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Abstract

Motivated by the analysis of a Positron Emission Tomography (PET) imaging

data considered in Bowen et al. (2012), we introduce a semiparametric topographical

mixture model able to capture the characteristics of dichotomous shifted response-type

experiments. We propose a local estimation procedure, based on the symmetry of the

local noise, for the proportion and locations functions involved in the proposed model.

We establish under mild conditions the minimax properties and asymptotic normality

of our estimators when Monte Carlo simulations are conducted to examine their finite

sample performance. Finally a statistical analysis of the PET imaging data in Bowen

et al. (2012) is illustrated for the proposed method.
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1 Introduction

The model we propose to investigate in this paper is a semiparametric topographical

mixture model able to capture the characteristics of dichotomous shifted response-type

experiments such as the tumor data in Bowen et al. (2012, Fig. 4). Let suppose that we

visit at random the space R
d (d ≥ 1) by sampling a sequence of i.i.d. random variables

Xi, i = 1, ..., n, having common probability distribution function (p.d.f.) ℓ : Rd → R+.

For each Xi we observe an output response Yi whose distribution is a mixture model with

probability parameters depending on the design Xi. For simplicity, let us consider first a

mixture of two nonlinear regression model:

Yi = W (Xi)(a(Xi) + ε̃1,i) + (1−W (Xi))(b(Xi) + ε̃2,i), (1)

where locations are a, b : Rd → R, the errors {ε̃1,i, ε̃2,i}i=1,...,n are supposed to be i.i.d

with zero-symmetric common p.d.f. f . The mixture in model (1) occurs according to the

random variable W (x) at point x, with probability π : Rd → (0, 1),

W (x) =

{

1 with probability π(x),

0 with probability 1− π(x).

Moreover we assume that, conditionally on the Xi’s, the {ε̃1,i, ε̃2,i}i’s and the W (Xi)’s

are independent. Such a model is linked to the class of Finite Mixtures of Regression

(FMR), see Grün and Leisch (2006) for a good overview. Briefly, statistical inference for

the class of parametric FMR model was first considered by Quandt and Ramsey (1978)

who proposed a moment generating function based estimation method. An EM estimating

approach was proposed by De Veaux (1989) in the two-component case. Variations of the

latter approach were also considered in Jones and McLachlan (1992) and Turner (2000).

Hawkins et al. (2001) studied the estimation problem of the number of components in the

parametric FMR model using approaches derived from the likelihood equation. In Hurn

et al. (2003), the authors investigated a Bayesian approach to estimate the regression

coefficients and also proposed an extension of the model in which the number of compo-

nents is unknown. Zhu and Zhang (2004) established the asymptotic theory for maximum

likelihood estimators in parametric FMR models. More recently, Städler et al. (2010)

proposed an ℓ1-penalized method based on a Lasso-type estimator for a high-dimensional

FMR model with d ≥ n. As an alternative to parametric approaches to the estimation

of a FMR model, some authors suggested the use of more flexible semiparametric ap-

proaches. These approaches can actually be classified into two groups: semiparametric

FMR (SFMR) of type I and type II. The study of SFMR of type I comes from the seminal
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work of Hall and Zhou (2003) in which d-variate semiparametric mixture models of random

vectors with independent components were considered. These authors proved in particular

that, for d ≥ 3, we can identify a two-component mixture model without parametrizing

the distributions of the component random vectors (Type I definition). To the best of

our knowledge, Leung and Qin (2006) were the first in estimating a FMR model semi-

parametrically in that sense. In the two-component case, they studied the case where the

components are related by Anderson (1979)’s exponential tilt model. Hunter and Young

(2012) studied the identifiability of an m-component type I SFMR model and numerically

investigated a Expectation-Maximization (EM) type algorithm for estimating its param-

eters. Vandekerkhove (2013) proposed an M-estimation method for a two-component

semiparametric mixture of linear regressions with symmetric errors (type I) in which one

component is known. Bordes et al. (2013) revisited the same model by establishing new

moment-based identifiability results from which they derived explicit
√
n-convergent es-

timators. The study of type II SFMR models started with Huang and Yao (2012) who

considered a semiparametric linear FMR model with Gaussian noise in which the mixing

proportions are possibly covariates-dependent (Type II definition: parametric noises with

mixing proportion and/or noises’ parameters functionally depending on covariates). They

established also the asymptotic normality of their local maximum likelihood estimator

and investigated a modified EM-type algorithm. Huang et al. (2013) generalized the

latter work to nonlinear FMR with possibly covariates-dependent noises. Toshiya (2013)

considered a Gaussian FMR model where the joint distribution of the response and the

covariate (possibly functional) is itself modeled as a mixture. More recently Montuelle

et al. (2013) considered a penalized maximum likelihood approach for Gaussian FMR

models with logistic weights.

To improve the flexibility of our FMR model (1) and address the study of models

involving design-dependent noises, see radiotherapy application described in Section 5, we

will consider a slightly more general model:

Yi = W (Xi)(a(Xi) + ε1,i(Xi)) + (1−W (Xi))(b(Xi) + ε2,i(Xi)), (2)

such that, given {X = x}, the common p.d.f. of the εj,i(x), j = 1, 2, denoted fx, is zero-

symmetric. Note that the above model combines type I and type II properties since no

parametric assumption is made about the noise and the mixing proportion, along with

the location parameters, are possibly design dependent. Our model is still said semipara-

metric because, given {X = x}, the vector θ(x) = (π(x, )a(x), b(x)) will be viewed as an

Euclidean parameter to be estimated.
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Examples of design-point noise dependency.

i) (Topographical scaling) The most natural transformation is probably when consid-

ering a topographical scaling of the errors, with σ : Rd → R
∗
+, such that εj,i(Xi) =

σ(Xi)ε̃j,i, j = 1, 2, where the ε̃j,i’s are similar to those involved in (1). The conditional

p.d.f given {X = x} is defined by

fx(y) =
1

σ(x)
f

(

y

σ(x)

)

, y ∈ R. (3)

Indeed, if f is zero-symmetric then the errors’ distribution inherits trivially the same

symmetry property.

ii) (Zero-symmetric varying mixture) Another useful example could be the varying mix-

ing proportion mixture model of r zero-symmetric distributions. For k = 1, . . . , r, we

consider proportion functions λk : Rd → (0, 1) with
∑r

k=1 λk(x) = 1 for all x ∈ R
d.

The conditional p.d.f given {X = x} is defined by

fx(y) =
r
∑

k=1

λk(x)fk(y), y ∈ R,

where the fk functions are zero-symmetric p.d.f.’s.

iii) (Antithetic location model) Consider a location function µ : R
d → R and f any

arbitrary p.d.f. The conditional p.d.f given {X = x} is defined by

fx(y) =
1

2
f(y − µ(x)) +

1

2
f(−y + µ(x)), y ∈ R,

and also results into a zero-symmetric p.d.f.

Note that any combination of the above situations could be considered in model (2) free

from specifying any parametric family (provided the resulting zero-symmetry hold). This

last remark reveals, according to us, the main strength of our model in the sense that

it could prove to be a very flexible exploratory tool for the analysis of shifted response-

type experiments. Our paper is organized as follows. Section 2 is devoted to a detailed

description of our estimation method, while Section 3 is concerned with its asymptotic

properties. The finite-sample performance of the proposed estimation method is studied

for various scenarios through Monte Carlo experiments in Section 4. In Section 5 we

propose to analyze the Positron Emission Tomography (PET) imaging data considered in

Bowen et al. (2012). Finally Section 6 is devoted to auxiliary results and main proofs.
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2 Estimation method

Let us define the joint density of couples (Yi,Xi), i = 1, . . . , n, designed from model (2):

g(y,x) = [π(x)fx(y − a(x)) + (1− π(x))fx(y − b(x))]ℓ(x), (y,x) ∈ R
d+1, (4)

while the conditional density of Y given {X = x} (denoted for simplicity Y/X = x) is

gx(y) = g(y,x)/ℓ(x) = π(x)fx(y − a(x)) + (1− π(x))fx(y − b(x)). (5)

We are interested in estimating the parameter θ0 = θ(x0) = (π(x0), a(x0), b(x0)) at some

fixed point x0 belonging to the interior of the support of ℓ (ℓ(x0) > 0), denoted supp(ℓ).

For simplicity and identifiability matters, we will suppose that θ0 belongs to the interior

of the parametric space Θ = [p, P ]×∆, where 0 < p ≤ P < 1/2 and ∆ denotes a compact

set of R2\{(x, x) : x ∈ R}.

2.1 Mixture of regression functions as an inverse problem

We see in formula (5), that the conditional density of Y given {X = x} can be viewed

as a mixture of the errors distribution fx given {X = x} with locations (a(x), b(x)) and

mixing proportion π(x). Mixture of populations with different locations is a well known

inverse problem. Our inversion procedure is here based on the Fourier transform of the

conditional density gx(y) of Y/X = x. If the p.d.f. gx belongs to L1 ∩ L2, define g∗x(u) =
∫

exp[iuy]gx(y)dy for all u ∈ R, and observe that

g∗x(u) =
(

π(x)eiua(x) + (1− π(x))eiub(x)
)

f∗
x(u), u ∈ R.

Let us denote, for all (t, u) = (π, a, b, u) ∈ Θ× R,

M(t, u) := πeiua + (1− π)eiub. (6)

Note that |M(t, u)| ∈ [1− 2P, 1] for all (t, u) ∈ Θ× R. Then, we have

g∗x(u) = M(θ(x), u)f∗
x0
(u).

Let us fix x0 ∈ supp(ℓ) such that θ(x0) belongs to the interior of Θ, denoted
◦
Θ. Noticing

that the p.d.f. fx0
is zero-symmetric we therefore have that f∗

x0
(u) ∈ R, for all u ∈ R. If

t belongs to Θ, we prove in the next theorem the picking property

ℑ
(

g∗x0
(u)

M(t, u)

)

= 0 for all u ∈ R, if and only if t = θ(x0),
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where ℑ : C → R denotes the imaginary part of a complex number. This result allows us

to build a contrast function for the parameter t ∈ Θ:

S(t) :=

∫

ℑ2

(

g∗x0
(u)

M(t, u)

)

ℓ2(x0)w(u)du. (7)

The function w : Rd → R+ is a bounded p.d.f. which helps in computing the integral via

Monte-Carlo method and solves integrability issues.

Remark. The idea of using Fourier transform in order to solve the inverse mixture problem

was introduced in Butucea and Vandekerkhove (2013) for density models. In the regres-

sion models we deal with the conditional density of Y/X = x0. This has no incidence on

the identifiability of the model but changes dramatically the behavior of the estimators as

we shall see later on.

We prove in the following theorem that our model is identifiable and that S(t) defines a

contrast on the parametric space Θ.

Theorem 1 (Identifiability and contrast property) Consider model (2) provided with fx(·) ∈
L1 for all x ∈ R

d. For a fixed point x0 in the interior of the support of ℓ, we assume that

fx0
(·) is zero-symmetric and that θ0 = θ(x0) is an interior point of Θ. Then we have the

following properties:

i) The collection of scalar parameters θ0 = (π(x0), a(x0), b(x0)) and the function fx0
(·)

are identifiable.

ii) The function S in (7) is a contrast function, i.e. for all t ∈ Θ, S(t) ≥ 0 and S(t) = 0

if and only if t = θ0.

Proof. The proofs of i) and ii) are respectively similar to the proof of Theorem 1 and

Proposition 1 in Butucea and Vandekerkhove (2013), replacing f∗(·) and g∗(·) by f∗
x0
(·)

and g∗x0
(·), and noticing that ℓ(x0) is bounded away from zero. Follows also Theorem 2.1

in Bordes et al. (2006).

Remark. For mixture models with higher number of components, i.e.

Yi =

J
∑

j=1

Wj(Xi)(γj(Xi) + εj,i(Xi)), i = 1, . . . , n,

where (W1(x), ...,WJ(x)) are distributed according to a J-components (J > 2) multino-

mial distribution with parameters (π1(x), ..., πJ(x)), and noises (εj,i), j = 1, . . . , J , i.i.d.
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according to fx, we assume that there exists a compact set Ψ ⊂]0, 1[J−1×R
J of parame-

ters (π1(x), ..., πJ−1(x), γ1(x), ..., γJ(x)) where the model is identifiable, see Hunter et al.

(2007, Section 2). Note that the 3-components mixture model has been studied closely in

Bordes et al. (2006) and Hunter et al. (2007) where sufficient identifiability conditions

were given. The case where d > 3 is more involved for full description and it is still an

open question. In this setup, the estimation procedure described hereafter can be adapted

over the parameter space Ψ with analogous results.

2.2 Estimation procedure

In order to build an estimator of the contrast S(t) defined in (7), a local smoothing has to

be performed in order to extract the information that the random design X1, ..., Xn brings

to the knowledge of the conditional law of Y/X = x0. We use a kernel smoothing ap-

proach, but local polynomials or wavelet methods could also be employed. This smoothing

is a major difference with respect to the density model considered in Butucea and Van-

dekerkhove (2013) and all the rates will depend on the smoothing parameter applied to

the kernel function.

We choose a kernel function K : Rd → R belonging to L1 and to L4 and some band-

width parameter h > 0 to be described later on. For x0 ∈ supp(ℓ) fixed, we denote

Zk(t, u, h) :=

(

eiuYk

M(t, u)
− e−iuYk

M(t,−u)

)

Kh(Xk − x0), where Kh(x) :=
1

hd
K
(x

h

)

. (8)

The empirical contrast of S(t) is defined by

Sn(t) = − 1

4n(n− 1)

n
∑

j 6=k,j,k=1

∫

Zk(t, u, h)Zj(t, u, h)w(u)du, (9)

where w : R → R
∗
+ is a bounded p.d.f., having a finite moment of order 4, i.e.

∫

u4w(u)du <

∞. From this empirical contrast we then define the estimator

θ̂n = arg inf
t∈Θ

Sn(t), (10)

of θ0 = θ(x0). We shall study successively the properties of Sn(t) as an estimator of S(t)

and deduce consistency and asymptotic normality of θ̂n as an estimator of θ0.

Estimation methodology for fx0
. For the estimation of the local noise density fx0

we

suggest to consider the natural smoothed version of the plug-in density estimate given in

Butucea and Vandekerkhove (2013, Section 2.2).
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Let us denote by ϕ(x, y) = ℓ(x)fx(y). We plug θ̂n in the natural smoothed nonpara-

metric kernel estimator of ϕ(x, y) deduced from (6), whenever the unknown parameter θ0

is required. For x0 fixed, we consider the Fourier transform of the resulting estimator of

ϕ(x0, y). This procedure gives, in Fourier domain,

ϕ∗
x0,n(u) =

1

n

n
∑

k=1

Q∗(h1,nu)e
iuYk

M(θ̂n, u)
Kh2,n

(Xk − x0),

where Q is a univariate kernel (
∫

Q = 1 and Q ∈ L2) and (h1,n, h2,n) are bandwidth

parameters properly chosen. Note that G∗
n(u) := Q∗(h1,nu)/M(θ̂n, u) is in L1 and L2 and

has an inverse Fourier transform which we denote by Gn(u/h1,n)/h1,n. Therefore, the

estimator of ϕ(x0, y) is

ϕn(x0, y) =
1

nh1,n

n
∑

k=1

Gn

(

x−Xk

h1,n

)

Kh2,n
(Xk − x0).

Finally the estimator of fx0
is obtained by considering

f̂x0
(y) =

fn(y|x0)Ifn(y|x0)≥0
∫

R
fn(y|x0)Ifn(y|x0)≥0dy

, where fn(y|x0) =
ϕn(x0, y)

ℓn(x0)
. (11)

where ℓn(x0) =
1
n

∑n
k=1Kh2,n

(Xk − x0). The asymptotic properties of this local density

estimator are not established yet but we strongly guess that the bandwidth conditions

required to prove its convergence and classical convergence rate are similar to those found

in the conditional density estimation literature, see Brunel et al. (2010) or Cohen and Le

Pennec (2012).

3 Performance of the method

We give upper bounds for the mean squared error of Sn(t). We are interested in consistency

and asymptotic normality of θ̂n and this requires some small amount of smoothness α ∈
(0, 1] for the p.d.f. of the errors and for the functions π, a and b. From now on, ‖v‖
denotes the Euclidean norm of vector v. Recall that a function F is Lipschitz α-smooth

if it belongs to the following class

L(α,M) =
{

F : Rd → R, |F (x)− F (y)| ≤ M‖x− y‖α, (x, y) ∈ R
d × R

d
}

,

for α ∈ (0, 1] and M > 0.

A1. We assume that the functions π, a, b, ℓ are Lipschitz α-smooth with constant M > 0.
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Remark. We may actually suppose that the functions appearing in our model have dif-

ferent smoothness parameters, but the rate will be governed by the smallest smoothness

parameter.

An important consequence of this assumption is that the density ℓ is uniformly bounded

by some constant depending only on α and M , i.e. supℓ∈L(α,M) ‖ℓ‖∞ < ∞.

A2. Assume that fx(·) ∈ L1 ∩ L2 for all x ∈ R
d. In addition, we require that there exists

a w-integrable function ϕ such that

|f∗
x(u)− f∗

x′(u)| ≤ ϕ(u)‖x− x′‖α, (x,x′) ∈ R
d × R

d, u ∈ R.

Remark. Note that for the scaling model (3), if f is the N (0, 1) p.d.f. and σ(·) is bounded
and Lipschitz α-smooth, we have:

|f∗
x(u)− f∗

x′(u)| ≤ u2

2
|σ2(x)− σ2(x′)| ≤ u2

2
‖x− x′‖α.

A3. We assume that the kernel K is such that
∫

|K| < ∞,
∫

K4 < ∞ and that it satisfies

also the moment condition
∫

‖x‖α|K(x)|dx < ∞.

A4. The weight function w is a p.d.f. such that
∫

(u4 + ϕ(u))w(u)du < ∞.

Remark. We may suppose that the smoothness α > 1. In that case, the class L(α,M)

consists of all functions F with bounded derivatives up to order k, where α = k+β, k ∈ N

and β ∈ (0, 1]. Moreover, for all multi-index j = (j1, ..., jd) ∈ N
d such that |j| = k where

|j| = j1 + ...+ jd, we have

|F (j)(x)− F (j)(y)| ≤ M‖x− y‖β , (x,y) ∈ R
d × R

d.

The following results will hold true under the additional assumption on the kernel (see

A3):
∫

xjK(x)dx = 0, for all j such that |j| ≤ k.

Proposition 1 For each t ∈ Θ and x0 ∈ supp(ℓ) fixed, suppose θ0 ∈
◦
Θ and that assump-

tions A1-A4 hold. Then, the empirical contrast function Sn(·) defined in (9) satisfies

E
[

(Sn(t)− S(t))2
]

≤ C1h
2α + C2

1

nhd
,

if h → 0 and nhd → ∞ as n → ∞, where constants C1, C2 depend on Θ, K, w, α and M

but are free from n, h, t and x0.
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Theorem 2 (Consistency) Let suppose that assumptions of Proposition 1 hold and con-

sider model (2) with likelihood given by (4). If the p.d.f fx0
is zero-symmetric, then the

estimator θ̂n defined in (9-10) converges in probability to θ(x0) = θ0 if h → 0 and nhd → ∞
as n → ∞.

The following theorem establishes the asymptotic normality of the estimator θ̂n of θ0.

Recall that θ0 = θ(x0) belongs to Θ and that there exists l > 0 such that ℓ(x0) ≥ l. We

see that the local smoothing with bandwidth h > 0 deteriorates the rate of convergence

to
√
nhd instead of

√
n for the density model. In the asymptotic variance we will use the

following notation:

J̇(θ0, u) := ℑ
(

−Ṁ(θ0, u)

M(θ0, u)

)

f∗
x0
(u)ℓ(x0), (12)

and

V (θ0, u1, u2) :=

∫ (

eiu1y

M(θ0, u1)
− e−iu1y

M(θ0,−u1)

)(

eiu2y

M(θ0, u2)
− e−iu2y

M(θ0,−u2)

)

gx0
(y)dy,

(13)

where the function M(·, ·) is defined in (6). Note that J̇(θ0, ·) is uniformly bounded by

some constant and that V is well defined for all (u1, u2) ∈ R × R and also uniformly

bounded by some constant.

Theorem 3 (Asymptotic normality) Suppose that assumptions of Theorem 2 hold.

The estimator θ̂n of θ0 defined by (9-10), with h → 0 such that nhd → ∞ and such that

h2α+d = o(n−1), as n → ∞, is asymptotically normally distributed:
√
nhd(θ̂n − θ0) → N(0,S) in distribution,

where S = 1
4I−1ΣI, with

I = −1

2

∫

J̇(θ0, u)J̇(θ0, u)
⊤dw(u),

and

Σ :=

∫ ∫

J̇(θ0, u1)J̇
⊤(θ0, u2)V (θ0, u1, u2)w(u1)w(u2)du1du2,

for J̇ defined in (12) and V in (13).

The above results show that our estimator of θ0 behaves like any nonparametric

pointwize estimator. This is indeed the case and we provide in the next theorem the

best achievable convergence rates uniformly over the large set of functions involved in our

model, see assumptions A1-A2. For length matters, we will just provide some hints of

proof of the next theorem.
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Theorem 4 (Minimax rates) Suppose A1-A4 and consider x0 ∈ supp(ℓ) fixed such

that ℓ(x0) ≥ L∗ > 0 for all ℓ ∈ L(α,M) and θ0 = θ(x0) ∈
◦
Θ. The estimator θ̂n of θ0

defined by (9-10), with h ≍ n−1/(2α+d), as n → ∞, is such that

supE[‖θ̂n − θ0‖2] ≤ Cn− 2α
2α+d ,

where the supremum is taken over all the functions π, a, b, ℓ and f∗ checking assumptions

A1-A2. Moreover,

inf
Tn

supE[‖Tn − θ0‖2] ≥ cn− 2α
2α+d ,

where C, c > 0 depend only on α,M,Θ,K and w, and the infimum is taken over the set

of all the estimators Tn (measurable function of the observations (X1, . . . , Xn)) of θ0.

Proof hints. Throughout the proofs of the previous results we learn that the estimator θ̂n

of θ0, behaves asymptotically as Ṡn(θ0) which is a U -statistic with a dominant term whose

bias is of order h2α and whose variance is smaller than C2(nh
d)−1. The bias-variance

compromise will produce an optimal choice of the bandwidth h of order n−1/(2α+d) and a

rate n− 2α
2α+d . It is the optimal rate for estimating a Lipschitz α-smooth regression function

at a fixed point and the optimality results in the previous theorem are a consequence of

the general nonparametric problem, see Stone (1977), Ibragimov and Has’minski (1981)

and Tsybakov (2009).

4 Practical behaviour

4.1 Algorithm

We describe below the initialization scheme and the optimization method used to deter-

mine the estimates of the locations a(xk), b(xk) and the weight functions π(xk) for a

fixed sequence of testing points {xk, k = 1, . . . ,K}. To simply differentiate these testing

points from the design data points we will allocate specifically the index k for the num-

bering of the testing points and the index i for the numbering of the dataset points, i.e.

{(xi, yi), i = 1, . . . , n}.

Initialization

1. For each design data point xi, i = 1, . . . , n, fit a kernel regression smoothing m̄(xi)

with local bandwidth h̄xi
. The R package lokerns, see Herrmann (2013), can be

used.
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2. Classify each data point (xi, yi), i = 1, . . . , n according to: if yi > m̄(xi) classify

(xi, yi) in group 1 associated with location a(·), otherwise classify it in group 2

associated with b(·).

3. For each xk, k = 1, . . . ,K, obtain initial value ā(xk), respectively b̄(xk), by fitting a

kernel regression smoothing based on the observations (xi, yi) , i = 1, . . . , n, previ-

ously classified in group 1 with local bandwidth h̄1,xk
, respectively in group 2 with

local bandwidth h̄2,xk
.

4. Compute the local bandwidth hxk
= min(h̄1,xk

, h̄2,xk
).

5. Fix an arbitrary single value π̄ for all the π(xk)’s.

Estimation

1. Generate one w-distributed i.i.d sample (Ur), r = 1, . . . , N dedicated to the pointwize

Monte Carlo estimation of Sn(t) defined by:

SMC
n (t) = − 1

4n(n− 1)N

n
∑

j 6=k,j,k=1

N
∑

r=1

Zk(t, Ur, h)Zj(t, Ur, h).

In the Sections 4.2 and 5, we will consider N = n and w the p.d.f. corresponding to

the mixture 0.1 ∗ N (0, 1) + 0.9 ∗ U[−2,2].

2. Compute the minimizer θ̂(xk) = (π̂(xk), â(xk), b̂(xk)) of SMC
n (·) evaluated at each

point x0 = xk, by using the starting values (π̄, ā(xk), b̄(xk)) and the local bandwidth

hxk
.

In our simulations, the above minimization will be, contrarily to the theoretical require-

ments, deliberately done over a non-constrained space, i.e. generically θ(·) ∈ [0.05, 0.95]×
[A,B]2, with A < B. Our goal is to analyze experimentally if a performant initialization

procedure is able to prevent from spurious phenomenons like the label switching or com-

ponent merging occurring when π(x0) is close to 0.5. This kind of information is actually

very relevant to interpret correctly some cross-over effects as the one we will observe in

Fig. 6 (a). Note that other initialization methods can be figured out. We can for instance

use, similarly to Huang et al. (2013), a mixture of polynomial regressions with constant

proportions and variances to pick initial values ā(x) and b̄(x), or the R package flexmix,

see Gruen et al. (2013), that implements a general framework for finite mixture of re-

gression models based on EM-type algorithms (we selected this latter approach for the

analysis of radiotherapy application in Section 5).

12



4.2 Simulations

In this section, we propose to measure the performances of our estimator θ̂n(·) over a

testing sequence {xk = k/K}, k = 1, . . . ,K = 20. Given that in the simulation setting

the true function θ(·) is known, we can compute, similarly to Huang et al. (2013), the

Root Average Squared Errors (RASE) of our estimator. To this end we generate M = 100

datasets (X
[z]
i , Y

[z]
i )1≤i≤n, z = 1, . . . ,M of sizes n= 400, 800, 1200, for each of the scenario

described below and, for each scalar parameter s = a, b, π, denote by RASE
[z]
s the RASE

performance associated to the z-th dataset, defined by RASE
[z]
s = (1/K

∑K
k=1R

[z]
s (k))1/2,

where R
[z]
s (k) =

(

ŝ[z](xk)− s(xk)
)2
, and the empirical RASE by

RASEs =
1

M

M
∑

z=1

RASE[z]
s . (14)

Let us also define the empirical squared deviation at point xk by νk = 1
M

∑M
z=1R

[z]
s (k), and

empirical variance of the squared deviation at xk by σ2
s(k) =

1
M−1

∑M
z=1

(

R
[z]
s (k)− νk

)2
.

From these quantities we deduce the averaged variance of the squared deviations defined

by

σ2
s =

1

K

K
∑

k=1

σ2
s(k). (15)

In all the simulation setups, we use the same mixing proportion function π(·):

π(x) =
sin(3πx)− 1

15
+ 0.4, x ∈ [0, 1].

Gaussian setup (G). The errors εj,i(x)’s are distributed according to a Gaussian topo-

graphical scaling model corresponding to (3), i.e. f is the N (0, 1) p.d.f. when the location

and scaling functions are

a(x) = 4− 2 sin(2πx), b(x) = 1.5 cos(3πx)− 3, σ(x) = 0.9 exp(x), x ∈ [0, 1].

Student setup (T). The errors εj,i(x)’s are distributed according to a Student distri-

bution with continuous degrees of freedom function denoted df(x). The locations and

degrees of freedom functions are

a(x) = 3− 2 sin(2πx), b(x) = 1.5 cos(3πx)− 2, df(x) = −5x+ 8, x ∈ [0, 1].
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Laplace setup (L). The errors εj,i(x)’s are distributed according to a Laplace distribution

with scaling function ν(x). The locations and scaling functions are

a(x) = 5− 3 sin(2πx), b(x) = 2 cos(3πx)− 4, ν(x) = x+ 1, x ∈ [0, 1].

Comments on Tables 1-3. We report for the simulation setups (G), (T) and (L) the quan-

tities RASEs defined in (14), and between parenthesis σ2
s defined in (15), for s = π, a, b.

In these tables, we label our method as NMR-SE (Nonparametric Mixture of Regres-

sion with Symmetric Errors). To illustrate the contribution of our method, we compare

our results with the RASE obtained by using the local EM-type algorithm proposed by

Huang et al. (2013) for Nonparametric Mixture of Regression models with Gaussian

noises (method labeled for simplicity NMRG). When the errors of the simulated model

are Gaussian, the NMRG estimation should outperform our method, since the NMRG

method assumes correctly that the errors are normally distributed, while our method does

not make any parametric assumption on the distribution of the errors. When the sample

size n = 400, the NMRG is more precise than our method, since the RASEs’s and σ2
s ’s are

both smaller for the NMRG . When we increase the sample size of the simulated datasets

to n = 800, 1200, our method becomes more competitive and yields RASEs’s and σ2
s ’s

that are lower than those obtained by NMRG . This surprising behavior is probably due

to the fact that in model (2) we impose the equality in law of the noises up to a shift

parameter, when in the NMRG approach possibly different variances are fitted to each

kind of noise, increasing by the way drastically the degrees of freedom of the model to be

addressed. In Tables 2 and 3 we observe that our method has globally smaller RASEs’s

Sample size Method RASEπ (σ2
π) RASEa (σ2

a) RASEb (σ
2
b )

n = 400
NMRG 0.011 (0.015) 0.523 (0.952) 0.237 (0.415)

NMR-SE 0.018 (0.034) 0.661 (1.485) 0.304 (0.833)

n = 800
NMRG 0.010 (0.012) 0.436 (0.767) 0.206 (0.368)

NMR-SE 0.006 (0.013) 0.311 (0.696) 0.145 (0.370)

n = 1200
NMRG 0.009 (0.013) 0.469 (0.896) 0.197 (0.340)

NMR-SE 0.003 (0.008) 0.209 (0.439) 0.094 (0.230)

Table 1: RASEz’s and σ2
z ’s for data with Gaussian Errors

and σ2
s ’s. This result is not surprising, given that in the estimation methodology of Huang

et al. (2013), the distribution of the noise are then completely misspecified under the

simulation setups (T) and (L). Note however, that when the sample size is small n = 400,
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the NMRG displays better results, which can be explained by the fact that when we gen-

erate small size datasets, the points that are supposed to be in the tails of the non-normal

distributions are less likely to appear in the dataset. So in that case it can be reasonable

to assume that the Gaussian distribution approximates the errors distribution well.

Sample size Method RASEπ (σ2
π) RASEa (σ2

a) RASEb (σ
2
b )

n = 400
NMRG 0.013 (0.018) 0.342 (0.631) 0.126 (0.205)

NMR-SE 0.012 (0.025) 0.294 (0.664) 0.117 (0.249)

n = 800
NMRG 0.011 (0.014) 0.236 (0.377) 0.110 (0.189)

NMR-SE 0.004 (0.008) 0.108(0.238) 0.047 (0.093)

n = 1200
NMRG 0.010 (0.013) 0.216 (0.352) 0.099 (0.153)

NMR-SE 0.003 (0.006) 0.067 (0.125) 0.035 (0.072)

Table 2: RASEz’s and σ2
z ’s for data with Student Errors

Sample size Method RASEπ (σ2
π) RASEa (σ2

a) RASEb (σ
2
b )

n = 400
NMRG 0.012 (0.004) 0.250 (0.156) 0.108 (0.036)

NMR-SE 0.022 (0.012) 0.462 (0.623) 0.105 (0.088)

n = 800
NMRG 0.009 (0.003) 0.202 (0.100) 0.091 (0.036)

NMR-SE 0.004 (0.002) 0.109 (0.010) 0.039 (0.014)

n = 1200
NMRG 0.009 (0.003) 0.192 (0.082) 0.091 (0.035)

NMR-SE 0.002 (0.001) 0.064 (0.025) 0.027 (0.010)

Table 3: RASEz’s and σ2
z ’s for data with Laplace Errors

Comments on Figures 1-5. To illustrate the sensitivity of our method and compare it

graphically to the NMRG approach we plot in Fig. 1 different samples coming from the

setups (G), (T), and (L) for n = 1200, and in blue lines the corresponding true location

functions a(·) and b(·). In Fig. 2, respectively Fig. 3, we plot in grey the M = 100

segment-line interpolation curves obtained by connecting the points (xk, ŝ
[z](xk)), k =

1, . . . ,K where s(·) = a(·), b(·) for the NMRG method, respectively our NMR-SE method.

In Fig. 4 and 5 we do the same for s(·) = π(·). In Fig. 2-5 the dashed red lines

represent the mean curves obtained by connecting the points (xk, s̄(xk)), k = 1, . . . ,K

with s̄(xk) = 1/M
∑M

z=1 ŝ
[z](xk) and s(·) = a(·), b(·) and π(·). Let us observe first that

the good behavior of the NMR-SE method is confirmed by the small variability of the
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curves in Fig. 3 and 5 compared to those in Fig. 2 and 4 corresponding to the NMRG

method. Secondly it is important to notice that sometime, since we did not constrained

or method to have π ∈ [p, P ] with 0 < p < P < 1/2, we run into some spurious estimation

due to label switching or component merging phenomenon.

Label switching. This well known phenomenon, due to the lack of identifiability when

the parametric space is not lexicographically ordered, translate into our case by a double-

representation of the mixture model (5), i.e.

π(x)fx(y − a(x)) + (1− π(x))fx(y − b(x)) = π′(x)fx(y − a′(x)) + (1− π′(x))fx(y − b′(x))

where a′(·) = b(·), b′(·) = a(·), and π′(·) = 1 − π(·). This switching phenomenon is ob-

servable on the interval [0, 0.2] of Fig. 3 (b) where the two populations of the mixture

strongly overlap, see Fig. 1 (b).

Component merging. When π(·) is close to 0.5 it is actually hard to decide if we have only

one shifted symmetric distribution, i.e. gx(y) = 1∗f(y−c(x))+0 where c(x) = (b+a)(x)/2

and f(y) = 1/2f(y+ (b− a)(x)/2)+ 1/2f(y− (b− a)(x)/2) or a balanced two-component

mixture gx(y) = 1/2f(y−a(x))+1/2f(y−b(x)). This phenomenon happens clearly when

π̂[z](·) is unexpectedly attracted by the single values 0 or 1, as it occurs sometimes on the

intervals [0, 0.2] or [0.8, 1], see Fig. 5 (a-c).
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Figure 1: Examples of simulated datasets with different distribution errors

5 Application in radiotherapy

In this section, we implement the proposed methodology to a dataset obtained from ap-

plying radiation therapy to a canine patient with locally advanced Sinonasal Neoplasia.
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Figure 2: Mean Curves estimated with NMRG
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Figure 3: Mean Curves estimated with NMR-SE
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Figure 4: Mixing proportions estimated with NMRG
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Figure 5: Mixing proportions curves estimated with NMR-SE

These data were provided by Bowen et al. (2012, Fig. 4) who used them to quantify the as-

sociations between pre-radiotherapy and post-radiotherapy PET parameters via spatially

resolved mixture of linear regressions. Intensity Modulated Radiotherapy is an advanced

radiotherapy method that uses computer controlled device to deliver radiation of varying

intensities to tumor or smaller areas within the tumor. There is evidence showing that the

tumor is not homogeneous in its response to the radiation, and that some regions are more

resistant than others. Functional imaging techniques (such as Positron Emission Tomog-

raphy) can be used to identify the radiotherapy resistant regions within the tumor. For

instance, an uptake in PET imaging of follow-up 2-deoxy-2-[18F]fluoro-D-glucose (FDG)

is empirically linked to a local recurrence of the disease. Bowen et al. (2012), use this

approach to construct a prescription function that maps the image intensity values into a

local radiation dose that will maximize the probability of a desired clinical outcome. In

their manuscript they validate the use of molecular imaging based prescription function

against clinical outcome by establishing an association between imaging biomarkers (PET

imaging pre-radiotherapy) and regional imaging response to known dosage of therapy

(PET imaging post-radiotherapy). The regional imaging response captures the change in

imaging signal over an individual image volume element (called a voxel). In our model of

interest (2), the pre-radiotherapy PET imaging intensities correspond to the input Xi’s,

and the post-radiotherapy PET imaging levels are the outputs Yi’s. For many patients,

the empirical link between post-treatment PET of FDG (regional imaging response) and

pre-treatment PET of FDG (imaging biomarker at baseline) is well captured by a mixture

regression model with two components. For a set of voxels with similar pre-treatment

PET intensities, the nature of the response to the radiotherapy leads to two groups of

voxels. The first group corresponds to voxels that respond well to the radiotherapy, and
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the second group contains the non-responding voxels. In our model of interest (2), the

non-responding voxel group corresponds to the case where W (Xi) = 1. The location pa-

rameters of each group appears to change as the pre-radiotherapy imaging intensity Xi

varies. These changes in location are captured in our model by the location functions a(·)
or b(·), where a(·), respectively b(·), is the component mean function for the completely

responding (CR), respectively non-responding (NR), voxel. Additionally, the proportion

of voxels π(Xi) that respond well to treatment depends on the pre-treatment level of the

PET, so the mixture model should also account for a mixing proportion that depends on

the input Xi. For a given input x, we assume that the intensity level of the completely

responding and the non-responding voxel have approximately the same p.d.f. fx up to a

shift parameter, with the topographical scaling structure (3) presented in the Introduction.

The variance of the distribution also changes with the level of the covariate (pre-treatment

PET FDG). In many cases the variance increases as the intensity of a voxel’s PET pre-

radiotherapy increases, this is simply due to the fact the responding voxels will have a low

post-treatment PET intensity, while the non-responding voxels will not. The aforemen-

tioned topographical scaling property, will allow to model this behavior. To obtain initial

values for the location curves a(·) and b(·), we first use the R package flexmix, see Gruen

et. al (2013), which allows us to fit defined parametric functions to the mixture. For the

mixing proportion function we set a fixed constant value π̄(x) = 0.4. The bandwidths are

computed according to the methodology described in Section 4.1, except that the groups

are now determined as an output of the flexmix package. To stress the fact that the

identification of the topographical model (2) his highly hazardous in the neighborhood

of the design value 2.5 due to a component crossing (local non-identifiability), we plot

in dashed line the behavior of our method over the interval [2, 3] and will rule out this

domain from the following discussion.

In Fig. 6(a), we show the PET imaging response to radiotherapy at 3 months, mea-

sured by FDG PET uptake, versus the pre-treatment FDG PET uptake and the fitted

location functions of the two groups of voxels. For this canine patient, the fitted location

curve a(x) of the non-responding voxels increase with the pre-treatment FDG PET up-

take, showing a positive relationship between the imaging response and the pre-treatment

FDG PET. The location function b(x) corresponding to the completely responding voxels,

shows little variation across the range of values of pre-treatment FDG PET and remains

relatively flat. This findings are in line with the results obtained by Bowen et al. (2012),

however our model is able to capture more than the linear variation in the location curves.

Our model also yields the mixing proportions function π(x) that can be used to deter-

mine the optimal local radiation dose. As illustrated in Fig. 6(b), for this patient voxels
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tend to be completely-responding when the pre-treatment FDG PET uptake is between

6.5 and 7.5 SUVs (Standardized Uptake Values), the proportion of non-responding vox-

els at that level decreases to 0.25. This suggests that the current radiation dose could

be appropriate for voxels that have pre-treatment FDG PET uptake close to the range

aforementioned. In figure 7, we show the estimator f̂x of fx, defined in (11), for different

values of pre-treatment FDG PET uptake x. We see that these conditional distributions

are about zero-symmetric with reasonably small trimming effect due to Ifn(y|x0)≥0 in (11)

(tiny wave effect on both sides of the main mode). This is a good model validation tool

since we are actually able to recover, after local Fourier inversion, the basic symmetry

assumption technically made on the distributions of the errors; see for quality comparison

other existing (nonconditional) semiparametric inversion density estimates performed on

real datasets: Fig. 1-2 (a) in Bordes et al. (2006), Fig. 3 in Butucea and Vandekerkhove

(2013), Fig. 5 in Vandekerkhove (2013), or Fig. 2-3 in Bordes et al. (2013).

6 Auxiliary results and main proofs

Let us denote by ‖ · ‖ the Euclidean norm of a vector and by ‖ · ‖2 the Frobenius norm of

any squared matrix. Recall the definition of Zk in (8) and let J(t, u, h) := E[Z1(t, u, h)].

Let Żk and J̇ denote respectively the gradient of Zk and J with respect to their first

argument t.

Lemma 1 Under assumption A1 we have:

i) For all (u, h) ∈ R× R
∗
+ and any k = 1, ..., n,

sup
t∈Θ

|Zk(t, u, h)| ≤
2

1− 2P

‖K‖∞
hd

, sup
t∈Θ

|J(t, u, h)| ≤ 2

1− 2P
‖ℓ‖∞ ·

∫

|K|.

ii) For all (u, h) ∈ R× R
∗
+ and any k = 1, ..., n,

sup
t∈Θ

‖Żk(t, u, h)‖ ≤ 4(1 + |u|)
(1− 2P )2

‖K‖∞
hd

, sup
t∈Θ

‖J̇(t, u, h)‖ ≤ 4(1 + |u|)
(1− 2P )2

‖ℓ‖∞ ·
∫

|K|.

iii) For all (u, h) ∈ R× R
∗
+ and any k = 1, ..., n,

sup
t∈Θ

‖Z̈k(t, u, h)‖2 ≤ C(1 + |u|+ u2)

(1− 2P )3
‖K‖∞
hd

,

sup
t∈Θ

‖J̈k(t, u, h)‖2 ≤ C(1 + |u|+ u2)

(1− 2P )3
‖ℓ‖∞ ·

∫

|K|,

for some constant C > 0.
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Figure 6

Proof of Lemma 1. i) It is easy to see, from 1− 2P ≤ |M(t, u)| ≤ 1, that

|Zk(t, u, h)| ≤
2

|M(t, u)|Kh(Xk − x0) ≤
2

(1− 2P )

‖K‖∞
hd

,
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Densities of the Errors
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Figure 7: Density Estimates of the errors for the different levels of PET Tx FDG values

and that

|J(t, u)| ≤ 2

∣

∣

∣

∣

∫

ℑ
(

g∗x(u)

M(t, u)

)

Kh(x− x0)ℓ(x)dx)

∣

∣

∣

∣

≤ 2

(1− 2P )
‖ℓ‖∞.

∫

|K|.

ii) We note that

Żk(t, u, h) = −











eiuYk

M2(t, u)







eiuα − eiuβ

iupeiuα

iu(1− p)eiuβ







+
e−iuYk

M2(t,−u)







e−iuα − e−iuβ

−iupe−iuα

−iu(1− p)e−iuβ

















Kh(Xk − x0),

and that

E[Żk(t, u, h)] = J̇k(t, u, h) = −
∫











gx0
(u)

M2(t, u)







eiuα − eiuβ

iupeiuα

iu(1− p)eiuβ







+
gx0

(−u)

M2(t,−u)







e−iuα − e−iuβ

−iupe−iuα

−iu(1− p)e−iuβ

















Kh(x− x0)ℓ(x)dx.

We thus have

22



‖Żk(t, u, h)‖ =

∥

∥

∥

∥

eiuYk

M2(t, u)
Ṁ(t, u) +

e−iuYk

M2(t,−u)
Ṁ(t,−u)

∥

∥

∥

∥

Kh(Xk − x0)

≤ 1

(1− 2P )2
(

2
(

22 + p2u2 + (1− p)2u2
))1/2

Kh(Xk − x0)

≤ 4(1 + |u|)
(1− 2P )2

‖K‖∞
hd

,

and

‖J̇k(t, u, h)‖ =

∫
∥

∥

∥

∥

g∗x(u)

M2(t, u)
Ṁ(t, u) +

g∗x(−u)

M2(t,−u)
Ṁ(t,−u)

∥

∥

∥

∥

Kh(Xk − x0)ℓ(x)dx

≤ 1

(1− 2P )2
(

2
(

22 + p2u2 + (1− p)2u2
))1/2

∫

|Kh(Xk − x0)ℓ(x)|dx

≤ 4(1 + |u|)
(1− 2P )2

‖ℓ‖∞.

∫

|K|.

iii) Formula of M̈(t, u) being tedious, we shortly write that

Z̈k(t, u, h) =

{

− eiuYk

M2(t, u)
M̈(t, u) +

e−iuYk

M2(t,−u)
M̈(t,−u)

+2
eiuYk

M3(t, u)
Ṁ(t, u)Ṁ(t, u)⊤ − 2

e−iuYk

Ṁ3(t,−u)
Ṁ(t,−u)Ṁ(t,−u)⊤

}

Kh(Xk − x0),

and deduce our bound from the above expression using arguments similar to i) and ii).

Lemma 2 i) For all (t, t′) ∈ Θ2, there exists a constant C1 > 0 such that

|Sn(t)− Sn(t
′)| ≤ C1‖t− t′‖

n
∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
.

ii) For all (t, t′) ∈ Θ2, there exists a constant C2 > 0 such that

‖S̈n(t)− S̈n(t
′)‖2 ≤ C2‖t− t′‖

n
∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
.

iii) There exists some constants C1, C2 > 0 depending on Θ, α, M,K such that

E









n
∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
− ℓ2(x0)





2

 ≤ C1h
2α +

C2

nhd
,

as h → 0 and nhd → ∞.

23



Proof. i) By a first order Taylor expansion we have

Sn(t)− Sn(t
′))Kh(Xj − x0)

= − 1

2n(n− 1)

∫

(t− t′)⊤
n
∑

j 6=k,j,k=1

Żk(tu, u, h)Zj(tu, u, h)dw(u),

where for all u ∈ R, tu lies in the line segment with extremities t and t′. Therefore,

according to calculations made in the proofs of Lemma 1 i) and ii), we obtain

|Sn(t)−Sn(t
′)| ≤ 4

(1− 2P )3
‖t−t′‖

∫

R

(1+|u|)w(u)du

∣

∣

∣

∣

∣

∣

n
∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)

∣

∣

∣

∣

∣

∣

,

which ends the proof of i) by using assumption A4.

ii) Let recall first that

S̈n(t) =
−1

2n(n− 1)

∑

k 6=j

∫

[

Z̈k(t, u, h)Zj(t, u, h) + Żk(t, u, h)Żj(t, u)
⊤
]

dw(u).

We shall bound from above as follows

‖S̈n(t, u)− S̈n(t
′, u)‖2 ≤ 1

2n(n− 1)

∑

k 6=j

{∥

∥

∥

∥

∫

(Z̈k(t, u, h)− Z̈k(t
′, u, h))Zj(t, u)dw(u)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∫

Z̈k(t
′, u, h)(Zj(t, u, h)− Zj(t

′, u, h))dw(u)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∫

Żk(t, u, h)(Żj(t, u, h)− Żj(t
′, u, h))⊤dw(u)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∫

(Żk(t, u, h)− Żk(t
′, u, h))Żj(t

′, u, h)⊤dw(u)

∥

∥

∥

∥

2

}

.

For each term in the previous sum, we use Taylor expansion and upper-bounds similar to

those developed in the proof of Lemma 1, and get

∥

∥

∥S̈n(t, u)− S̈n(t
′, u)

∥

∥

∥

2

≤
∥

∥t− t′
∥

∥

C
∫

(1 + |u|+ u2 + |u|3)dw(u)
(1− 2P )5

∣

∣

∣

∣

∣

∣

n
∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)

∣

∣

∣

∣

∣

∣

,

for some constant C > 0, which finishes the proof by using assumption A4.

iii) The proof is a consequence of Proposition 1 hereafter.
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Proof of Proposition 1. We shall bound from above the mean square error by the usual

decomposition into squared bias plus variance.

Note that

E[Sn(t)] = −1

4

∫

(E[Z1(t, u, h)])
2w(u)du

as (Yi,Xi), i = 1, ..., n are independent. Moreover,

E[Z1(t, u, h)] =

∫ ∫ (

eiuy

M(t, u)
− e−iuy

M(t,−u)

)

Kh(x− x0)g(y,x)dydx

=

∫ (∫ (

eiuy

M(t, u)
− e−iuy

M(t,−u)

)

gx(y)dy

)

ℓ(x)Kh(x− x0)dx

=

∫ (

g∗x(u)

M(t, u)
− g∗x(−u)

M(t,−u)

)

ℓ(x)Kh(x− x0)dx.

Let us denote by L(x, t, u) := g∗x(u)
M(t,u) −

g∗x(−u)
M(t,−u) , which is further equal to

L(x, t, u) = 2i · ℑ
(

g∗x(u)

M(t, u)

)

= 2i · ℑ
(

M(θ(x), u)

M(t, u)

)

f∗
x(u).

We can write E[Z1(t, u, h)] = [(L(·, t, u)ℓ) ⋆ Kh](x0), where ⋆ denotes the convolution

product. The bias of Sn(t) is bounded from above as follows:

|E[Sn(t)]− S(t)| =
1

4

∣

∣

∣

∣

∫

(

[(L(·, t, u)ℓ) ⋆ Kh]
2(x0)− L2(x0, t, u)ℓ

2(x0)
)

w(u)du

∣

∣

∣

∣

≤ 1

4

∫

|[(L(·, t, u)ℓ) ⋆ Kh](x0)− L(x0, t, u)ℓ(x0)|

· |[(L(·, t, u)ℓ) ⋆ Kh](x0) + L(x0, t, u)ℓ(x0)|w(u)du.

Now

|L(x0, t, u)ℓ(x0)| ≤
4‖ℓ‖∞
1− 2P

≤ 4C

1− 2P
,

as ‖ℓ‖∞ is further bounded by a constant C = C(α,M) depending only on α, M > 0,

uniformly over ℓ ∈ L(α,M) (see remark following condition A1). We also have

E[Z1(t, u, h)] = |[(L(·, t, u)ℓ) ⋆ Kh](x0)| ≤
∫

|L(x, t, u)|l(x)|K|h(x− x0)dx

≤ 4C

1− 2P

∫

|K|. (16)

Moreover, for all u ∈ R,

|[(L(·, t, u)ℓ) ⋆ Kh](x0)− L(x0, t, u)ℓ(x0)|

≤
∫

|L(x+ x0, t, u)ℓ(x+ x0)− L(x0, t, u)ℓ(x0)| · |K|h(x)dx

≤ c(|u|+ ϕ(u))

∫

‖x‖α · |K|h(x)dx ≤ c · hα(|u|+ ϕ(u))

∫

‖x‖α · |K|(x)dx,
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under our assumptions A1-A4. Indeed, that implies that L(·, t, u)ℓ(·) is Lipschitz α-

smooth for all (t, u) ∈ Θ × R, with some constant c > 0, see Lemma 3. Therefore we

get

|E[Sn(t)]− S(t)| ≤ 4C(1 +
∫

|K|)
1− 2P

c

(∫

‖x‖α · |K|(x)dx
)

·
(∫

|u|w(u)du
)

· hα.

Similarly to Sn(t) variance decomposition, we write

Sn(t)− E[Sn(t)]

=
−1

4n(n− 1)

∑

j 6=k

(∫

(Zj(t, u, h)Zk(t, u, h)− E2[Z1(t, u, h)])w(u)du

)

=
−1

2n

∑

j

∫

(Zj(t, u, h)− E[Z1(t, u, h)])E[Z1(t, u, h)]w(u)du

+
−1

4n(n− 1)

∑

j 6=k

(∫

(Zj(t, u, h)− E[Z1(t, u, h)])(Zk(t, u, h)− E[Z1(t, u, h)])w(u)du

)

= T1 + T2, say.

Terms in T1 and T2 are uncorrelated and thus V ar(Sn(t)) = V ar(T1) + V ar(T2).

On the one hand,

V ar(T1) =
1

4n
V ar

(∫

(Z1(t, u, h)− E[Z1(t, u, h)])E[Z1(t, u, h)]w(u)du

)

=
1

4n
E

[

(∫

(Z1(t, u, h)− E[Z1(t, u, h)])E[Z1(t, u, h)]w(u)du

)2
]

≤ 1

4n
E

[∫

(Z1(t, u, h)− E[Z1(t, u, h)])
2w(u)du

] ∫

E2[Z1(t, u, h)]w(u)du,

according to Cauchy-Schwarz inequality. Now we use (16) and obtain

V ar(T2) ≤ 1

4n

(

4C
∫

|K|
1− 2P

)2 ∫

E[Z1(t, u, h)
2]w(u)du.

We have,

E[Z1(t, u, h)
2] = E

[

E

[

(

2i · ℑ
(

eiuY

M(t, u)

))2
∣

∣

∣

∣

∣

X

]

(Kh(X− x0))
2

]

= −4E

[

(

ℑ
(

g∗
X
(u)

M(t, u)

))2

(Kh(X− x0))
2

]

≤ 4

(1− 2P )2

∫

1

h2d
K2

(

x− x0

h

)

ℓ(x)dx

≤ 4C
∫

K2

(1− 2P )2hd
.
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Therefore,

V ar(T1) ≤ 16C3(
∫

|K|)2
∫

K2

(1− 2P )4nhd
, (17)

for all t ∈ Θ, h > 0.

On the other hand,

V ar(T2) =
1

16n(n− 1)
E

[

(∫

(Z1(t, u, h)− E[Z1(t, u, h)])(Z2(t, u, h)− E[Z1(t, u, h)])w(u)du

)2
]

≤ 1

16n(n− 1)
E

[∫

(Z1(t, u, h)− E[Z1(t, u, h)])
2(Z2(t, u, h)− E[Z1(t, u, h)])

2w(u)du

]

≤ 1

16n(n− 1)

∫

E2[Z1(t, u, h)
2]w(u)du

≤ 1

16n(n− 1)

(

4C
∫

K2

(1− 2P )2hd

)2

=
C2(

∫

K2)2

n(n− 1)(1− 2P )4h2d
,

which is clearly a o((nhd)−1) and concludes the proof.

Lemma 3 (Smoothness of L(x, t, u)ℓ(x)) Assume A1-A4. There exists a constant

C > 0, such that for all (x,x′) ∈ R
d × R

d and all (t, u) ∈ Θ× R:

|L(x, t, u)ℓ(x)− L(x′, t, u)ℓ(x′)| ≤ C(|u|+ ϕ(u))‖x− x′‖α.

Proof. For t = (π, a, b) ∈ Θ, and (x, u) ∈ R
d × R we write

L(x, t, u)ℓ(x) = fx0
(u)ℓ(x)T (x, t, u), and T (x, t, u) :=

∑4
i=1 Ti(x, t, u)

1− 2π(1− π) cos[u(a− b)]

where

T1(x, t, u) = π(x)π sin[u(a(x)− a)], T2(x, t, u) = π(x)(1− π) sin[u(a(x)− b)],

T3(x, t, u) = (1− π(x))π sin[u(b(x)− a)], T4(x, t, u) = (1− π(x)(1− π) sin[u(b(x)− b)].

For all (x,x′) ∈ R
d × R

d we have

|L(x, t, u)ℓ(x)− L(x′, t, u)ℓ(x′)|
≤ |fx0

(u)ℓ(x)||T (x, t, u)− T (x′, t, u)|+ |T (x, t, u)||fx0
(u)ℓ(x)− f∗

x′(u)ℓ(x′)|
≤ ‖ℓ‖∞|T (x, t, u)− T (x′, t, u)|+ (1− 2P )−1|f∗

x(u)ℓ(x)− f∗
x′(u)ℓ(x′)|.
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Let us now show the α-smooth Lipschitz property of T1, the proof for the other Ti’s being
completely similar. For all (x,x′) ∈ R

d × R
d

|T1(x, t, u)− T1(x′, t, u)| ≤ | sin[u(a(x)− a)]− sin[u(a(x′)− a)]|+ |π(x)− π(x′)|
≤ |u||(a(x)− a(x′)]|+ |π(x)− π(x′)|
≤ M |u|‖x− x′‖α +M‖x− x′‖α.

On the other hand we have

|f∗(u|x)ℓ(x)− f∗(u|x′)ℓ(x′)| ≤ |ℓ(x)− ℓ(x′)|+ ‖ℓ‖∞|fx0
(u)− f∗

x′(u)|,
≤ (M + ‖ℓ‖∞ϕ(u))‖x− x′‖α,

which concludes the proof.

Proof of Theorem 2. Our method is based on a consistency proof for mininum contrast

estimators by Dacunha-Castelle and Duflo (1993, pp.94–96). Let us consider a countable

dense set D in Θ, then inft∈Θ Sn(t) = inft∈D Sn(t), is a measurable random variable. We

define in addition the random variable

W (n, ξ) = sup
{

|Sn(t)− Sn(t
′)|; (t, t′) ∈ D2, ‖t− t′‖ ≤ ξ

}

,

and recall that S(θ0) = 0. Let us consider a non-empty open ball B∗ centered on θ0 such

that S is bounded from below by a positive real number 2ε on Θ\B∗. Let us consider a

sequence (ξp)p≥1 decreasing to zero, and take p such that there exists a covering of Θ\B∗

by a finite number κ of balls (Bi)1≤i≤κ with centers ti ∈ Θ, i = 1, . . . , κ, and radius less

than ξp. Then, for all t ∈ Bi, we have

Sn(t) ≥ Sn(ti)− |Sn(t)− Sn(ti)| ≥ Sn(ti)− sup
t∈Bi

|Sn(t)− Sn(ti)|,

which leads to

inf
t∈Θ\B∗

Sn(t) ≥ inf
1≤i≤κ

Sn(ti)−W (n, ξp).

As a consequence we have the following events inclusions

{

θ̂n /∈ B∗

}

⊆
{

inf
t∈Θ\B∗

Sn(t) < inf
t∈B∗

Sn(t) < Sn(θ0)

}

⊆
{

inf
1≤i≤κ

Sn(ti)−W (n, ξp) < Sn(θ0)

}

⊆ {W (n, ξp) > ε} ∪
{

inf
1≤i≤κ

(Sn(ti)− Sn(θ0)) ≤ ε

}

.
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In addition we have

P

(

inf
1≤i≤κ

(Sn(ti)− Sn(θ0)) ≤ ε

)

≤ 1−
κ
∏

i=1

(1− [P (|Sn(ti)− S(ti)| ≥ ε) + P (|Sn(θ0)− S(θ0)| ≥ ε)]),

where, according to Proposition 1, the last two terms in the right hand side of the above

inequality vanish to zero if hdn → ∞ and h → 0 as n → ∞. To conclude we use Lemma 2

and notice that, for all (t, t′) ∈ Θ2, we have

|Sn(t)− Sn(t
′)|

≤ C‖t− t′‖
n(n− 1)

∣

∣

∣

∣

∣

∣

n
∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

∣

∣

∣

∣

∣

∣

≤ C‖t− t′‖ℓ2(x0) + C‖t− t′‖

∣

∣

∣

∣

∣

∣

n
∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
− ℓ2(x0)

∣

∣

∣

∣

∣

∣

.(18)

We deduce from above that

P (W (n, ξp) > ε) ≤ P
(

Cξpℓ
2(x0) >

ε

2

)

+

(

2Cξp
ε

)2

E









n
∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
− ℓ2(x0)





2

 ,

where the last term in the right hand side is of order (nhd)−1 + h2α and tends to 0 by

our assumption on h. Since for p sufficiently large we have Cξpℓ
2(x0) < ε/2 and thus

P
(

Cξpℓ
2(x0) > ε/2

)

= 0, this concludes the proof of the consistency in probability of θ̂n

when nhd → ∞ and h → 0 as n → ∞.

Proof of Theorem 3. By a Taylor expansion of Ṡn around θ0, we have

0 = Ṡn(θ̂n) = Ṡn(θ0) + S̈n(θ̄n)(θ̂n − θ0),

where θ̄n lies in the line segment with extremities θ̂n and θ0.

Let us study the behaviour of

Ṡn(θ0) =
−1

2n(n− 1)

∑

j 6=k

∫

Żk(θ0, u, h)Zj(θ0, u, h)w(u)du,
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where Żk denotes the gradient of Zk with respect to the first argument. Recall that

θ0 = θ(x0) = (π(x0), a(x0), b(x0)) and therefore

J(t, u, h) = E[Z1(t, u, h)] = 2i

∫

ℑ
(

M(θ(x0), u)

M(t, u)

)

f∗
x(u)ℓ(x)Kh(x− x0)dx,

satisfies J(θ0, u, h) → 0 as h → 0. Indeed, the last integral may be equal to 0 if the set

{x : θ(x) = θ(x0)} has Lebesgue measure 0, or tends (by uniform continuity in x of the

integrand) to

2iℑ
(

M(θ(x0), u)

M(θ(x0), u)

)

f∗
x0
(u)ℓ(x0) = 0.

Moreover,

Żk(t, u, h) = ℑ
(

−Ṁ(t, u)
eiuYk

M2(t, u)

)

Kh(Xk − x0).

Denote J̇(t, u, h) = E[Żk(t, u, h)] and observe that

J̇(t, u, h) =

∫

ℑ
(

−Ṁ(t, u)
M(θ(x), u)f∗

x(u)

M2(t, u)

)

Kh(x− x0)ℓ(x)dx.

Then, we decompose Ṡn(θ0) as follows

Ṡn(θ0)

=
−1

2n(n− 1)

∑

j 6=k

∫

(

Żk(θ0, u, h)− J̇(θ0, u, h)
)

(Zj(θ0, u, h)− E[Zj(θ0, u, h)])w(u)du

− 1

2n

n
∑

j=1

∫

J̇(θ0, u, h)(Zj(θ0, u, h)− E[Zj(θ0, u, h)])w(u)du

:= −1

2
(An(h) +Bn(h)), (19)

where terms in An(h) and Bn(h) are uncorrelated. On the one hand, we use a multivariate

Central Limit Theorem for independent random variables taking values in a Hilbert space,

following Kandelaki and Sozanov (1964) or Gikhman and Skorokhod (2004, Theorem 4,

page 396). This will give us the limit behavior of the term

Bn(h) =
1

n

n
∑

j=1

Uj(h), Uj(h) :=

∫

J̇(θ0, u, h)(Zj(θ0, u, h)− E[Zj(θ0, u, h)])w(u)du.

The random variables Uj(h), j = 1, ..., n are independent, centered, but their common law

depend on n via h. Our goal is to show that

nhdV ar(Bn(h)) =

n
∑

j=1

V ar

(
√

hd

n
Uj(h)

)

→ Σ, as n → ∞ (20)
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and that
n
∑

j=1

E





∥

∥

∥

∥

∥

√

hd

n
Uj(h)

∥

∥

∥

∥

∥

4


 =
h2d

n
E[‖U1(h)‖4] → 0, as n → ∞. (21)

Indeed, (21) implies the Lindeberg’s condition in Kandelaki and Sozanov (1964):

n
∑

j=1

E





∥

∥

∥

∥

∥

√

hd

n
Uj(h)

∣

∣

∣

∣

∣

2

· I∥
∥

∥

√
hd/nUj(h)

∥

∥

∥
≥ε



→ 0, as n → ∞, for any ε > 0.

On the other hand, we prove that

√
nhdAn(h) → 0, in probability, as n → ∞, (22)

stating that
√
nhdAn(h) is a negligible term and that, as a consequence, the limiting be-

havior of
√
nhdṠn(θ0) is only driven by

√
nhdBn(h). This will end the proof of the theorem.

Let us prove (20) and (21). Note that nhdV ar(Bn(h)) = hdV ar(U1(h)) and that

V ar(U1(h))

=

∫ ∫

J̇(θ0, u1, h)J̇
⊤(θ0, u2, h)Cov(Z1(θ0, u1, h), Z1(θ0, u2, h))w(u1)w(u2)du1du2.

Similarly to Proposition 1, by uniform continuity in x of the integrand in J̇ , we get

lim
h→0

J̇(θ0, u, h) = J̇(θ0, u).

See that ‖J̇(θ0, u)‖ ≤ 2(1+|u|)‖ℓ‖∞/(1−2P ) and that the latter upper bound is integrable

with respect to the measure w(u)du by assumption on w. It remains to study:

Cov(Z1(θ0, u1, h), Z1(θ0, u2, h))

= E [Z1(θ0, u1, h)Z1(θ0, u2, h)]− E [Z1(θ0, u1, h)]E [Z1(θ0, u2, h)] .

From (16) we deduce that

hd|E [Z1(θ0, u1, h)]E [Z1(θ0, u2, h)] | ≤ hd
(

4C
∫

|K|
1− 2P

)2

→ 0,
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when h → 0 as n → ∞. We also have

hdE [Z1(θ0, u1, h)Z1(θ0, u2, h)]

=

∫ ∫ (

eiu1y

M(θ0, u1)
− e−iu1y

M(θ0,−u1)

)(

eiu2y

M(θ0, u2)
− e−iu2y

M(θ0,−u2)

)

1

hd
K2(

x− x0

h
)g(y,x)dydx

=

∫ (

eiu1y

M(θ0, u1)
− e−iu1y

M(θ0,−u1)

)(

eiu2y

M(θ0, u2)
− e−iu2y

M(θ0,−u2)

)

g(y,x0)dy(

∫

K2)(1 + o(1))

=

∫ (

eiu1y

M(θ0, u1)
− e−iu1y

M(θ0,−u1)

)(

eiu2y

M(θ0, u2)
− e−iu2y

M(θ0,−u2)

)

gx0
(y)dy · ℓ(x0)(

∫

K2)(1 + o(1)),

as h → 0. See also that we can write

V (θ0, u1, u2) :=

∫ (

eiu1y

M(θ0, u1)
− e−iu1y

M(θ0,−u1)

)(

eiu2y

M(θ0, u2)
− e−iu2y

M(θ0,−u2)

)

gx0
(y)dy

=
M(θ0, u1 + u2)

M(θ0, u1)M(θ0, u2)
fx0

(u1 + u2)−
M(θ0, u1 − u2)

M(θ0, u1)M(θ0,−u2)
fx0

(u1 − u2)

− M(θ0,−u1 + u2)

M(θ0,−u1)M(θ0, u2)
fx0

(−u1 + u2) +
M(θ0,−u1 − u2)

M(θ0,−u1)M(θ0,−u2)
fx0

(−u1 − u2)

and this is a bounded function with respect to u1 and u2. Therefore

hdV ar(U1(h)) →
∫ ∫

J̇(θ0, u1)J̇
⊤(θ0, u2)V (θ0, u1, u2)w(u1)w(u2)du1du2 =: Σ,

as h → 0. This proves (20).

Now, denote by v(k) the k-th coordinate of a vector v and use Jensen inequality to see

that

E[‖U1(h)‖4] ≤ 3
(

E[(U
(1)
1 (h))4] + E[(U

(2)
1 (h))4] + E[(U

(3)
1 (h))4]

)

≤ 3

3
∑

k=1

E

[

(∫

J̇ (k)(θ0, u, h)(Z1(θ0, u, h)− E[Z1(θ0, u, h)])w(u)du

)4
]

≤ 3
3
∑

k=1

∫

|J̇ (k)(θ0, u, h)|4E
[

|Z1(θ0, u, h)|4
]

w(u)du.

We have |J̇ (k)(θ0, u, h)| ≤ 4(1 + |u|)(
∫

|K|)‖ℓ‖∞/(1− 2P )2 by Lemma 1 and

E
[

|Z1(θ0, u, h)|4
]

=

∫ ∫

4

∣

∣

∣

∣

ℑ
(

eiuy

M(θ0, u)

)∣

∣

∣

∣

4
1

h4d
K4

(

x− x0

h

)

g(y,x)dydx

≤ 4

h3d(1− 2P )4

∫

1

hd
K4

(

x− x0

h

)

ℓ(x)dx

≤ O(1)

h3d

(∫

K4

)

‖ℓ‖∞,
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as h → 0. Therefore,

h2d

n
E[‖U1(h)‖4] ≤

O(1)

nhd

∫

|K| ·
∫

K4 ·
∫

(1 + |u|)4w(u)du = o(1),

as n → ∞ and h → 0 such that nhd → ∞. This proves (21).

To prove (22), we notice that An(h) defined in (19) can be treated similarly to T1 in (17).

By this remark, we easily prove that V ar(An) = o
(

(nhd)−1
)

which insure the wanted

result.

Let us prove that

S̈n(θn)−→I(θ0), in probability, as n → ∞,

where I = I(θ0) = −1
2

∫

J̇(θ0, u)J̇
⊤(θ0, u)w(u)du, and J̇(θ0, u) is defined in (12). We start

by writing the triangular inequality

‖S̈n(θn)− I‖ ≤ ‖S̈n(θn)− S̈n(θ0)‖+ ‖S̈n(θ0)− E(S̈n(θ0))‖+ ‖E(S̈n(θ0))− I‖.

Then using upper bounds similar to (18) slighly adapted to S̈n instead of Sn and the

convergence in probability of θ̂n towards θ0 established in Theorem 2, we have that

‖S̈n(θn)− S̈n(θ0)‖ → 0 in probability as n → ∞. By writting

E(S̈n(θ0)) = −1

2

∫

(

J̈(θ0, u, h)J(θ0, u, h) + J̇(θ0, u, h)J̇(θ0, u, h)
⊤
)

w(u)du

and noticing, according to Bochner’s Lemma, that J(θ0, u, h) → 0 and J̇(θ0, u, h) →
J̇(θ0, u) as h → 0, we have, according to the Lebesgue’s theorem, that E[S̈n(θ0)] tends to

I as h → 0. Finally we decompose −2n(n − 1)(S̈n(θ0) − E[S̈n(θ0)]) =
∑3

l=1(D1,l +D2,l)

where

D1,1 =
∑

k 6=j

∫

(Z̈k(θ0, u, h)− J̈(θ0, u, h))(Zj(θ, u, h)− J(θ0, u, h))w(u)du

D1,2 = (n− 1)
∑

k

∫

(Z̈k(θ0, u, h)− J̈(θ0, u, h))J(θ0, u, h)w(u)du

D1,3 = (n− 1)
∑

j

∫

J̈(θ0, u, h)(Zj(θ, u, h)− J(θ0, u, h))w(u)du,
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and

D2,1 =
∑

k 6=j

∫

(Żk(θ0, u, h)− J̇(θ0, u, h))(Żj(θ, u, h)− J̇(θ0, u, h))
⊤w(u)du

D2,2 = (n− 1)
∑

k

∫

(Żk(θ0, u, h)− J̇(θ0, u, h))J(θ0, u, h)
⊤w(u)du

D2,3 = (n− 1)
∑

j

∫

J̇(θ0, u, h)(Zj(θ, u, h)− J(θ0, u, h))
⊤w(u)du.

Noticing that terms Di,3, i = 1, 2, respectively Di,j,, i = 1, 2 and j = 2, 3, can be treated

as T1 respectively T2 in the proof of Proposition 1, we obtain

V ar
(

S̈n(θ0)
)

= O

(

1

nhd

)

,

which concludes the proof.
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