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, is by definition the process Z = X • Y . It is a continuous, non-Gaussian process with stationary increments, which is selfsimilar of index H/2. The main result of the present paper is an Itô's type formula for f (Z t ), when f : R → R is smooth and H ∈ [1/6, 1). When H > 1/6, the change-of-variable formula we obtain is similar to that of the classical calculus. In the critical case H = 1/6, our change-of-variable formula is in law and involves the third derivative of f as well as an extra Brownian motion independent of the pair (X, Y ). We also discuss briefly the case H < 1/6.

Introduction

If f : R + → R is C 1 then f (t) = f (0) + t 0 f ′ (s)ds for all t 0 whereas, if W is a standard Brownian motion and if f : R → R is C 2 then, by the Itô's formula,

f (W t ) = f (0) + t 0 f ′ (W s )d -W s + 1 2 t 0 f ′′ (W s )ds, t 0. (1.1)
In (1.1) the Itô integral, namely

t 0 X s d -Y s := lim n→∞ ⌊2 n t⌋-1 k=0 X k2 -n (Y (k+1)2 -n -Y k2 -n ), (1.2) 
1 is of forward type. It is well-known that the additional bracket term 1 2 t 0 f ′′ (W s )ds appearing in (1.1) comes from the non-negligibility of the quadratic variation of W in the large limit; more precisely,

⌊2 n t⌋-1 k=0 (W (k+1)2 -n -W k2 -n ) 2 a.s.
-→ t as n → ∞.

(1.3)

Introducing a family {B H } H∈(0,1) of fractional Brownian motions parametrized by the Hurst parameter H may help to reinterpret (1.1) in a more dynamical way. Let us elaborate this point of view further. Recall that B 1 2 is nothing but the standard Brownian motion, whereas B 1 is the process B 1 t = tG, t 0, G ∼ N(0, 1). The extension of (1.3) to any H ∈ (0, 1) is well-known: one has

2 n(2H-1) ⌊2 n t⌋-1 k=0 (B H (k+1)2 -n -B H k2 -n ) 2 a.s.
-→ t as n → ∞.

(1.4)

Based on (1.4), it is then not difficult to prove the following two facts:

1. If H > 1 2 and f : R → R is C 2 (actually, C 1 is enough), then t 0 f ′ (B H s )d -B H s exists as a limit in probability and we have

f (B H t ) = f (0) + t 0 f ′ (B H s )d -B H s , t 0. 2. If H < 1 2 , then t 0 B H s d -B H s = -∞ a.s.,
meaning that there is no possible change-of-variable formula for f (x) = x 2 .

Thus, H = 1 2 appears to be a critical value for the change-of-variable formula involving the forward integral (1.2). This is because it is precisely the value from which the sign of 2H -1 changes in (1.4). The chain rule being (1.1) in the critical case H = 1 2 , one has a complete picture for the forward integral (1.2).

To go one step further, one may wonder what kind of change-of-variable formula one would obtain after replacing the definition (1.2) by its symmetric counterpart, namely

t 0 X s d • Y s := lim n→∞ ⌊2 n t⌋-1 k=0 1 2 X k2 -n + X (k+1)2 -n (Y (k+1)2 -n -Y k2 -n ) (1.5)
(provided the limit exists in some sense). As it turns out, it is arguably a much more difficult problem, which has been solved only recently. In this context, the crucial quantity is now the cubic variation. And this latter is known to satisfy, for any H < 1 2 ,

2 n(3H-1 2 ) ⌊2 n t⌋-1 k=0 (B H (k+1)2 -n -B H k2 -n ) 3 law → N(0, σ 2 H ) as n → ∞. (1.6)
With a lot of efforts, one can prove (see [START_REF] Cheridito | Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0, 1 2 )[END_REF][START_REF] Gradinaru | m-order integrals and generalized Itô's formula: the case of a fractional Brownian motion with any Hurst index[END_REF] when H = 1 6 and [START_REF] Nourdin | The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6[END_REF] when H = 1 6 ) the following three facts, which hold for any smooth enough real function f : R → R:

1. If H > 1 6 then t 0 f ′ (B H s )d • B H
s exists as a limit in probability and one has

f (B H t ) = f (0) + t 0 f ′ (B H s )d • B H s , t 0. (1.7) 2. If H = 1 6 then t 0 f ′ (B 1 6 s )d • B 1 6
s exists as a stable limit in law and one has, with W a standard Brownian motion independent of B 1 6 and κ 3 ≃ 2.322,

f (B 1 6 t ) = f (0) + t 0 f ′ (B 1 6 s )d • B 1 6 s - κ 3 12 t 0 f ′′′ (B 1 6 
)dW s , t 0.

(1.8)

3. If H < 1 6 then t 0 (B H s ) 2 d • B H s does not exist in law.
(1.9)

Thus, as we see, the critical value for the symmetric integral is now H = 1 6 ; it is exactly the value of H from which the sign of 3H -1 2 changes in (1.6).

In [START_REF] Burdzy | Some path properties of iterated Brownian motion[END_REF][START_REF] Burdzy | Variation of iterated Brownian motion[END_REF] (see also [START_REF] Burdzy | Brownian motion in a Brownian crack[END_REF]), Burdzy has introduced the so-called iterated Brownian motion. This process, which can be regarded as the realization of a Brownian motion on a random fractal, is defined as

Z t = X(Y t ), t 0,
where X is a two-sided Brownian motion and Y is a standard (one-sided) Brownian motion independent of X. Note that Z is self-similar of order 1 4 and has stationary increments; hence, in some sense, Z is close to the fractional Brownian motion B 1 4 of index H = 1 4 . As is the case for B 1 4 , Z is neither a Dirichlet process nor a semimartingale or a Markov process in its own filtration. A crucial question is therefore how to define a stochastic calculus with respect to it. This issue has been tackled by Khoshnevisan and Lewis in [START_REF] Khoshnevisan | Stochastic calculus for Brownian motion on a Brownian fracture[END_REF][START_REF] Khoshnevisan | Iterated Brownian motion and its intrinsic skeletal structure[END_REF], where the authors develop a Stratonovich-type stochastic calculus with respect to Z, by extensively using techniques based on the properties of some special arrays of Brownian stopping times, as well as on excursion-theoretic arguments. See also the paper [START_REF] Nourdin | Weighted power variations of iterated Brownian motion[END_REF] which may be seen as a follow-up of [START_REF] Khoshnevisan | Stochastic calculus for Brownian motion on a Brownian fracture[END_REF]. The formula obtained in [START_REF] Khoshnevisan | Stochastic calculus for Brownian motion on a Brownian fracture[END_REF][START_REF] Khoshnevisan | Iterated Brownian motion and its intrinsic skeletal structure[END_REF] reads, unsurprisingly (due to (1.7) and the similarities between Z and B 1 4 ) and losely speaking, as follows:

f (Z t ) = f (0) + t 0 f (Z s )d • Z s , t 0.
(1.10)

The change-of-variable formula (1.10) is of the same kind than (1.7). In view of what has been done so far for the fractional Brownian motion B H , aiming to provide an answer to the following problem is somehow natural: can we also reinterpret (1.10) in a dynamical way, in the spirit of (1.7), (1.8) and (1.9)? To this end, we first need to introduce a family of processes that contains the iterated Brownian motion Z as a particular element. The family consisting in the so-called fractional Brownian motions in Brownian time, studied in [START_REF] Zeineddine | Fluctuations of the power variation of fractional Brownian motion in Brownian time[END_REF] by the second-named author, does the job. More specifically, it is the family {Z H } H∈(0,1) defined as follows:

Z H t = X H (Y t ), t 0,
where X H is a two-sided fractional Brownian motion of index H and Y is a standard (onesided) Brownian motion independent of X. Roughly speaking, in the present paper we are going to show the following three assertions (see Theorem 2.1 for a precise statement): for any smooth real function f : R → R,

1. If H > 1 6 then f (Z H t ) = f (0) + t 0 f ′ (Z H s )d • Z H s , t 0.
2. If H = 1 6 then, with W a standard Brownian motion independent of the pair (X 1 6 , Y ) and κ 3 ≃ 2.322, f (Z

1 6 t ) = f (0) + t 0 f ′ (Z 1 6 s )d • Z 1 6 s - κ 3 12 Yt 0 f ′′′ (X 1 6 s )dW s , t 0. (1.11) 3. If H < 1 6 , then t 0 (Z H s ) 2 d • Z H s does not exist.
The formula (1.11) is related to a recent line of research in which, by means of Malliavin calculus, one aims to exhibit change-of-variable formulas in law with a correction term which is an Itô integral with respect to martingale independent of the underlying Gaussian processes. Papers dealing with this problem and which are prior to our work include [START_REF] Burdzy | A change of variable formula with Itô correction term[END_REF][START_REF] Harnett | Central limit theorem for a Stratonovich integral with Malliavin calculus[END_REF][START_REF] Harnett | Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes[END_REF][START_REF] Harnett | On Simpson's rule and fractional Brownian motion with H = 1/10[END_REF][START_REF] Nourdin | A change of variable formula for the 2D fractional Brownian motion of Hurst index bigger or equal to 1/4[END_REF][START_REF] Nourdin | Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case H = 1/4[END_REF][START_REF] Nourdin | The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6[END_REF]; however, it is worthwhile noting that all these mentioned references only deal with Gaussian processes, not with iterated processes (which are arguably more difficult to handle).

A brief outline of the paper is as follows. In Section 2, we introduce the framework in which our study takes place and we provide an exact statement of our result, namely Theorem 2.1. Finally, Section 3 contains the proof of Theorem 2.1, which is divided into several steps.

Framework and exact statement of our results

For simplicity, throughout the paper we remove the superscript H, that is, we write Z (resp. X) instead of Z H (resp. X H ).

Let Z be a fractional Brownian motion in Brownian time of Hurst parameter H ∈ (0, 1), defined as

Z t = X(Y t ), t 0, (2.12)
where X is a two-sided fractional Brownian motion of parameter H and Y is a standard (one-sided) Brownian motion independent of X.

The paths of Z being very irregular (precisely: Hölder continuous of order α if and only if α is strictly less than H/2), we will not be able to define a stochastic integral with respect to it as the limit of Riemann sums with respect to a deterministic partition of the time axis. However, a winning idea borrowed from Khoshnevisan and Lewis [START_REF] Khoshnevisan | Stochastic calculus for Brownian motion on a Brownian fracture[END_REF][START_REF] Khoshnevisan | Iterated Brownian motion and its intrinsic skeletal structure[END_REF] is to approach deterministic partitions by means of random partitions defined in terms of hitting times of the underlying Brownian motion Y . As such, one can bypass the random "time-deformation" forced by (2.12), and perform asymptotic procedures by separating the roles of X and Y in the overall definition of Z.

Following Khoshnevisan and Lewis [START_REF] Khoshnevisan | Stochastic calculus for Brownian motion on a Brownian fracture[END_REF][START_REF] Khoshnevisan | Iterated Brownian motion and its intrinsic skeletal structure[END_REF], we start by introducing the so-called intrinsic skeletal structure of Z H . This structure is defined through a sequence of collections of stopping times (with respect to the natural filtration of Y ), noted

T n = {T k,n : k 0}, n 1, (2.13) 
which are in turn expressed in terms of the subsequent hitting times of a dyadic grid cast on the real axis. More precisely, let D n = {j2 -n/2 : j ∈ Z}, n 1, be the dyadic partition (of R) of order n/2. For every n 1, the stopping times T k,n , appearing in (2.13), are given by the following recursive definition: T 0,n = 0, and

T k,n = inf s > T k-1,n : Y (s) ∈ D n \ {Y (T k-1,n )} , k 1.
Note that the definition of T k,n , and therefore of T n , only involves the one-sided Brownian motion Y , and that, for every n 1, the discrete stochastic process (2.14)

Y n = {Y (T k,n ) : k 0}
Based on this fact, one may introduce the counterpart of (1.5) based on T n , namely,

V n (f, t) = ⌊2 n t⌋-1 k=0 1 2 f (Z T k,n ) + f (Z T k+1,n ) (Z T k+1,n -Z T k,n ). (2.15)
Let C ∞ b denote the class of those functions f : R → R that are C ∞ and bounded together with their derivatives. We then have the following result.

Theorem 2.1 Let f ∈ C ∞ b and t > 0. 1. If H > 1 6 then f (Z t ) -f (0) = t 0 f ′ (Z s )d • Z s , (2.16) 
where

t 0 f ′ (Z s )d • Z s is the limit in probability of V n (f ′ , t) defined in (2.15) as n → ∞. 2. If H = 1 6 then, with κ 3 ≃ 2.322, f (Z t ) -f (0) + κ 3 12 Yt 0 f ′′′ (X s )dW s (law) = t 0 f ′ (Z s )d • Z s .
(2.17) (2.15) as n → ∞ (its existence is part of the conclusion), W is a two-sided Brownian motion independent of the pair (X, Y ) defining Z, and the integral with respect to W is understood in the Wiener-Itô sense.

Here, t 0 f ′ (Z s )d • Z s denotes the limit in law of V n (f ′ , t) defined in
3. If H < 1 6 then

V n (x → x 2 , t) does not converge, even stably in law.

(

2.18)

This means that there is no way to get a change-of-variable formula for f (x) = x 3 .

3 Proof of Theorem 2.1

Elements of Malliavin calculus

In this section, we gather some elements of Malliavin calculus we shall need thoughout the proof of Theorem 2.1. The reader already familiar with this topic may skip this section. We continue to denote by X = (X t ) t∈R a two-sided fractional Brownian motion with Hurst parameter H ∈ (0, 1). That is, X is a zero mean Gaussian process, defined on a complete probability space (Ω, A , P ), with the covariance function

C H (t, s) = E(X t X s ) = 1 2 (|s| 2H + |t| 2H -|t -s| 2H ), s, t ∈ R.
We suppose that A is the σ-field generated by X. For all n ∈ N * , we let E n be the set of step functions on [-n, n], and

E := ∪ n E n . Set ξ t = 1 [0,t] (resp. 1 [t,0] ) if t 0 (resp. t < 0).
Let H be the Hilbert space defined as the closure of E with respect to the inner product

ξ t , ξ s H = C H (t, s), s, t ∈ R.
The mapping ξ t → X t can be extended to an isometry between H and the Gaussian space H 1 associated with X. We will denote this isometry by ϕ → X(ϕ).

Let F be the set of all smooth cylindrical random variables, i.e. of the form

F = φ(X t 1 , ..., X t l ),
where l ∈ N * , φ : R l → R is C ∞ b and t 1 < ... < t l are some real numbers. The derivative of F with respect to X is the element of L 2 (Ω, H ) defined by

D s F = l i=1 ∂φ ∂x i (X t 1 , ..., X t l )ξ t i (s), s ∈ R.
In particular D s X t = ξ t (s). For any integer k 1, we denote by D k,2 the closure of the set of smooth random variables with respect to the norm

F 2 k,2 = E(F 2 ) + k j=1 E[ D j F 2 H ⊗j ].
The Malliavin derivative D satisfies the chain rule.

If ϕ : R n → R is C 1 b and if F 1 , . . . , F n are in D 1,2 , then ϕ(F 1 , ..., F n ) ∈ D 1,2 and we have Dϕ(F 1 , ..., F n ) = n i=1 ∂ϕ ∂x i (F 1 , ..., F n )DF i .
We have the following Leibniz formula, whose proof is straightforward by induction on q. Let ϕ, ψ ∈ C q b (q 1), and fix 0 u < v and 0 s < t. Then ϕ(X t -X s )ψ(X v -X u ) ∈ D q,2 and

D q ϕ(X t -X s )ψ(X v -X u ) = 2q a=0 2q a ϕ (a) (X t -X s )ψ (2q-a) (X v -X u )1 ⊗a [s,t] ⊗1 ⊗(2q-a) [u,v] , (3.19) 
where ⊗ stands for the symmetric tensor product. A similar statement holds fo u < v 0 and s < t 0.

If a random element u ∈ L 2 (Ω, H ) belongs to the domain of the divergence operator, that is, if it satisfies

|E DF, u H | c u E(F 2 ) for any F ∈ F , then I(u) is defined by the duality relationship E F I(u) = E DF, u H , for every F ∈ D 1,2 .
For every n 1, let H n be the nth Wiener chaos of X, that is, the closed linear subspace of L 2 (Ω, A , P ) generated by the random variables {H n (B(h)), h ∈ H , h H = 1}, where H n is the nth Hermite polynomial. The mapping I n (h ⊗n ) = H n (B(h)) provides a linear isometry between the symmetric tensor product H ⊙n and H n . For H = 1 2 , I n coincides with the multiple Wiener-Itô integral of order n. The following duality formula holds

E F I n (h) = E D n F, h H ⊗n , (3.20) 
for any element h ∈ H ⊙n and any random variable F ∈ D n,2 . Let {e k , k 1} be a complete orthonormal system in H . Given f ∈ H ⊙n and g ∈ H ⊙m , for every r = 0, ..., n ∧ m, the contraction of f and g of order r is the element of H ⊗(n+m-2r) defined by

f ⊗ r g = ∞ k 1 ,...,kr=1
f, e k 1 ⊗ ... ⊗ e kr H ⊗r ⊗ g, e k 1 ⊗ ... ⊗ e kr H ⊗r .

Note that f ⊗ r g is not necessarily symmetric: we denote its symmetrization by f ⊗r g ∈ H ⊙(n+m-2r) . Finally, we recall the following product formula: if f ∈ H ⊙n and g ∈ H ⊙m then 

I n (f )I m (g) =

Notation and reduction of the problem

Throughout all the proof, we shall use the following notation. For all k, n ∈ N we write

ξ k2 -n/2 = 1 [0,k2 -n/2 ] , ξ - k2 -n/2 = 1 [-k2 -n/2 ,0] , δ k2 -n/2 = 1 [(k-1)2 -n/2 ,k2 -n/2 ] , δ - k2 -n/2 = 1 [-k2 -n/2 ,(-k+1)2 -n/2 ]
. Also, •, • ( • , respectively) will always stand for inner product (the norm, respectively) in an appropriate tensor product H ⊗s .

In the sequel, we only consider the case H < 1 2 . The proof of (2.16) in the case H > 1 2 is easier and left to the reader, whereas the proof when H = 1 2 was already done in [START_REF] Khoshnevisan | Stochastic calculus for Brownian motion on a Brownian fracture[END_REF][START_REF] Khoshnevisan | Iterated Brownian motion and its intrinsic skeletal structure[END_REF] by Khoshnevisan and Lewis.

That said, we now divide the proof of Theorem 2.1 in several steps.

Step 1: A key algebraic lemma

For each integer n 1, k ∈ Z and real number t 0, let U j,n (t) (resp. D j,n (t)) denote the number of upcrossings (resp. downcrossings) of the interval [j2 -n/2 , (j + 1)2 -n/2 ] within the first ⌊2 n t⌋ steps of the random walk 2 and Y (T k+1,n ) = (j + 1)2 -n/2 ; D j,n (t) = ♯ k = 0, . . . , ⌊2 n t⌋ -1 :

{Y (T k,n )} k 1 , that is, U j,n (t) = ♯ k = 0, . . . , ⌊2 n t⌋ -1 : Y (T k,n ) = j2 -n/
Y (T k,n ) = (j + 1)2 -n/2 and Y (T k+1,n ) = j2 -n/2 .
While easy, the following lemma taken from [START_REF] Khoshnevisan | Stochastic calculus for Brownian motion on a Brownian fracture[END_REF]Lemma 2.4] is going to be the key when studying the asymptotic behavior of the weighted power variation V (2r-1) n (f, t) of odd order 2r -1, defined as:

V (2r-1) n (f, t) = ⌊2 n t⌋-1 k=0 1 2 f (Z T k,n ) + f (Z T k+1,n ) (Z T k+1,n -Z T k,n ) 2r-1 , t 0.
Its main feature is to separate X from Y , thus providing a representation of V (2r-1) n (f, t) which is amenable to analysis.

Lemma 3.1 Fix f ∈ C ∞ b , t 0 and r ∈ N * . Then V (2r-1) n (f, t) = j∈Z 1 2 f (X j2 -n 2 ) + f (X (j+1)2 -n 2 ) X (j+1)2 -n 2 -X j2 -n 2 2r-1 U j,n (t) -D j,n (t) .
Observe that V

(1)

n (f, t) = V n (f, t), see (2.15).

Step 2: Transforming the weighted power variations of odd order

By [10, Lemma 2.5], one has

U j,n (t) -D j,n (t) =    1 {0 j<j * (n,t)} if j * (n, t) > 0 0 if j * = 0 -1 {j * (n,t) j<0} if j * (n, t) < 0 , where j * (n, t) = 2 n/2 Y T ⌊2 n t⌋,n . As a consequence, V (2r-1) n (f, t) is equal to      2 -nH(r-1 2 ) j * (n,t)-1 j=0 
1 2 f (X + j2 -n/2 ) + f (X + (j+1)2 -n/2 ) X n,+ j+1 -X n,+ j 2r-1 if j * (n, t) > 0 0 if j * = 0 2 -nH(r-1 2 ) |j * (n,t)|-1 j=0 1 2 f (X - j2 -n/2 ) + f (X - (j+1)2 -n/2 ) X n,- j+1 -X n,- j 2r-1 if j * (n, t) < 0
, where X + t := X t for t 0, X - -t := X t for t < 0, X n,+ (t) := 2 nH/2 X + 2 -n/2 t for t 0 and X n,-(-t) := 2 nH/2 X - 2 -n/2 (-t) for t < 0. Let us now introduce the following sequence of processes

W (2r-1) ±,n
, in which H p stands for the pth Hermite polynomial:

W (2r-1) ±,n (f, t) = ⌊2 n/2 t⌋-1 j=0 1 2 f (X ± j2 -n 2 ) + f (X ± (j+1)2 -n 2 ) H 2r-1 (X n,± j+1 -X n,± j ), t 0 
W (2r-1) n (f, t) = W (2r-1) +,n (f, t) if t 0 W (2r-1) -,n (f, -t) if t < 0 .
We then have, using the decomposition x 2r-1 = r l=1 a r,l H 2l-1 (x) (with a r,r = 1, which is the only explicit value of a l,r we will need in the sequel),

V (2r-1) n (f, t) = 2 -nH(r-1 2 ) r l=1 a r,l W (2l-1) n (f, Y T ⌊2 n t⌋,n ).
(3.22)

Step 3: Known results for fractional Brownian motion

We recall the following result taken * from [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of the fractional Brownian motion[END_REF] . If m 2 and H ∈

1 4m-2 , 1 2 then, for any f ∈ C ∞ b and as n → ∞, X t , 2 -n/4 W (2m-1) ±,n (f, t) t 0 fdd -→ X t , κ 2m-1 t 0 f (X ± s )dW ± s t 0 , (3.23 
) * More precisely: a careful inspection would show that there is no additional difficulty to prove (3.23) by following the same route than the one used to show [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of the fractional Brownian motion[END_REF]Theorem 1,(1.15)]. The only difference is that the definition of W (r) ±,n is of symmetric type, whereas all the quantities of interest studied in [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of the fractional Brownian motion[END_REF] are of forward type.

where W + t = W t if t > 0 and W - t = W -t if t < 0, with W a two-sided Brownian motion independent of X, and where t 0 f (X ± s )dW ± s must be understood in the Wiener-Itô sense. Note that in the boundary case m = 2 and H = 1 6 , (3.23) continues to hold, as was shown in [START_REF] Nourdin | The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6[END_REF]Theorem 3.1].

In the case m = 1, it was shown in [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of the fractional Brownian motion[END_REF]Theorem 4] (case H > 1 6 ) and [16, Theorem 2.13] (case H = 1 6 ) that, for any fixed t > 0, the sequence W

±,n (f, t) converges in probability (when H > 1 6 ) or only in law (when H = 1 6 ) to a non degenerate limit as n → ∞.

3.6

Step 4: Moment bounds for

W (2r-1) n (f, •)
Fix an integer r 1 as well as a function f ∈ C ∞ b . We claim the existence of c > 0 such that, for all real numbers s < t and all n ∈ N,

E W (2r-1) n (f, t) -W (2r-1) n (f, s) 2 c max(|s| 2H , |t| 2H ) |t -s|2 n/2 + 1 . (3.24)
In order to prove (3.24), we will need the following lemma.

Lemma 3.2 If s, t, u > 0 or if s, t, u < 0 then |E X u (X t -X s ) | |t -s| 2H . (3.25) 
Proof. When s, t, u > 0 we have

E X u (X t -X s ) = 1 2 t 2H -s 2H + 1 2 |s -u| 2H -|t -u| 2H .
Since |b 2H -a 2H | |b -a| 2H for any a, b ∈ R + , we immediately deduce (3.25). The proof when s, t, u < 0 is similar.

We are now ready to show (3.24). We distinguish two cases according to the signs of s, t ∈ R (and reducing the problem by symmetry):

(1) if 0 s < t (the case s < t 0 being similar), then

E[(W (2r-1) n (f, t) -W (2r-1) n (f, s)) 2 ] = E[(W (2r-1) +,n (f, t) -W (2r-1) +,n (f, s)) 2 ] = 1 4 ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ E f (X + j2 -n 2 ) + f (X + (j+1)2 -n 2 ) × f (X + j ′ 2 -n 2 ) + f (X + (j ′ +1)2 -n 2 ) H 2r-1 (X n,+ j+1 -X n,+ j )H 2r-1 (X n,+ j ′ +1 -X n,+ j ′ ) = 1 4 2 nH(2r-1) ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ E Θ n j f (X + )Θ n j ′ f (X + )I 2r-1 (δ ⊗(2r-1) (j+1)2 -n/2 )I 2r-1 (δ ⊗(2r-1) (j ′ +1)2 -n/2 ) ,
with obvious notation. Relying to the product formula (3.21), we deduce that this latter quantity is less than or equal to 

1 4 2 nH(2r-1) ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ 2r-1 l=0 l! 2r -1 l 2 δ (j+1)2 -n/2 ; δ (j ′ +1)2 -n/2 l × E Θ n j f (X + )Θ n j ′ f (X + )I 4r-2-2l (δ ⊗(2r-1-l) (j+1)2 -n/2 ⊗δ ⊗(2r-1-l) (j ′ +1)2 -n/2 ) =: 1 4 2r-1 l=0 l! 2r -1 l 2 Q (+,
d (+,r,l) n (j, j ′ ) := E Θ n j f (X + )Θ n j ′ f (X + )I 4r-2-2l (δ ⊗(2r-1-l) (j+1)2 -n/2 ⊗δ ⊗(2r-1-l) (j ′ +1)2 -n/2 ) = E D 4r-2-2l (Θ n j f (X + )Θ n j ′ f (X + )) ; δ ⊗(2r-1-l) (j+1)2 -n/2 ⊗δ ⊗(2r-1-l) (j ′ +1)2 -n/2 = 4r-2-2l a=0 4r -2 -2l a E f (a) (X + j2 -n/2 )ξ ⊗a j2 -n/2 + f (a) (X + (j+1)2 -n/2 )ξ ⊗a (j+1)2 -n/2 ⊗ f (4r-2-2l-a) (X + j ′ 2 -n/2 )ξ ⊗(4r-2-2l-a) j ′ 2 -n/2 + f (4r-2-2l-a) (X + (j ′ +1)2 -n/2 )ξ ⊗(4r-2-2l-a) (j ′ +1)2 -n/2 ; δ ⊗(2r-1-l) (j+1)2 -n/2 ⊗δ ⊗(2r-1-l) (j ′ +1)2 -n/2
.

Let now c denote a generic constant that may differ from one line to another and recall that f ∈ C ∞ b . We then have the following estimates.

• Case l = 2r -1

Q (+,r,2r-1) n (s, t) c 2 nH(2r-1) ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ δ (j+1)2 -n/2 ; δ (j ′ +1)2 -n/2 2r-1 = c ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ 1 2 (|j -j ′ + 1| 2H + |j -j ′ -1| 2H -2|j -j ′ | 2H ) 2r-1 = c ⌊2 n/2 t⌋-1 j=⌊2 n/2 s⌋ j-⌊2 n/2 s⌋ q=j-⌊2 n/2 t⌋+1 ρ(q) 2r-1 , with ρ(q) := 1 2 (|q + 1| 2H + |q -1| 2H -2|q| 2H ). By a Fubini argument, it comes Q (+,r,2r-1) n (s, t) c ⌊2 n/2 t⌋-⌊2 n/2 s⌋-1 q=⌊2 n/2 s⌋-⌊2 n/2 t⌋+1 |ρ(q)| 2r-1 (q + ⌊2 n/2 t⌋) ∧ ⌊2 n/2 t⌋ -(q + ⌊2 n/2 s⌋) ∨ ⌊2 n/2 s⌋ c ⌊2 n/2 t⌋-⌊2 n/2 s⌋-1 q=⌊2 n/2 s⌋-⌊2 n/2 t⌋+1 |ρ(q)| 2r-1 ⌊2 n/2 t⌋ -⌊2 n/2 s⌋ c q∈Z |ρ(q)| 2r-1 ⌊2 n/2 t⌋ -⌊2 n/2 s⌋ = c ⌊2 n/2 t⌋ -⌊2 n/2 s⌋ c ⌊2 n/2 t⌋ -2 n/2 t + 2 n/2 t -s + ⌊2 n/2 s⌋ -2 n/2 s c(1 + 2 n/2 |t -s|). (3.27) Note that q∈Z |ρ(q)| 2r-1 < ∞ since H < 1 2 1 -1 4r-2 .
• Preparation to the cases where 0 l 2r -2

In order to handle the terms Q (+,r,l) n (s, t) whenever 0 l 2r -2, we will make use of the following decomposition:

|d (+,r,l) n (j, j ′ )| 1 u,v=0 Ω (u,v,r,l) n (j, j ′ ), (3.28) 
where

Ω (u,v,r,l) n (j, j ′ ) = 4r-2-2l a=0 4r -2 -2l a E[f (a) (X + (j+u)2 -n/2 )f (4r-2-2l-a) (X + (j ′ +v)2 -n/2 )] × ξ ⊗a (j+u)2 -n/2 ⊗ξ ⊗(4r-2-2l-a) (j ′ +v)2 -n/2 ; δ ⊗(2r-1-l) (j+1)2 -n/2 ⊗δ ⊗(2r-1-l) (j ′ +1)2 -n/2 . • Case 1 l 2r -2 (only when r 2)
Since f belongs to C ∞ b and since, by (3.25), we have | ξ t ; δ (j+1)2 -n/2 | 2 -nH for all t 0 and all j ∈ N, we deduce that

|d (+,r,l) n (j, j ′ )| c 2 -nH(4r-2-2l) .
As a consequence, and relying to the same arguments that have been used previously in the case l = 2r -1, we get

Q (+,r,l) n (s, t) c 2 -nH(4r-2-2l) 2 nH(2r-1) ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ δ (j+1)2 -n/2 ; δ (j ′ +1)2 -n/2 l c 2 -nH(4r-2-2l) 2 nH(2r-1) 2 -nHl q∈Z |ρ(q)| l (1 + 2 n/2 |t -s|) = c 2 -nH(2r-1-l) (1 + 2 n/2 |t -s|) c (1 + 2 n/2 |t -s|). (3.29) 
• Case l = 0

Relying to the decomposition (3.28), we get

Q (+,r,0) n (s, t) 2 nH(2r-1) ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ 1 u,v=0
Ω (u,v,r,0) n (j, j ′ ).

(3.30)

We will study only the term corresponding to Ω (0,1,r,0) n (j, j ′ ) in (3.30), which is representative of the difficulty. It is given by

2 nH(2r-1) ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ 4r-2 a=0 4r -2 a E[f (a) (X + j2 -n/2 )f (4r-2-a) (X + (j ′ +1)2 -n/2 )] × ξ ⊗a j2 -n/2 ⊗ξ ⊗(4r-2-a) (j ′ +1)2 -n/2 ; δ ⊗(2r-1) (j+1)2 -n/2 ⊗δ ⊗(2r-1) (j ′ +1)2 -n/2 c 2 nH(2r-1) ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ 4r-2 a=0 ξ ⊗a j2 -n/2 ⊗ξ ⊗(4r-2-a) (j ′ +1)2 -n/2 ; δ ⊗(2r-1) (j+1)2 -n/2 ⊗δ ⊗(2r-1) (j ′ +1)2 -n/2 .
We define

E (a,r) n (j, j ′ ) := ξ ⊗a j2 -n/2 ⊗ξ ⊗(4r-2-a) (j ′ +1)2 -n/2 ; δ ⊗(2r-1) (j+1)2 -n/2 ⊗δ ⊗(2r-1) (j ′ +1)2 -n/2 . By (3.25), recall that | ξ t ; δ (j+1)2 -n/2 |
2 -nH for all t 0 and all j ∈ N. We thus get, with ca some combinatorial constants,

E (a,r) n (j, j ′ ) ca 2 -nH(4r-3) | ξ j2 -n/2 ; δ (j+1)2 -n/2 | + | ξ j2 -n/2 ; δ (j ′ +1)2 -n/2 | +| ξ (j ′ +1)2 -n/2 ; δ (j+1)2 -n/2 | + | ξ (j ′ +1)2 -n/2 ; δ (j ′ +1)2 -n/2 | .
For instance, we can write

⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ | ξ (j ′ +1)2 -n/2 ; δ (j+1)2 -n/2 | = 2 -nH-1 ⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ (j + 1) 2H -j 2H + |j ′ -j + 1| 2H -|j ′ -j| 2H 2 -nH-1
⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ (j + 1) 2H -j 2H +2 -nH-1

⌊2 n/2 s⌋ j j ′ ⌊2 n/2 t⌋-1

(j ′ -j + 1) 2H -(j ′ -j) 2H +2 -nH-1
⌊2 n/2 s⌋ j ′ <j ⌊2 n/2 t⌋-1

(j -j ′ ) 2H -(j -j ′ -1) 2H with W = (W t ) t∈R a two-sided Brownian motion independent of the pair (X, Y ). Indeed, using the decomposition (3.22), the conclusion of Step 4 (to pass from Y T ⌊2 n t⌋,n to Y t ) and the convergence (2.14), we deduce that the limit of V (2r-1) n (f, t) is the same as that of

2 -nH(r-1 2 ) r l=1 a r,l W (2l-1) n (f, Y t ).
Thus, the proofs of (3.32), (3.33) and (3.34) then follow directly from the results recalled in Step 3, as well as the fact that X and Y are independent.

3.8

Step 6: Proving (2.16) and (2.17)

We assume H ∈ [ 1 6 , 1 2 ). We will make use of the following Taylor's type formula. 

f (Z T ⌊2 n t⌋,n ) -f (0) = ⌊2 n t⌋-1 k=0 f (Z T k+1,n ) -f (Z T k,n ) = ⌊2 n t⌋-1 k=0 1 2 f (Z T k,n ) + f (Z T k+1,n ) (Z T k+1,n -Z T k,n ) (3.35) - 1 12 V (3) n (f, t) + 7 r=3 2c r V (2r-1) n (f, t) + ⌊2 n t⌋-1 k=0 O((Z T k+1,n -Z T k,n ) 14 ).
As far as the big O in (3.35) is concerned, we have, with G ∼ N(0, 1), 

E ⌊2 n t⌋-1 k=0 O((Z T k+1,n -Z T k,n ) 14 ) C f ⌊2 n t⌋-1 k=0 E (Z T k+1,n -Z T k,n ) 14 = C f ⌊2 n t⌋-1 k=0 2 -7nH E[G 14 ] C f E[G 14 ]t 2 n(

  defines a simple random walk over D n . As shown in [10, Lemma 2.2], as n tends to infinity the collection {T k,n : 1 k 2 n t} approximates the common dyadic partition {k2 -n : 1 k 2 n t} of order n of the time interval [0, t]. More precisely, sup 0 s t T ⌊2 n s⌋,n -s → 0 almost surely and in L 2 (Ω).

3 + 7 r=3c

 37 Fix f ∈ C ∞ b .For any a, b ∈ R and for some constants c r whose explicit values are immaterial here,f (b) -f (a) = 1 2 f ′ (a) + f ′ (b) (b -a) -1 24 f ′′′ (a) + f ′′′ (b) (b -a) r f (2r-1) (a) + f (2r-1) (b) (b -a) 2r-1 + O(|b -a| 14 ),where |O(|b -a|14 )| C f |b -a| 14 , C f being a constant depending only on f . One can thus write

  -nH ⌊2 n/2 t⌋ -⌊2 n/2 s⌋ ⌊2 n/2 t⌋ 2H 3t 2H 2 1 + 2 n/2 |t -s| . whereas, if H = 1 6 then, as n → ∞, X t , Y t , V (3) n (f, t) t 0 fdd → X t , Y t , κ 3

	3 2	0 2 Yt	f (X s )dW s	t 0	,	(3.34)

  1-7H) → n→∞ 0 since H

	1 6 .	(3.36)

; IN is supported in part by the (french) ANR grant 'Malliavin, Stein and

Similarly,

⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ ξ j2 -n/2 ; δ (j+1)2 -n/2 | 3t 2H 2 1 + 2 n/2 |t -s| ;

⌊2 n/2 t⌋-1 j,j ′ =⌊2 n/2 s⌋ ξ j2 -n/2 ; δ (j ′ +1)2 -n/2 | 3t 2H 2 1 + 2 n/2 |t -s| ;

As a consequence, we deduce (

By (1) with s = 0, one can write

.

Similarly

We deduce that

That is, (3.24) also holds true in this case.

Step 5: Limits of the weighted power variations of odd order

Fix f ∈ C ∞ b and t 0. We claim that, if H ∈ 1 6 , 1 2 and r 3 then, as n → ∞,

On the other hand, by continuity of f • Z and due to (2.14), one has, almost surely and as n → ∞,

(3.37)

Finally, when H > 1 6 the desired conclusion (2.16) follows from (3.36), (3.37), (3.32) and (3.33) plugged into (3.35). The proof of (2.17) when H = 1 6 is similar, the only difference being that one has (3.34) instead of (3.33), thus leading to the bracket term

3.9 Step 7: Proving (2.18) 3 , one can write, with 1 denoting the function constantly equal to 1,

As a result, and thank to (2.14), one deduces that if V n (x → x 2 , t) converges stably in law, then V

n (1, t) must converge as well. But it is shown in [17, Corollary 1.2] that 2 -n(1-6H)/4 V (3) n (1, t) converges in law to a non degenerate limit. This being clearly in contradiction with the convergence of V n (1, t), we deduce that (2.18) holds.