
HAL Id: hal-00913246
https://hal.science/hal-00913246

Submitted on 3 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the customization of model management systems for
file-centric IDEs

David Mendez Acuna, Rubby Casallas, Anne Etien

To cite this version:
David Mendez Acuna, Rubby Casallas, Anne Etien. On the customization of model management
systems for file-centric IDEs. The 13th Workshop on Domain-Specific Modeling, Oct 2013, U.S.
Outlying Islands. pp 57-62. �hal-00913246�

https://hal.science/hal-00913246
https://hal.archives-ouvertes.fr

On the customization of model management systems
for file-centric IDEs

David Méndez-Acuña Rubby Casallas

Departamento de Ingeniería de Sistemas y Computación
Universidad de los Andes. Bogotá, Colombia

④❞❢✳♠❡♥❞❡③✼✸✱r❝❛s❛❧❧❛⑥❅✉♥✐❛♥❞❡s✳❡❞✉✳❝♦

Anne Etien

LIFL CNRS UMR 8022
Université Lille 1. Lille, France

❛♥♥❡✳❡t✐❡♥❅✉♥✐✈✲❧✐❧❧❡✶✳❢r

Abstract

Model-based solutions are becoming more sophisticated because of
the advent of new types of models, languages, and editors. To deal
with this complexity, some of the current Integrated Development
Environments (IDEs) offer Model Management Systems (MMSs)
that provide functionalities to visualize, navigate, and search the
modeling artifacts existing in a workspace. Each MMS defines the
types of modeling artifacts that it supports and, commonly, furnish
extensibility mechanisms for including new ones. However, the use
of those mechanisms usually requires a big implementation effort.
As a result, when an MMS does not support all the types of mod-
eling artifacts that a model-driven engineer uses, he/she discards
it and ends up manipulating his/her solution through file system
views which is not appropriate when projects become larger. In this
paper we present some of our preliminary results towards the con-
struction of MoMS-DL, a domain-specific language to define (and
automatically generate) customized Eclipse-based MMSs improv-
ing the daily work of model-driven engineers.

Categories and Subject Descriptors D.2.2 [Software engineer-
ing]: Design Tools and Techniques - Computer-aided Software En-
gineering

Keywords Model-driven software development, integrated devel-
opment environment, model management, megamodeling

1. Introduction

The use of model-driven engineering (MDE) has increased in the
last years. Nowadays, there is large variety of tools, languages, and
editors that model-driven engineers can use during the construction
of models-based solutions. In fact, they use not only models, meta-
models and transformations but also weaving models, high-order
transformations, UML profiles, grammars for domain-specific lan-
guages, among others modeling artifacts [4]. As a result, the pro-
cess of building a model-based solution is becoming more and more
complex.

In order to improve the productivity of model-driven engineers,
it is desirable to have suitable IDEs that facilitate the manipulation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DSM ’13, October 27, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2600-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2541928.2541939

of modeling artifacts by offering facilities such as friendly visual-
ization, navigation, and searching [6]. Such facilities can be easily
found in IDEs designed from scratch for model-based techniques
(e.g., MetaEdit+ [3]). However, the situation changes in the case of
other IDEs initially conceived for code based paradigms that have
been later adapted for supporting model-based technologies (e.g.,
Eclipse Modeling Framework [10]). In this case, the IDEs are im-
plemented based on the idea that a software solution is a set of
code files written in some specific language that can be opened by
using particular editors. Since models are also considered as files,
models-based projects become folders containing several types of
files and the semantics of each file has to be understood and mem-
orized by the model-driven engineer.

The idea of enriching file-centric IDEs for providing model-
centric capabilities has been largely studied in the literature under
the concept "model management". Because of this, one can find
several model management systems (MMSs) built on the top of
file-centric IDEs. In fact, three common elements can be identified
among MMSs: (1) metadata repositories; (2) models-centric views;
and (3) searching engines. A metadata repository is a software arti-
fact where some relevant information about the modeling artifacts
(such as their location) is stored. The model-centric views show the
modeling artifacts organized in hierarchies defined by their role in
the models-based solution instead of their location in the file sys-
tem. The searching engine is composed of several queries over the
metadata repository that facilitate the searching of modeling arti-
facts. One of the best known examples of this type of MMSs is
the AMMA platform presented by Bézivin et al in [1]. In that case,
the metadata repository is a model that the authors term as meg-
amodel; the models-centric views show the modeling artifacts clas-
sified by their types (e.g., metamodel, transformation, UML pro-
file); and the searching engine is a set of OCL-based queries over
the megamodel.

Commonly, the scope of an MMS is limited to a predefined
set of modeling artifacts and, in order to increase their function-
ality, these tools offer extensibility mechanisms. The idea is that
model-driven engineers can extend the MMS if they use types of
modeling artifacts that are not initially included in the scope of
the MMS. However, the use of those extensibility mechanisms re-
quires a deep understanding of the software architecture and, in
many cases, the code. From our point of view, this is one of the
main shortcomings of the current approaches because, before ex-
tending a MMS, model-driven engineers prefer to manipulate their
modeling artifacts by means of the classical file system views that
IDEs like Eclipse offers by default. This is not appropriate when
models-based solutions become large.

In this paper we present our preliminary results towards the
construction of an approach that facilitates the customization of
MMSs. To do so, we first motivate the problem by illustrating

some of the shortcomings that model-driven engineers have to
deal with when they do not use any MMS. Then, we introduce a
tool that provides: ❶ a domain-specific language, called "MoMS-
DL", that enables the definition of MMSs; and ❷ a generation
process that, from a MoMS-DL script, automatically generates a
customized MMS that overcomes the studied shortcomings. Each
of our generated MMSs is composed of a metadata repository and a
set of features for friendly visualization and searching of modeling
artifacts within a models-based solution.

This remainder of this paper is structured as follows: Section 2
introduces a set of definitions we use along the rest of the paper.
Specifically, it clarifies the vocabulary concerning to metadata reg-
istries and megamodeling. Section 3 presents a motivating example
that we use in Section 4 for describing the shortcomings of code
centric IDEs for MDE. Also, we use this example in Section 5 for
illustrating the MoMS-DL language and explaining the generation
process for MMSs. Section 6 discuses the related work and Section
7 concludes the paper and presents the future work.

2. Background

The use of the term "metadata" has become very popular to the
point that it is difficult to find a definition that encompasses all the
meanings that this term has received [5]. Indeed, the abstract idea
of metadata as "data about data" seems to be the only point where
all these definitions agree. In this sense, it is important to identify:
(1) what are the data that need to be considered and (2) what are
the data (about the data to be considered) that are relevant and
that should be stored. From the implementation point of view, the
"metadata repository" is the software artifact where the metadata is
physically stored whereas the "metadata schema" is the definition
of the structure that the metadata repository must conform to.

In the case of the MMSs for MDE, the data to be considered
correspond to the set of modeling artifacts involved in a model-
driven solution whereas the data to be stored correspond to the
location of the modeling artifacts and the relationships existing
among each of them. Furthermore, metadata repositories can be
implemented as a special type of models (termed "megamodels")
whose structure is defined in metamodels [4, 11].

Figure 1: A simple megamodel (metadata repository)

Figure 1 illustrates the previous definitions by using a simple
situation in an Eclipse workspace that contains a model-based so-
lution composed of three modeling artifacts: a metamodel ▼▼❆,
a metamodel ▼▼❇, and a model-to-model transformation ❆✷❇ that
produces models conforming to ▼▼❇ from models conforming to
▼▼❆. These three modeling artifact correspond to the data to con-
sider. The metadata repository (implemented as a megamodel) con-
tains the information about their location and the relationships
among them. In this case, the relationships are the dependencies
between the transformation and the metamodels i.e., source and
target. The megamodel conforms to a metamodel that defines the
supported types of modeling artifacts i.e., metamodels and trans-
formations, and the interesting relationships.

3. Motivating example: An MTC for prototyping

maze-games

We propose, as motivating example, a software development sce-
nario where a model-driven engineer builds a model-based solution
for maze-games automatic prototyping [7]. Specifically, this solu-
tion is a model transformation chain (MTC) that, from a high-level
game model, automatically produces the code of the game that can
be deployed in the games engine Torque2D [2]. We chose this ex-
ample because, although simple, its implementation requires more
than models, metamodels, and transformations. Weaving models
and domain-specific languages are also involved.

3.1 Maze-games

In general, a maze game consists of a playground where differ-
ent objects can be placed. The game turns around a main character,
usually controlled by the player, that has to develop a particular pur-
pose during the game. Depending on the game, the main character
must interact with other elements in order to achieve the goal. De-
pending on their behavior, these elements can be either dynamic or
static depending. Dynamic elements develop some actions whereas
static elements are either obstacles or boundary delimiters for the
playground. Pacman is one of the most famous example of this type
of games. In this case, the main character is the yellow smiley-
face that dies if touched by the ghosts (dynamic elements) and that
feeds the intermittent strawberries (static elements) for increasing
the score.

3.2 MTC for maze-games prototyping

The inputs of the generation process (shown at the top of Figure 2),
are threefold: (i) a maze game model; (ii) an instances model; and
(iii) a weaving model between (i) and (ii). The maze game model
contains the definition of the game and includes a characterization
of the elements existing in the game (dynamics and statics). These
elements are defined in terms of their properties and the way in
which they interact each other. The instances model specifies the
amount of each type of element that should be instantiated for a
particular level and their initial positions. Because the definition of
the element types and the instances are defined in separate models,
it is necessary to provide a weaving model for relating each element
type with each instance type. These models are input of a model-
to-model transformation that creates a platform specific model with
the definition of the game in terms of the Torque2D concepts. Then,
this model is transformed to TorqueScript code that can be finally
deployed in the games engine.

4. Some shortcomings of file-centric IDEs

adapted for MDE

In this section we use the motivating example presented above to
illustrate some of the shortcomings of classical IDEs that model-
driven engineers have to deal with when they do not use any MMS.

4.1 Models visualization

The first shortcoming refers to the visualization and manipulation
of a model-based solution where models have to be manipulated
in code-centric views such as the package explorer or project nav-
igator. In such views, models are treated as data files without any
differentiation from code or documentation artifacts. As a result, a
model-based solution looks like a set of projects and the semantics
of each of them is only stored in the mind of the engineer.

Figure 2 illustrates this fact. At the top there is an abstract
representation of the MTC for generating maze-games code. This
representation is very close to the way in which the model-driven
engineer imagines the MTC. At the button, we show the way in
which the model-driven engineer actually visualizes the MTC in a
code-centric view. Notice that those images are not similar at all.
Indeed, the model-driven engineer is responsible for understanding
how the projects represent each of the artifacts that compose the
model-based solution.

Figure 2: Code-centric views for model-based projects

4.2 Models searching

The second shortcoming is related to the way in which model-
driven engineers search models. While java developers have en-
hanced searching mechanisms that allow to perform specialized
searches in terms of classes, methods, attributes, and interfaces;
model-driven engineers have to comply with the classical file
search. Since this type of search is exclusively based on syntax
matches, there is a large amount of non-relevant search results
when the files are written in modeling languages such as UML,
XMI, or ECORE. Suppose for example that the model-driven en-
gineer needs to know the set of models conforming to a given
metamodel. He/she would have to perform a file search with the
URI of the metamodel. As a result, the model-driven engineer will
obtain not only the models but also all the artifacts that contains
that URI including java code and configuration files.

5. Our approach

As already said earlier, these limitations can be overcome by means
of the construction of well-engineered MMSs. The problem arises
when a model-driven engineer requires to use modeling artifacts
that are not supported by the selected MMS and, hence, customiza-
tion is required. Most of the MMSs that offer some type of cus-
tomization provide strategies based on extensibility. In that sense,
the software developer that wants to extend the MMS should: un-
derstand the extensibility strategy; build the extensions (probably
writing code and/or models); re-compile the code of the platform;

and re-install it. In this process, software developers need to un-
derstand some implementation issues of the MMS and, in most of
cases, they are not necessary willing to deal with all this additional
work. As a result, the use of MMSs is usually discarded when those
does not fulfill by default all the initial requirements.

In order to avoid this limitation, we propose raising the level
of abstraction in which customization is performed. Hence, we
provide MoMS-DL (Model Management Systems Definition Lan-
guage), a domain-specific language where the requirements of a
specific model-driven engineer can be expressed and we offer a
generation process that automatically produces the code of the
MMS. In other words, we enable customization by automatic gen-
eration instead of customization by extensibility.

5.1 MoMS-DL: language concepts

We believe that the requirements that a model-driven engineer de-
mands to a MMS can be expressed in terms of the types of mod-
eling artifacts involved in a model-driven solution and the exist-
ing relationships among them. Our hypothesis is that, if we have
that information, we can automatically produce a MMS that of-
fer model-centric capabilities specialized in those artifacts. In that
sense, MoMS-DL is a language intended to provide the expressive-
ness enough for defining a megamodel (i.e., a model that represents
a set of modeling artifacts and the relationships among them).

Figure 3 shows the MoMS-DL metamodel. In that metamodel
the central concept is the ▼❡t❛▼❡❣❛▼♦❞❡❧ that is composed by a
set of modeling artifacts represented by the ❆rt✐❢❛❝t❚②♣❡ con-
cept. Each artifact type has references and attributes. A reference
represents a relationship between two types of modeling artifacts
whereas an attribute refers to a typed characteristic i.e., string, inte-
ger, double, float. Both, references and attributes have a multiplicity
definition.

Figure 3: MoMS-DL metamodel

5.2 Using MoMS-DL

Let us illustrate the use of MoMS-DL in the motivating example.
Listing 1 is a segment of the MoMS-DL script that would produce
the MMS supporting the MTC for maze-games. Because of the
space limitation, we only include the definition of models, meta-
models, model-to-model transformations, and weaving models.

• A metamodel is an artifact type that has two attributes: the path
and the URI. The path is a string representing the location of the
file in the workspace whereas the URI is a string with an address
that can be used for locating the metamodel in the web.

• A model is an artifact type that, besides its only attribute
✧♣❛t❤✧ referring to its location in the workspace, has a re-
lationship called ✧❝♦♥❢♦r♠s❚♦✧ to the type Metamodel that
represents the conformance relationship.

• A model-to-model transformation is an artifact type that,
besides its only attribute ✧♣❛t❤✧ referring to its location in the

workspace, has two references to metamodel referring to the
✧s♦✉r❝❡✧ and ✧t❛r❣❡t✧ metamodels of the transformation.

• A weaving model is an artifact type that has the ✧♣❛t❤✧

attribute and three references. The first reference is called
✧✇❡❛✈✐♥❣▼▼✧ and refers to the metamodel that contains the
well-formedness constraints of the weaving. The other two ref-
erences called ✧❧❡❢t▼♦❞❡❧✧ and ✧r✐❣❤▼♦❞❡❧✧ refer to the
left and right parts of the weaving.

▲✐st✐♥❣ ✶✿ ❉❡✜♥✐t✐♦♥ ♦❢ t❤❡ ▼❡t❛▼❡❣❛▼♦❞❡❧

1 MetaMegaModel MetaMegaModelForMazeGames{
2

3 artifactTypes{
4

5 ArtifactType Metamodel{
6

7 attributes{

8 attribute path : string [1]

9 attribute uri : string [1]

10 }
11

12 ArtifactType Model{
13

14 attributes{

15 attribute path : string [1]

16 }

17 references{
18 reference conformsTo : Metamodel [1]

19 }

20 }
21

22 ArtifactType M2MTransformation{
23

24 attributes{

25 attribute path : string [1]

26 }

27 references{
28 reference source : Metamodel [1...∗]

29 reference target : Metamodel [1...∗]

30 }

31 }
32

33 ArtifactType WeavingModel{
34

35 attributes{

36 attribute path : string [1]

37 }

38 references{
39 reference weavingMM : Metamodel [1]

40 reference leftModel : Model [1]

41 reference rightModel : Model [1]

42 }

43 }

44 }

5.3 Tool implementation and model management systems
generation process

We implemented MoMS-DL with EMFText [12]. Consequently,
we can offer a friendly editor with content assistance and syn-
tax coloring. Meantime, the generation of model management sys-
tems from MoMS-DL scripts is a process composed by three dif-
ferent code generators. They produce the metadata repository; the
models-centric views; and the models searching engine. Let us ex-
plain each of those generators.

5.3.1 Generation of the metadata repository

The result of this generation process is a metadata repository imple-
mented as a megamodel. To achieve this, we need: (1) a metamodel
for the megamodel; and (2) a mechanism for manipulating meg-
amodels by creating, deleting and updating the references to the
concrete files so the metadata repository can be synchronized with
the file system.

• Construction of the metamodel for the megamodel: The
metamodel of the megamodel can be built directly from the
MoMS-DL script since it contains the types of modeling arti-
facts and the relationships among them. Hence, we just need to

transform the MoMS-DL script to a metamodel. To do so, we
first parse the MoMS-DL script and obtain a model that con-
forms to the MoMS-DL metamodel.

Figure 4 shows the metamodel for the megamodel that would
be generated for our motivating example expressed in Listing
1. Notice that it is just two different representations of the same
thing. However, having this information expressed in a meta-
model allows to have a model where the metadata is directly
stored. Figure 5 illustrates this idea by presenting a segment of
the megamodel (represented as an objects model) correspond-
ing to the metadata of the model-to-model transformation from
maze-games to Torque2D. In that model, each modeling artifact
is represented by an object that is an instance of a particular arti-
fact type of the metamodel. As a result, we can have a structured
metadata that can be manipulated and consulted.

Figure 4: Metamodel of the metamodel for the maze-games exam-
ple

Figure 5: Megamodel for the maze-games example

• Manipulation of the megamodel: In order to maintain the
megamodel synchronized with the file system, we automati-
cally generate a set of CRUD operations that allow to manip-
ulate the megamodel programmatically by creating, removing
and updating megamodel elements (i.e., references to concrete
files). Then, we offer a set of menu options that enable the invo-
cation of such CRUD operations on the megamodel by includ-
ing new artifact types. In that sense, the model-driven engineer
is responsible for using those menu options in order to maintain
the megamodel up to date.

5.3.2 Generation of the model-centric project views

As we said before, the classical file system views provided by
code centric IDESs show the modeling artifacts by using a file
system structure. From our point or view, a model-centric project
view should give a global perspective of the modeling artifacts
existing in the workspace classified them by their types and not
by their location in a folder hierarchy. Hence, from each MoMS-
DL script we generate a model-centric project view where, for
each ❆rt✐❢❛❝t❚②♣❡ we include a modeling artifact category. This
generation process is based on a model transformation chain that
produces a model-centric view from the MoMS-DL script. Figure
6 illustrates the generated view for the case of our motivating
example.

Figure 6: Code-centric view vs. models centric view

5.3.3 Generation of the searching engine

In order to improve the way in which the model-driven engineer
searches modeling artifacts, we provide a model searching engine
based on the relationships among modeling artifacts defined in the
MoMS-DL script. For each relationship, we generate two OCL
queries for bi-directional searching. Each query is implemented
as an OCL statement that is executed over the instance of the
megamodel for the current workspace. The results are manipulated
and displayed in the corresponding searching results view.

6. Related work

Despite research in model management is not new, so far there
is not a consensus about what that term exactly means. Indeed,
there are (at least) two conceptions about how model management
should be addressed. 1) operations-based model management sys-
tems: they intent to facilitate the definition and execution of diverse
operations on models such as transformation, merging, or compar-
ison; 2) indexation-based model management systems: they intent
to facilitate manipulation of interdependent modeling artifacts by
means of indexation (i.e., capability of maintaining metadata reg-
istries that store the references among models).

In the first case, the prime example would be the EPSILON
suite [8] that aims at providing a family of interoperable languages.
Those languages are "task-specific" what means that each of them
is intended to support a special type of operation. Thus, the model-
driven engineer has a specific language to implement transforma-
tions, another for merging, matching, and so on. There are other
approaches, such as [9], that offer customization mechanisms for
operations-based MMSs. Thus, model-driven engineers can define

generic-operations that can be applied to different types of model-
ing artifacts. For example, a merging operation that may be used on
both models and metamodels.

In this paper we are more interested on indexation-based model
management systems where one of the most famous example is
the AMMA platform [1]. AMMA provides a complete infrastruc-
ture for supporting indexation of modeling artifacts following the
concepts of modeling in-the-large introduced by Jean Bézivin [1].
This platform provides a megamodel, i.e., the metadata registry,
and, based on it, a pool of functionalities for facilitating the tasks of
model-driven engineers. Some of those functionalities are: Eclipse
views for navigating modeling artifacts; and searching engines. The
Eclipse views are intended to display modeling artifacts involved in
a models-based solution classified by their types instead of the file
system hierarchy where they are located. The models searching en-
gine [4] is based on a domain-specific language that provides not
only specialized searching for modeling artifacts but also program-
matic execution of operations for models manipulation. Similarly
to AMMA, it focuses on supporting the idea of "manipulating col-
lections of related models" by offering Eclipse-based tool support
for models metadata and operations execution. This approach of-
fers also a graphical editor where the model-driven engineer man-
ually indexes the modeling artifacts in a registry that, latter, serves
to automate execution of the operators.

7. Conclusions and future work

The main contribution of our work is to provide mechanisms for
helping to the model-driven engineers to create customizable model
management systems (MMSs). With the MMSs the model-driven
engineers can have a better user experience with the IDE to de-
velop their model-driven solutions. To have these suitable MMSs is
important because model-driven solutions have become more and
more sophisticated in terms of the amount and divers types of mod-
eling artifacts they use. The contribution is in concrete the MoMS-
DL language that allows model-driven engineers to define arbitrary
megamodels. These megamodels are used as metadata repositories
that contain the relationships existing among modeling artifacts.
Besides, from the scripts in MoMS-DL and using the metadata reg-
istry we generate automatically a pool of plugins to improve the
productivity of the developer.

There is still a long path to follow. Our on-going work includes
extensions to the functionalities our plugins can offer.We are work-
ing also on including the ideas of operations-based model manage-
ment systems by providing a work-flow language to define new op-
erations (simple and composite) to manipulate modeling artifacts
and the generation of the corresponding tooling.

References

[1] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the
large and modeling in the small. In Model Driven Architecture, volume
3599 of Lecture Notes in Computer Science, pages 33–46. Springer
Berlin Heidelberg, 2005.

[2] GarageGames. Torque2d: An engine to 2d games development, 2013.

[3] S. Kelly, K. Lyytinen, and M. Rossi. Metaedit+ a fully configurable
multi-user and multi-tool case and came environment. In J. Bubenko,
J. Krogstie, O. Pastor, B. Pernici, C. Rolland, and A. S¯lvberg, editors,
Seminal Contributions to Information Systems Engineering, pages
109–129. Springer Berlin Heidelberg, 2013.

[4] W. Kling, F. Jouault, D. Wagelaar, M. Brambilla, and J. Cabot. Mo-
script: A dsl for querying and manipulating model repositories. In
A. Sloane and U. A

√
ümann, editors, Software Language Engineering,

volume 6940 of Lecture Notes in Computer Science, pages 180–200.
Springer Berlin Heidelberg, 2012.

[5] K. Laskey. Metadata concepts to support a net-centric data environ-
ment. In R. Ladner and F. Petry, editors, Net-Centric Approaches to

Intelligence and National Security, pages 29–54. Springer US, 2005.

[6] D. Lucrédio, R. M. Fortes, and J. Whittle. Moogle: a metamodel-based
model search engine. Software and Systems Modeling, 11:183–208,
2012.

[7] L. Morales, D. Méndez-Acuña, and W. Montes. Model-driven game
development - case study. a mtc for maze-game s prototyping. Revista

electrónica en construcción de software PARADIGMA, 5(3):1–15,
2011.

[8] R. Paige, D. Kolovos, L. Rose, N. Drivalos, and F. Polack. The de-
sign of a conceptual framework and technical infrastructure for model
management language engineering. In Engineering of Complex Com-

puter Systems, 2009 14th IEEE International Conference on, pages
162 –171, june 2009.

[9] L. Rose, E. Guerra, J. Lara, A. Etien, D. Kolovos, and R. Paige.
Genericity for model management operations. Software and Systems

Modeling, 12:201–219, 2013.

[10] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF:

Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd
edition, 2009.

[11] A. Vignaga, F. Jouault, M. Bastarrica, and H. Brunelière. Typing
artifacts in megamodeling. Software and Systems Modeling, pages
1–15, 2011. 10.1007/s10270-011-0191-2.

[12] C. Wende, M. Seifert, F. Heidenreich, S. Karol, and J. Johannes.
Emftext. concrete syntax mapper, 2013.

	Introduction
	Background
	Motivating example: An MTC for prototyping maze-games
	Maze-games
	MTC for maze-games prototyping

	Some shortcomings of file-centric IDEs adapted for MDE
	Models visualization
	Models searching

	Our approach
	MoMS-DL: language concepts
	Using MoMS-DL
	Tool implementation and model management systems generation process
	Generation of the metadata repository
	Generation of the model-centric project views
	Generation of the searching engine

	Related work
	Conclusions and future work

