival into input queubadfieneck. This lead time is a con-
tinuous notion. A first step is to fetch the leade and all the explanatory variables
collected by each product holons. These explanatarables will become the neural
network inputs. They may be continuous, as utiiwarates, queues size... or dis-
crete, as routing choice, machine choice... The tqueshat needs to be answered is
“How to take into account these discrete data”¥iBts works have shown that some
discrete variables may be used without particutecautions but other variables may
not [24]. In order to solve this problem, two apgebes may be used.



Fig. 3. Taken into account discrete variables — multi-nhag@roach.

The first approach is similar to the multi modellpbophy. In fact, if learning cannot
take into account some discrete variables, thiués to the system behavior changes
when these variables change of state. So, theseetdisvariables define different
operating areas of the system, and so, it is nape$s design one neural model for
each operating area. As example, if two discret@bkes X1 and X2 may take 3 and
2 states respectively, the considered system cdaupel into 2*3=6 operating areas
and so, it needs 6 neural models to learn (figyr& Be advantages of this approach
are that the neural networks have only continuapsts and so, the learning is much
simpler. Moreover, the structures of the networidude less input and hidden neu-
rons and so the computational time decreases dtiedearning and exploitation
steps. However, the main drawbacks are the numbeewal networks to learn and
the need to design a models selection system ttitmof states of discrete variables
[24].

The second approach consists to transform theatéseariables into binary ones
and to use these binary variables as inputs of¢teork. With the same example as
above, five binary input variables must be creag¢edh of them may take the states O
and 1: “X2=1"; “X2=2"; “X1=1"; “X1=2"; “X1=3". The main advantage of this ap-
proach is that only one neural network models titeeesystem. However, this model
includes more inputs and hidden neurons and sadheputational times increase
during the learning and exploitation steps [23]e3d two approaches are not para-
doxical. An optimal solution may be to mix theseotapproaches in order to limit
both, the growing number of neural models to leand the size of each of these
models.

Following the explicative variables are collected @lefined. In a second step, the
structure of the neural network must be designée. Works of Cybenko [5] and Fu-
nahashi [8] have proved that a multilayer perceptrith only one hidden layer (us-
ing a sigmoidal activation function) and an outfayter (using a linear activation



function) can approximate all nonlinear functiortwany desired accuracy. However,
nothing is said about the number of hidden neurons.

The simplest approach would be to choose a vergt gnember of hidden neurons
which permits to obtain the best accuracy. Howewerare not in front of a regular
approximation problem but in front of a functionj@tment to a finite number of
points [6]. The risk is to learn the noise and thet function. This risk is calledver-
fitting. In order to avoid it, different techniques haweb proposed as regularization
methods, early stopping or penalty methods. Howeter determination of the opti-
mal structure of the network allows to avoid theditting and to optimize the calcu-
lation times. For this, two approaches exist. Tirg bne is a constructive one where
the hidden layer is iteratively built. Another wisyto start from a structure including
too many hidden neurons and to remove the spurieusons. The main advantage of
this approach is to allow to some algorithms teedatne simultaneously the hidden
neurons number and the feature selection [7, 10, 17

Three algorithms have been tested and comparederead time model in a
sawmill [22]. These three algorithms are OBS [NRBPFA [17] and the one proposed
by Engelbrecht [7].

In the considering example, ten explicative vagaldre collected in order to mod-
el the lead time. These variables are related to:

— product information as:
» dimensions (diaPB, diaGB, diaMoy and Lg),
» refererence (ref)
» production range (RQM, T_piece),
— process variables:
* input queues (Q_trim, Q_RQM)
* utilization rates (U-trim)

Ten variables are collected and three of them #&eraete ones (RQM, ref and
T_piece). On these three variables only RQM need®tbinarised in “RQM=4" and
“RQM=5" as explained previously. The two others danexploided directly as the
continuous variables.

Finally, the network model includes eleven inpdtke N2PFA algorithm allows
pruning two of them (ref and T_piece) which haveimpact on the lead time. The
algorithme proposed by Engelbrecht allows findihg §good number of hidden neu-
rons very quickly but don’t succeed to prune spusimputs. OBS is not able to find a
good structure.

The obtained results have shown that the associatidwo algorithms (Engel-
brecht algorithm and N2PFA) gives the optimal dinte of the network quickly. The
computational time is divided by two comparing whest N2PFA is used. In fact, a
first step of pruning with the fastest algorithrm¢€lbrecht) allows finding the num-
ber of hidden neurons. In a second step, the N2&férithm works with a smaller
structure than the initial one (less hidden neuratisws to design the network struc-
ture by pruning the spurious inputs.



6 CONCLUSIONS

In this chapter, in a first step, we have summartbe new advances in product driv-
en system approach and a VSM model has been pedsénta second step, we have
investigated the knowledge building process. In many, we can say that data are
essential sources of knowledge but they are ofterlaimed treasure because their
exploitation may become time consuming. Howevemesdools exist, as learning
overall and neural network in particular, allowiagtomating this exploitation. Nev-
ertheless, we need to go further and to make surespond positively to the ques-
tions:

i) Is all the necessary information included in thea@a

i) Is all the collected data well necessary?

iii) How is it possible to associate various data (cotiis or discrete) in the

same model?

If the learning fails, this implies that the ansvethe first question is negative. In
this case, in order to supplement database, ttduptdolons must collect other vari-
ables which may require improving the instrumentatiFor the two other questions,
some tools and methods have been presented sugtiact.

The learning phase of a neural model is a complsk which must be designed off
line. However, the resulting model is a simple d¢igumawhich may be loaded in an
agent.

Moreover, a question remains an open issue: Hgvetform the knowledge build-
ing process for upper levels? This point represemsuble challenge:

i) how to determine which data, but also which infdiora and which

knowledge at the lower level are necessary?

i)  which tool allows to aggregate entities of diffeararatures (data, infor-

mation, knowledge)?

These challenges will be addressed in our futundsvo
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