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a  b  s  t  r  a  c  t

Isoprostanes  (IsoPs)  and neuroprostanes  (NeuroPs)  are  formed  in vivo  by  a free  radical  non-enzymatic
mechanism  involving  peroxidation  of  arachidonic  acid  (AA, C20:4  n-6)  and  docosahexaenoic  acid  (DHA,
C22:6  n-3)  respectively.  This  review  summarises  our research  in  the  total  synthesis  of these  lipid metabo-
lites, as  well  as  their biological  activities  and  their  utility  as  biomarkers  of  oxidative  stress  in  humans.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Free radicals have been implicated in a wide variety of human
disorders [1] and are known to oxidize biomolecules, including
DNA, proteins and lipids. Polyunsaturated fatty acids (PUFAs) are
unstable lipids, due to the presence of multiple double bonds that
are subject to react with free radicals to form numerous oxy-
genated metabolites [2]. There has been considerable research in
isoprostanes (IsoPs) [2] since their discovery by Morrow et al. in
1990 [3]. The F2-IsoPs are formed in vivo predominantly by free
radical non-enzymatic oxidation of arachidonic acid (AA, C20:4
n-6), although there is some evidence to suggest F2-IsoPs can be
derived, in part, via a cyclooxygenase-induced pathway [4]. There
are numerous reports demonstrating IsoPs are the most reliable
biomarkers of oxidative stress in vitro and in animal models [5], as
well as in humans [6]. Additionally, several IsoPs have also been
shown to be biologically active [2].

Subsequent to the reporting of F2-IsoPs, others have described
oxidation products of the n-3 fatty acids alpha-linolenic acid
(ALA, C18:3 n-3), eicosapentaenoic acid (EPA, C20:5 n-3) and
docosahexaenoic acid (DHA, C22:6 n-3), yields the phytoprostanes
[7], F3-IsoPs [8] and F4-IsoPs or neuroprostanes (NeuroPs) [9],
respectively. More recently, dihomo-isoprostanes (Dihomo-IsoPs)
derived from adrenic acid (AdA, C22:4 n-6) have been reported [10].
DHA is located mainly in brain grey matter and AdA in brain white
matter. Other oxidative metabolites of these and other fatty acids,
including A-, D-, E- and J-IsoPs, have been described in the literature
[2]. More recently, the isofurans (IsoFs), formed from free radical-
induced peroxidation of AA but under conditions of high oxygen
tension, have been described [11,12].

This review describes strategies for the total synthesis of E-, D-
and F-IsoPs, NeuroPs and Dihomo-IsoPs. It will focus on those IsoPs
and NeuroPs that have been found in vivo, including their phys-
iological activity and utility as biomarkers of oxidative stress in
humans.

2. Biosynthesis

The biosynthesis of F-IsoPs (at the time referred as PG-like
compounds) was  first described in the mid  70s wile research
was being carried out into the elucidation of the biosynthesis of
prostaglandins [13,14]. Subsequent to this, Roberts, Morrow and
co-workers in 1990 [3], proposed a pathway to account for the
non-enzymatic peroxidation of arachidonic acid bound to phos-
pholipids, leading to novel PG-like compounds which they named
Isoprostanes (IsoPs) [5,15]. The F-IsoPs are released as free acids
by the platelet-activating factor acetylhydrolase and possibly other
phospholipases [16,17], circulate predominantly in high density
lipoproteins [18] in plasma, and are excreted in urine where a
significant proportion of F2-IsoPs are conjugated as glucuronides
[19].

The pathway for IsoP synthesis is initiated by hydrogen abstrac-
tion at one of the bis-allylic positions of the corresponding PUFA
(Scheme 1). The transient pentadienyl radical is oxygenated at
its terminal position to give pentadienyl peroxyl radicals. This
oxygenated radical can have several fates leading to a number
of metabolites, one of them involves irreversible O-C/C-C bicy-
clization (double 5-exo-trig cyclization) to available double bonds,
followed by addition of oxygen and H-transfer yielding G-type
IsoPs. Reduction of the hydroperoxide group is followed by the

Scheme 1. Isoprostanes (IsoPs) formation from arachidonic acid (AA).
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Scheme 2. New strategy towards the synthesis of isoprostanes, neuroprostanes.

non-enzymatic reduction or rearrangement of the endoperoxide
moiety (to the contrary of cell specific PG-synthases). F-type IsoPs
are generated under normal condition while, E- and D-type arise
from the known Kornblum–DeLaMare rearrangement [20] in
aqueous basic media. Dehydration of membrane-bound E2- and
D2-IsoPs, is facile under physiological conditions and produces
cyclopentenone-A2- and -J2-IsoPs respectively, in vitro and in vivo.

Of particular importance is the cis orientation of the side
chains in IsoPs to the contrary of the trans orientation in PGs.
This difference reflects the biosynthesis of IsoPs that follows
conventional chemistry rules (lower transition state energy dur-
ing the double 5-exo-trig cyclization) compared to enzymatically
driven three-dimensional orientation for PG synthesis. Further-
more, two different stereochemistries are present in IsoPs, the
all-syn (represented as subscript “c”; see 5-F2c-IsoP) and syn-anti-
syn stereochemistry (represented as subscript “t”; see 15-F2t-IsoP)
again depending of the two lower transition states possible dur-
ing cyclization (chair- and boat-like transition states are shown
in Scheme 1). Theoretically, there are four F2-IsoPs regioisomers
each with 8 racemic diastereoisomers, generating 64 possible com-
pounds. Waugh et al. [21] and later Li et al. [22] showed from in vitro
and in vivo studies that the 5- and 15-series IsoPs are formed in sig-
nificantly greater amounts than the 8- and 12-series IsoPs. Currrent
evidence suggests that the 5- and 15-series IsoPs are most abun-
dant in vivo, due to the fact that the 8- and 12-series IsoPs are more
readily metabolised [23].

Oxidation of DHA by similar mechanisms to that of arachidonic
acid (Scheme 1) yields 8 possible regioisomers termed 4-, 7-, 10-,
11-, 13-, 14-, 17- and 20-series NeuroPs, and theoretically, a total
of 128 compounds. Yin et al. [24] provided experimental evidence
that the 4- and 20-series NeuroPs are the two most abundant Neu-
roP regioisomers generated from the autoxidation of DHA both
in vitro and in vivo. VanRollins et al. [10] described AdA oxidation
yields four series of regioisomeric isoprostanoids termed 7-, 10-,
14-, and 17-dihomo-IsoPs with the 7- and 17-series being the most
abundant.

3. Chemical synthesis

In order to fully assess the physiological importance of each of
the enantiomerically pure IsoPs, NeuroPs and dihomo-IsoPs, we
have developed different chemical strategies [2]. Since 1990, three

strategies have been developed by Durand’s group, based on radi-
cal carbocylization [25], furan ring transformation [26], and the last
utilizing a bicyclo[3.3.0]octene intermediate [27]. In this review, we
will focus on our most recent strategy and on the total syntheses of
IsoPs, NeuroPs and dihomo-IsoPs.

This strategy uses a bicyclo[3.3.0]octene scaffold (1) and
focuses on E-, D-, F-IsoPs with syn-anti-syn stereochemistry [27].
Bicyclo[3.3.0]octene intermediate 1 is readily obtained from 1,3-
cyclooctadiene in 5 steps (18% yield). The two enantiomers are
obtained using enzymatic resolution. Bicyclo[3.3.0]octene 1 is
transformed into 1,5-diols 2 and 3 in several steps. In order to
access E- and D-IsoPs, this strategy provides an orthogonal pro-
tection of the 1,3-cis-diol functionality (see compound 3), allowing
at a later stage of the synthesis a selective deprotection of one of the
two protected hydroxyls, when compound 2 allowed the synthe-
sis of F-IsoPs. With the syn-anti-syn stereochemistry introduced,
the subsequent steps of the synthesis involve introduction of the
side chains and desymmetrisation of the two hydroxyl groups. This
strategy allows diol 2 to be either selectively oxidized into lactol
5 or selectively and enzymatically protected into monoacetate 4
[28]. In the same way diol 3 is selectively protected in high yield
into monoacetate 6 (Scheme 2).

The synthesis of E-, D-, F-IsoPs, NeuroPs or dihomo-IsoPs is
achieved using the three synthetically advanced intermediates (4,
5 and 6) (Scheme 2). Lateral chains are introduced using Wittig,
Horner–Wadsworth–Emmons or cross metathesis methodologies.
Depending on the nature of the coupling reagent (phosphonium
salt, �-ketophosphonate), one intermediate is preferred and allows
a flexibility in the synthesis.

We  have synthesized a number of E- and D- [29], and F-series
IsoPs, as well as NeuroPs [30] and dihomo-IsoPs [31] using this new
methodology (Scheme 3).

4. Biomarkers of lipid peroxidation

Quantification of products of oxidative damage in biological sys-
tems is important in order to understand the role of free radicals
in disease states [32]. Lipids that undergo peroxidation, repre-
sent major targets of free radical attack. F2-IsoPs are considered
to represent the most reliable marker of in vivo lipid peroxidation
and oxidative stress [5,33]. F2-IsoPs are stable oxidation prod-
ucts of lipid peroxidation [34]. Although there is some evidence
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that F2-IsoPs may, in part, be formed via a cyclooxygenase (COX)-
dependent pathway, this appears to be dependent upon a number
of factors [35]. In humans McAdam et al. [36] showed that urinary
F2-IsoPs were formed independent of COX-1 and COX-2. Similarly,
Bachi et al. [37] showed that in humans, but not in rats, urinary
F2-IsoPs were formed independent of COX-1. In contrast, in vitro
studies showed F2-IsoPs were increased in J774 macrophages with
COX-2 induction [38]. However, F2-IsoPs were not inhibited by
COX-1 or COX-2 inhibition in human isolated pulmonary artery
smooth muscle cells [39].

The measurement of F2-IsoPs with gas chromatography-mass
spectrometry (GCMS) using electron capture negative ionization is
considered the “gold standard”. It is important to note that although
F2-IsoPs can be measured by enzyme-linked immunoassay [40,41]
we have shown poor agreement between mass spectrometry and
enzyme-linked immunoassay [42].

The information gained from measurement of different lipid
peroxidation markers depends on the clinical situation and there-
fore the choice of markers should be carefully considered. In the
following discussion we present examples from our research where
the measurements of IsoPs, IsoFs and NeuroPs have been used in
clinical trials to elucidate the role of oxidative stress in clinical
situations.

4.1. Effects of type of anaesthesia and oxygen concentration
during surgery

Ischemia/reperfusion injury (IRI) is one of the main patho-
physiological phenomena observed in orthopaedic surgery. The
application and release of a tourniquet is often used in elective
total knee replacement surgery to reduce blood loss and obtain

a clearer surgical field. IRI, in which oxidative injury plays a
fundamental role, results in a local and systemic inflammatory
response. Surgery utilises two anesthetic techniques: spinal anes-
thesia (SA) or general anesthesia (GA), where the levels of inspired
oxygen can differ. There is also evidence that spinal anesthesia
(SA) reduces the risk of postoperative mortality and morbidity [43]
with a reduction of postoperative vascular events. In a randomized
blinded study we examined the effects of SA and GA on markers of
oxidative stress (plasma F2-IsoPs and IsoFs) in patients undergoing
knee replacement surgery. F2-IsoPs were significantly lower in
the GA patients compared with SA patients. In contrast, the GA
patients had significantly elevated plasma IsoFs. Increased IsoFs
during GA compared with SA likely reflect increased oxidative
stress due to elevated oxygen concentrations during GA. Under
conditions of higher oxygen intake such as GA the balance of
arachidonic acid metabolism by free radicals is shifted from F2-
IsoPs to IsoFs formation [44]. In a subsequent study, we examined
the effect of altering inspired oxygen concentrations in patients
undergoing ischemia/reperfusion during upper arm surgery [45].
We showed plasma IsoFs were positively associated with oxygen
tension (PvO2) and this relationship was significantly attenuated
by blood hemoglobin concentration. This is noteworthy given that
hemoglobin per se did not significantly affect plasma IsoFs. Plasma
F2-IsoP during reperfusion was also not different between the
groups and there was  no significant relationship between F2-IsoP
and PvO2 or hemoglobin concentration.

4.2. Brain injury

The high oxygen requirements of the brain for metabolism
and its high polyunsaturated fatty acid composition, in particular
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DHA, make the brain vulnerable to oxidative insult. F4-NeuroPs are
considered markers of brain related oxidative stress [46]. Aneurys-
mal  subarachnoid hemorrhage (aSAH) and traumatic brain injury
(TBI) are associated with devastating central nervous system (CNS)
injury. Acute brain injury, is thought to associate with overpro-
duction of reactive oxygen species (ROS). In two case-controlled
studies [47] we have shown a significant increase in cerebrospinal
fluid (CSF) IsoFs in aSAH and TBI patients compared with their
respective age- and gender-matched controls. aSAH patients also
had significantly increased levels of CSF F4-NeuroPs and F2-IsoPs.
Patients with TBI had significantly increased CSF F4-NeuroPs but
F2-IsoPs were not different from their controls. These data con-
firm that CNS injury as a result of aSAH or TBI results in increased
oxidative stress. Since DHA is the major polyunsaturated fatty acid
in the brain, F4-NeuroP levels in CSF may  be a more specific indica-
tor of possible neurological dysfunction than F2-IsoPs. Hsieh et al.
[48] showed that increased F4-NeuroPs in CSF of patients with
aSAH correlated with poor neurological outcome and suggested
that F4-NeuroPs might be more useful than F2-IsoPs in CSF to
predict outcome and interpret the role of hemorrhage in aSAH.
Although Farias et al. [49] showed increased F2-isoPs during rat
brain ischemia, the E2/D2-IsoPs were increased to a greater extent,
suggesting the latter may  better markers of oxidative stress in brain
ischemia.

4.3. Pre-eclampsia

Pre-eclampsia is a life-threatening disorder of pregnancy that
adversely affects the mother and the baby. Oxidative stress may
contribute to the pathogenesis of this syndrome. Previously,
we have shown that plasma F2-IsoP are raised in proteinuric
pre-eclampsia [50]. In a recent case-controlled study [51] we
examined IsoFs, F4-NeuroPs and F2-IsoPs in maternal plasma
and cord blood of women with pre-eclampsia and normal preg-
nancies. Women  with pre-eclampsia had significantly elevated
maternal IsoFs and F4-NeuroPs, but not F2-IsoPs. Cord blood
F4-NeuroPs were elevated among neonates of women  with pre-
eclampsia. Interestingly, cord blood IsoFs were approximately
5-fold higher than those found in maternal plasma and could
reflect the oxidative challenge presented at birth, when there
is transition from a relatively low intrauterine oxygen environ-
ment to a significantly higher extrauterine oxygen environment.
We also found maternal F4-NeuroPs were not significantly cor-
related with cord blood F4-NeuroPs in either pre-eclamptic or
normal pregnancies, suggesting the origin of cord F4-NeuroPs may
be independent of maternal plasma. In normal pregnancy birth
weight was negatively related to maternal F2-IsoPs, IsoFs and F4-
NeuroPs.

4.4. Fish oil supplementation

In two placebo-controlled interventions in (1) overweight, dys-
lipidaemic men; and (2) treated-hypertensive Type 2 diabetic
patients, randomized to daily EPA, or DHA or placebo, we  showed
post-intervention plasma and urinary F2-IsoPs were significantly
reduced by EPA and by DHA [52,53]. Neither F3-IsoPs – nor F4-
NeuroPs were observed in plasma in both studies. These findings
support our previous reports that have shown n-3 fatty acids
reduce oxidative stress, in part, via attenuation of inflamma-
tion.

4.5. Rett syndrome

Rett syndrome (RTT) is a pervasive abnormality of development
affecting almost exclusively females, which is included among the
autism spectrum disorders. RTT is caused in up to 95% of cases by

mutations in the X-linked methyl-CpG binding protein 2 (MeCP2)
gene [54]. Although over 200 different MeCp2 mutations have been
reported to cause RTT, nine most frequent ones (hotspot muta-
tions) are known to comprise more than three quarters of all the
reported pathogenic mutations [55]. The disease shows a wide
phenotypical heterogeneity, with at least 4 distinct major clinical
presentations, i.e.,  typical, preserved speech, early seizure variant,
and congenital variant [56]. Clinical evidence indicates that F2-IsoPs
and F4-NeuroPs are involved in the intimate pathogenetic mecha-
nisms of RTT. Plasma levels of free F2-IsoPs are significantly higher
in the early stages of RTT, as compared with the late natural pro-
gression of typical RTT [57].

F2-dihomo-IsoPs are significantly increased in RTT [58], Due
to the relative abundance in myelin of the precursor fatty acid
[10,59] the increased formation of F2-dihomo-IsoPs, particularly in
the early stages of the disease, strongly suggests the coexistence
of an early damage to the brain white matter. Until recently it
was thought that the predominant central nervous system dam-
age in RTT occurred in gray matter. However, our data [58] have
contributed to generate the hypothesis that early brain white mat-
ter damage may  represent an early event in RTT as suggested by
previous brain MRI  evidence [60]. Thus F2-dihomo-IsoPs can be
considered early markers of lipid peroxidation in RTT.

F4-NeuroPs also appear to be an important biomarker of RTT
[61]. Plasma F4-NeuroPs correlate with disease severity in RTT [61]
and are significantly related to neurological symptoms severity,
mutation type and clinical presentation [61]. Therefore, F4-NeuroPs
may  play a major role along the biochemical pathway from MeCp2
gene mutation to the disease clinical presentation, thus testifying
that a DHA oxidation process is occurring.

5. Bioactive lipids

Isoprostanes are not only biomarkers of lipid peroxidation but
also mediators of oxidant injury. They are vasoconstrictors in many
species and various vascular beds (reviewed in Ref. [62]), modu-
late platelet activity (reviewed in Ref. [63]) and monocyte adhesion
[64,65], and induce proliferation of endothelial and smooth mus-
cle cells [66,67]. Isoprostanes mediate their biological effects by
activation and/or inhibition of several prostanoid receptors, among
them the thromboxane receptor (TP), prostaglandin F2� receptor
(FP), prostaglandin E2 subtype 3 receptor (EP3), prostaglandin D2
subtype 2 receptor (DP2) and by activation of the peroxisome pro-
liferators activated receptor gamma  (PPAR�)  [68–72].

5.1. Mammalian vascular tissues

The vasomotor action of 15-F2t-IsoP has been investigated in
isolated human saphenous and umbilical veins, in bronchial, radial
and internal mammary arteries, and in pulmonary vasculature as
well as placental and maternal vessels [69,73–78]. In contrast to
15-F2t-IsoP, 5-F2-IsoP-series do not contribute to the vasoconstric-
tion mediated by isoprostanes [79]. Besides vasoconstriction and
platelet activation, isoprostanes also enhance the vascular reper-
fusion damage after myocardial infarction [80]; pioneering cardiac
smooth muscle apoptosis and scar formation. In this scenario, for-
mation of collaterals and new vasculature outgrowth is essential for
cardiac function recovery. The complex interplay of pro-angiogenic
growth factors, IsoPs and the role of the TP has been investigated
thoroughly in different primary human endothelial cells [81]. Low
concentrations of 15-F2t-IsoP promoted endothelial cell migration.
In contrast, higher concentrations of several E-, A- and F-series
IsoPs inhibited the VEGF-induced migration and tube formation of
endothelial cells. These effects were abolished either by TP block-
ade or alternatively by short hairpin RNA-mediated knock down of
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Fig. 1. Influence of 8-iso-PGF2� (15-F2t-IsoP) on VEGF-induced sprouting of
endothelial cells. The thromboxane A2 receptor agonists U-46619 and 8-iso-PGF2�

(15-F2t-IsoP) both 3 × 10−6 M inhibit the VEGF (20 ng/mL)-induced sprouting of
HUVECs (U-46619 122 ± 7%, 8-iso-PGF2� 115 ± 7%, §p < 0.001 vs. VEGF 242 ± 14%).
This  effect is blocked through the thromboxane A2 receptor antagonist SQ-29548
(3  × 10−6 M;  U-46619 + SQ-29548 217 ± 12%, 8-iso-PGF2� + SQ-29548 211 ± 10%,
#p < 0.001 vs. U-46619/8-iso-PGF2�).

the TP. Taken together, these findings highlight the role of 15-F2t-
IsoP but also of other IsoPs in vascular homeostasis and thereby
provide a new rationale for TP blockade (Fig. 1).

5.2. Mammalian retina

The retina is enriched with LCPUFAs and is constantly exposed
to light, rendering it highly vulnerable to oxidant stress [82].
Because oxidant stress plays a key role in the pathogenesis of ocu-
lar neuropathies such as glaucoma [83] and triggers spontaneous
generation of LCPUFA metabolites in retina [84], it is significant to
delineate effect of these novel compounds on retinal pharmacology.
So far, the pharmacological role for the 15-F2-IsoPs on neurotrans-
mission in mammalian ocular tissues is well documented [84].
However, the effect of the 5-F2-IsoP-series on ocular tissues has
not been described. In a recent study, we elucidated the phar-
macological actions of the 5-F2-IsoP epimer pair, 5-epi-5-F2t-IsoP
(C5-OH in �-position) and 5-F2t-IsoP (C5-OH in �-position) on
excitatory glutamate release (using [3H]D-aspartate as a marker)
in bovine retina, in vitro [85]. Whereas 5-epi-5-F2t-IsoP elicited a
concentration-dependent inhibitory action, the 5-(S)-OH-epimer,
5-F2t-IsoP displayed a more potent, biphasic inhibitory action on
the neurotransmitter release [85], suggesting that spatial side chain
orientation at the C5-position is accounts for the biphasic response.
Consistent with the later observation, a biphasic profile of activ-
ity been reported for 15-F2t-IsoP on the regulation of sympathetic
and excitatory neurotransmission in the mammalian anterior uvea

and retina, respectively [84]. Contrary to 5-F2t-IsoP, the 15-F2t-IsoP
lacks the hydroxyl side chain at C5 position. It is therefore appar-
ent that additional factors contribute to the biphasic pattern of
IsoP-response on neurotransmitter release.

Because the effect of their 15-F2-IsoP-counterparts are largely
dependent on activation of prostanoid receptors, Jamil et al. [85]
examined the role of prostanoid receptors in the inhibitory action
of the 5-epi-5-F2t-IsoP. The inhibitory action of this 5-F2-IsoP was
reversed by the prostanoid EP1- (SC-51322; SC-19220) and EP4-
(AH 23848) receptor antagonists but not the EP1–3/DP- (AH 6809)
and DP/TP receptor antagonist (BAY-u3405). Due to the prominent
role that glutamate plays in the physiology of the retina as the
major excitatory neurotransmitter and in neuronal excitotoxicity,
the ability of 5-F2-IsoPs to attenuate excitatory neurotransmit-
ter release could have significant pathophysiological implications
in mammalian retina. It is conceivable that these endogenously
derived AA-metabolites could modulate progression of ocular
neuropathies and provide a new target for diagnostic and/or ther-
apeutic strategies in the management of ocular neuropathies [85].
Taken together, these data support a modulatory role for 5-F2-IsoP
epimer pair, 5-epi-5-F2t-IsoP and 5-F2t-IsoP on excitatory neuro-
transmitter release in bovine retina, in vitro. Whereas the allylic
hydroxyl group at position C5 contributes to the apparent biphasic
pattern of response exhibited by 5-F2t-IsoP, the prostanoid EP1 and
EP4 account for its inhibitory effect on excitatory neurotransmitter
release.

5.3. Anti-arrhythmic activities

There is considerable evidence that a diet enriched n-3 PUFAs
confers cardioprotective effects due primarily to the two  main
PUFAs EPA and DHA [86]. A large prospective study showed that the
most marked effect of DHA and EPA supplementation is a reduction
of sudden cardiac death in the months following a cardiac infarc-
tion [87]. This benefit has been explained, in part, by a reduction
in arrhythmias and systolic cardiac failure. The anti-arrhythmic
effects of n-3 PUFAs have been confirmed in animal models of car-
diac infarction by ligature of the left coronary artery [88]. These
and other studies in single cardiac cells have shown that EPA and
DHA can modulate the activity of ion channels, the transmem-
brane proteins responsible for the electrical activity of the heart
[89]. However, it has been suggested that oxygenated metabolites
of EPA and DHA may  also play a role in these actions [88]. In this
regard it has been shown that some of the effect of DHA on rat car-
diac ion channels is due to an oxidative metabolite of DHA [90].
Le Guennec et al. [91] tested different F2-IsoPs, F3-IsoPs and F4-
NeuroPs on arrhythmias induced by isoprenaline and stimulation
frequency of isolated ventricular mice cardiac cells. Among them,
some F4-NeuroPs have anti-arrhythmic effects (IC50 ≈ 100 nM).

6. Outlooks and conclusions

Our understanding of the role of PUFA peroxidation in the patho-
genesis of various diseases continues to expand. The discovery and
study of IsoPs have provided a major step forward in the field of free
radical research. A number of IsoPs and NeuroPs have been syn-
thesised allowing researchers to examine their biological activities
and evaluate their potential role as markers of oxidative damage in
a number of clinical and experimental studies. IsoPs, IsoFs and Neu-
roPs measured by mass spectrometry can be useful in elucidating
the role of oxidative stress in the clinical setting. Further studies
are required to determine how these markers of oxidative stress
relate to severity of complications and clinical outcomes.
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