A D Agaltsov 
email: alexey.agaltsov@polytechnique.edu
  
G M Henkin 
email: henkin@math.jussieu.fr
  
Explicit reconstruction of Riemann surface with given boundary in complex projective space 1

Keywords: Riemann surface, reconstruction algorithm, Burgers equation, Cauchy-type formulas

In this paper we propose a numerically realizable method for reconstruction of a complex curve with known boundary and without compact components in complex projective space.

Introduction

Let CP 2 be the complex projective plane with homogeneous coordinates (w 0 : w 1 : w 2 ). Let X ⊂ CP 2 be a complex curve with rectifiable boundary γ = ∂X. Without loss of generality, we suppose that the following conditions of general position hold:

(0 : 1 : 0) ∈ X, w 0 | γ = 0.
Put C 2 = {w ∈ CP 2 : w 0 = 0} with coordinates z 1 = w 1 w 0 , z 2 = w 2 w 0 . For almost all ξ = (ξ 0 , ξ 1 ) ∈ C 2 the points of intersection of X with complex line C 1 ξ = {z ∈ C 2 : ξ 0 + ξ 1 z 1 + z 2 = 0} form a finite set of points z (j) 1 (ξ), z (j) 2 (ξ) = h j (ξ), -ξ 0 -ξ 1 h j (ξ) , ξ = (ξ 0 , ξ 1 ), j = 1, . . . , N + (ξ).

By Darboux lemma [START_REF] Darboux | Théorie des surfaces[END_REF][START_REF]Chaînes holomorphes de bord donné dans CP n[END_REF] functions {h j } satisfy the following equations ∂h j (ξ) ∂ξ 1 = h j (ξ) ∂h j (ξ) ∂ξ 0 , ξ = (ξ 0 , ξ 1 ), j = 1, . . . , N + (ξ),

which are often called the shock-wave equations, the inviscid Burgers equations or the Riemann-Burgers equations. In this interpretation ξ 1 is the time variable and ξ 0 is the space variable.

The following Cauchy-type formula from [START_REF]Chaînes holomorphes de bord donné dans CP n[END_REF] plays the essential role in the reconstruction of X from γ:

G m (ξ) def == 1 2πi γ z m 1 d(ξ 0 + ξ 1 z 1 + z 2 ) ξ 0 + ξ 1 z 1 + z 2 = N + (ξ) j=1 h m j (ξ) + P m (ξ), m ≥ 1, (2) 
where N + (ξ) = |X ∩ C 1 ξ | and P m (ξ 0 , ξ 1 ) is a polynomial of degree at most m with respect to ξ 0 at fixed ξ 1 . In addition, P 0 (ξ 0 , ξ 1 ) = -N -, where

N -= |X ∩ CP 1 ∞ |, CP 1 
∞ = {w ∈ CP 2 : w 0 = 0}, and

P 1 (ξ 0 , ξ 1 ) = - N - k=1 a k ξ 0 + b k 1 -a k ξ 1 , if h k (ξ 0 , 0) ∼ a k ξ 0 + b k + O(ξ -1 0 ) at ∞. (3) 
In particular, it follows from (2) that:

G 0 (ξ) = 1 2πi γ d(ξ 0 + ξ 1 z 1 + z 2 ) ξ 0 + ξ 1 z 1 + z 2 = N + (ξ) -N -. (4) 
Let π 2 : C 2 → C be the projection onto the second coordinate: π 2 (z 1 , z 2 ) = -z 2 . We have that C \ π 2 γ = ∪ L l=0 Ω l , where Ω l≥0 are connected and Ω 0 is unbounded. From the definition of N ± it follows that N + (ξ 0 , 0) = N -, ξ 0 ∈ Ω 0 .

(5)

Assume that complex curve X does not contain compact components without boundary, or equivalently, satisfies the following condition of minimality: for any complex curve X ⊂ CP 2 such that ∂ X = ∂X = γ and for almost all ξ ∈ C 2 we have

| X ∩ C 1 ξ | ≥ |X ∩ C 1 ξ |. ( * )
Condition of minimality ( * ) is a condition of general position and is fulfilled for X if, for example, every irreducible component of X is a transcendental complex curve. Note that from theorems of Chow [START_REF] Chow | On compact complex analytic varieties[END_REF] and Harvey-Shiffman [START_REF] Harwey | A characterization of holomorphic chaines[END_REF] it follows that an arbitrary complex curve X ⊂ CP 2 satisfying ∂ X = ∂X admits the unique representation X = X ∪ V , where X is a curve satisfying ( * ), and V is a compact algebraic curve, possibly, with multiple components.

The main result of [START_REF] Dolbeault | Surfaces de Riemann de bord donné dans CP n[END_REF] gives a solution to the important problem of J. King [START_REF] King | Open problems in geomtric function theory[END_REF], when a real curve γ ⊂ CP 2 is the boundary of a complex curve X ⊂ CP 2 . Let γ ⊂ C 2 . Then γ = ∂X for some open connected complex curve X in CP 2 if and only if in a neighborhood W ξ * of some point ξ * ∈ C 2 one can find mutually distinct holomorphic functions h 1 , . . . , h N (ξ * ) satisfying shock-wave equations (1) and also the equation

∂ 2 ∂ξ 2 0 G 1 (ξ 0 , ξ 1 ) - p j=1 h j (ξ 0 , ξ 1 ) = 0, ξ = (ξ 0 , ξ 1 ) ∈ W ξ * .
In this work in development of [START_REF] Dolbeault | Surfaces de Riemann de bord donné dans CP n[END_REF][START_REF]Chaînes holomorphes de bord donné dans CP n[END_REF] we propose a numerically realizable algorithm for reconstruction of a complex curve X ⊂ CP 2 from the known boundary and satisfying the condition of minimality. This algorithm permits, in particular, to make applicable the result of [START_REF] Henkin | On the explicit reconstruction of a Riemann surface from its Dirichlet-to-Neumann operator[END_REF] about principal possibility to reconstruct the topology and the conformal structure of a two-dimensional bordered surface X in R 3 with constant scalar conductivity from measurements on ∂X of electric current densities, induced by three potentials in general position.

Our algorithm depends on the number of points at infinity N -of the complex curve X. It was tested on many examples and admits a simple and complete justification for N -= 0, 1, 2. Despite a cumbersome description for N -≥ 3, we show that, in principle, there are no obstacles for the justification and numerical realization for any N -≥ 0. Moreover, in Theorem 3.2 we propose a method for finding the parameter N -in terms of γ. This makes the algorithm much more applicable.

Cauchy-type formulas and Riemann-Burgers equations

We begin by giving a new proof of the Cauchy type formulas (2) from [START_REF]Chaînes holomorphes de bord donné dans CP n[END_REF], which allows to obtain explicit expressions for functions P m .

Theorem 2.1. Let X ⊂ CP 2 \ (0 : 1 : 0) be a complex curve with rectifiable boundary γ ⊂ C 2 and satisfying ( * ). Suppose that for almost all ξ ∈ C 2 all the points of intersection of X with C 1 ξ have multiplicity at most one. Then the following formulas hold for almost all ξ = (ξ 0 , ξ 1 ) ∈ C 2 :

G m (ξ) = N + (ξ) j=1 h m j (ξ) + P m (ξ), m ≥ 1, (6) 
where P m (ξ) is holomorphic in a neighborhood of almost all (ξ 0 , 0), ξ 0 ∈ C \ π 2 (γ), and is polynomial in ξ 0 of degree at most m for any fixed ξ 1 . Furthermore, the following explicit formulas hold:

P m (ξ 0 , ξ 1 ) = N - s=1 m-1 k=0 i 1 +•••+im=k d i 1 w 1 dw i 1 0 (q s ) • • • d im w 1 dw im 0 (q s ) (m -k -1)! d m-k dw m-k 0 ln(ξ 0 w 0 + ξ 1 w 1 + w 2 )| qs - µ 0 s=1 i 1 +•••+im=m d i 1 w 1 dw i 1 0 (q s ) • • • d im w 1 dw im 0 (q s ),
where X ∩ CP 1 ∞ = {q 1 , . . . , q N -}. In particular, if N -= 0 then P m = 0, m ≥ 1.

Proof. Put g = ξ 0 w 0 + ξ 1 w 1 + w 2 and g = g w 0 = ξ 0 + ξ 1 z 1 + z 2 . Consider differential forms ω m def == z m 1 dg g = w m 1 w m 0 w 0 g d g w 0 = w m 1 w m 0 d g g - w m 1 w m+1 0 dw 0 , m = 0, 1, . . . Then G m (ξ) = 1 2πi γ ω m .
Let us compute this integral explicitly. Denote by p j , j = 1, . . . , N + (ξ) the points of intersection of X with CP 1 ξ , and by q s , s = 1, . . . , N -the points of intersection of X with infinity CP 1 ∞ . Denote by B ε j the intersection of X with the ball of radius ε in CP 2 centered at p j and by D ε s the intersection of X with the ball of radius ε centered at q s . The restriction of form ω m on X is meromorphic with poles at points p j and q s . Thus the following equality is valid:

G m (ξ) = 1 2πi γ ω m = N + (ξ) j=1 1 2πi bB ε j ω m + N - s=1 1 2πi bD ε s ω m .
If N -= 0, then the second group of terms is absent. The integral bB ε j ω m can be calculated as a residue at the first order pole:

bB ε j ω m = bB ε j z m 1 d g g - bB ε j w m 1 w m+1 0 dw 0 = bB ε j z m 1 d g g = 2πi h m j (ξ).
Let N -> 0. Computation of integral bD ε s ω 1 will be done in two steps. Let us calculate first bD ε s w m 1 w m+1 0 dw 0 . Consider the expansion of w 1 (w 0 ) into power series in w 0 in the neighborhood of point q s :

w 1 (w 0 ) = w 1 (q s ) + dw 1 dw 0 (q s )w 0 + d 2 w 1 dw 2 0 (q s )w 2 0 + • • • . 4 Note further that w m 1 (w 0 ) = ∞ k=0 i 1 +•••+im=k d i 1 w 1 dw i 1 0 (q s ) • • • d im w 1 dw im 0 (q s )w k 0 .
The coefficient near w m 0 can be presented in the form

bD ε s w m 1 w m+1 0 dw 0 = 2πi i 1 +•••+im=m d i 1 w 1 dw i 1 0 (q s ) • • • d im w 1 dw im 0 (q s ).

Now we can calculate the integral bD

ε s w m 1 w m 0 d g g . Using relation d g = d g
dw 0 dw 0 and expansion of w 1 (w 0 ) into power series in w 0 we obtain:

bD ε s w m 1 w m 0 d g g = bD ε s 1 w m 0 w 1 (q s ) + dw 1 dw 0 (q s )w 0 + d 2 w 1 dw 2 0 (q s )w 2 0 + • • • m d g dw 0 1 g dw 0 = ∞ k=0 bD ε s i 1 +•••+im=k d i 1 w 1 dw i 1 0 (q s ) • • • d im w 1 dw im 0 (q s )w k-m 0 d g dw 0 1 g dw 0 = m-1 k=0 bD ε s i 1 +•••+im=k d i 1 w 1 dw i 1 0 (q s ) • • • d im w 1 dw im 0 (q s )w k-m 0 d g dw 0 1 g dw 0 = m-1 k=0 2πi (m -k -1)! i 1 +•••+im=k d i 1 w 1 dw i 1 0 (q s ) • • • d im w 1 dw im 0 (q s ) lim w 0 →0 d m-k-1 dw m-k-1 0 d g dw 0 1 g .
From here, taking into account the relation d g dw 0 1 g = d ln g dw 0 , we obtain, finally

bD ε s w m 1 w m 0 d g g = 2πi m-1 k=0 i 1 +•••+im=k d i 1 w 1 dw i 1 0 (q s ) • • • d im w 1 dw im 0 (q s ) (m -k -1)! d m-k dw m-k 0 ln(ξ 0 w 0 + ξ 1 w 1 + w 2 )| qs .
It is a polynomial of degree at most m with respect to ξ 0 .

Remark 2.1. We excluded the case (0 : 1 : 0) ∈ X because the point (0 : 1 : 0) can lead to a non-polynomial contribution in ξ 0 in functions P m . Consider, for example, the projective curve X: w 2 0 = w 1 w 2 and the meromorphic 1-form Ω ξ 0 on it:

Ω ξ 0 = z 1 dz 2 z 2 +ξ 0 , ξ 0 ∈ C \ 0, where z 1 = w 1 w 0 , z 2 = w 2 w 0 .
The form Ω ξ 0 is holomorphic on X except the points q 1 = (0 : 0 : 1), q 2 = (0 : 1 : 0) and p ξ 0 = (-ξ 0 : 1 : ξ 2 0 ).

One can see that the residues of Ω ξ 0 at q 1 , q 2 are equal to 0 and 1/ξ 0 , respectively. It follows that the residue at p ξ 0 is equal to -1/ξ 0 . Now, consider the part X of X obtained by cutting off some small neighborhood of the point q 1 . Let γ denote the boundary of X. Choose any ξ = (ξ 0 , 0) such that

X ∩ C 1 ξ = ∅. Then X ∩ C 1 ξ = {(-1/ξ 0 , -ξ 0 )
} and, as far as the residue of Ω ξ 0 at q 1 is zero, we have that

0 = G 1 (ξ 0 , 0) = 1 2πi γ Ω ξ 0 = - 1 ξ 0 + P 1 (ξ 0 , 0), so that P 1 (ξ 0 , 0) = 1/ξ 0 .
We will also use the following result of [START_REF] Henkin | On the explicit reconstruction of a Riemann surface from its Dirichlet-to-Neumann operator[END_REF], which gives an effective characterization of functions h j≥1 of Theorem 2.1.

Theorem 2.2 (Remark 4 to Theorem 3a of [START_REF] Henkin | On the explicit reconstruction of a Riemann surface from its Dirichlet-to-Neumann operator[END_REF]). Let X ⊂ CP 2 \ (0 : 1 : 0) be a complex curve with rectifiable boundary γ ⊂ C 2 and satisfying ( * ). Fix any ξ * 0 ∈ Ω 0 and let W ξ * be a neighborhood of ξ * = (ξ * 0 , 0) in C 2 . Let G k≥1 , h j≥1 be defined as in (2) and (6). Suppose that there exist functions h 1 , . . . , h p , holomorphic in W ξ * and satisfying

∂ 2 ∂ξ 2 0 (G 1 -h 1 -• • • -h p ) = 0 in W ξ * , (7) 
∂ h k ∂ξ 1 = h k ∂ h k ∂ξ 0 in W ξ * , k = 1, . . . , p. (8) 
Then p ≥ N -. Furthermore, if p = N -:= |X ∩ CP 1 ∞ |, then h 1 , . . . , h N -coincide with h 1 , . . . , h N -in W ξ * (up to order).

Reconstruction algorithm

We now pass to the reconstruction algorithm for a complex curve X ⊆ CP 2 with given boundary ∂X and satisfying the condition of minimality ( * ). Let us consider the cases

N -= 0, 1, 2.
The reconstruction algorithm is based on formulas [START_REF] Harwey | Boundaries of complex analytic varieties[END_REF]. The next theorem permits to find the functions P m of ( 6). We will use the notation

ae kl = 1 2πi γ z k 1 z l 2 dz 2 , k, l ≥ 0. (9) 
Theorem 3.1. Let X ⊂ CP 2 , (0 : 1 : 0) ∈ X, be a complex curve with rectifiable boundary γ ⊂ C 2 and satisfying ( * ). Let h j≥1 and P m≥1 be the functions defined in Theorem 2.1. Then the following statements are valid:

1. If N -= 0, then P m = 0 for all m ≥ 1. Besides, G 1 = 0 in a neighborhood of any ξ * = (ξ * 0 , 0) with ξ * 0 ∈ Ω 0 .

2. If N -= 1, then P 1 (ξ 0 , 0) = c 11 + c 12 ξ 0 , where constants c 11 and c 12 satisfy the following identity in ξ = (ξ 0 , 0) ∈ Ω 0 × 0:

c 11 ∂G 1 ∂ξ 0 (ξ) + c 12 ξ 0 ∂G 1 ∂ξ 0 (ξ) + G 1 (ξ) = G 1 (ξ) ∂G 1 ∂ξ 0 (ξ 0 , 0) -∂G 1 ∂ξ 1 (ξ). ( 10 
) 3. If N -= 2, then P 1 (ξ 0 , 0) = c 11 + c 12 ξ 0 , P 2 (ξ 0 , 0) = c 21 + c 22 ξ 0 + c 23 ξ 2 0
, where constants c 11 , c 12 , c 21 , c 22 , c 23 satisfy the following identity in ξ = (ξ 0 , 0) ∈ Ω 0 ×0:

ae 10 (c 2 12 + c 23 ) = ∂G 2 ∂ξ 1 -2 ∂G 1 ∂ξ 1 (G 1 -c 11 -c 12 ξ 0 ) + G 1 (c 22 + 2c 23 ξ 0 ) + ∂G 1 ∂ξ 0 • (G 1 -c 11 -c 12 ξ 0 ) 2 -G 2 + c 21 + c 22 ξ 0 + c 23 ξ 2 0 + G 2 1 -2c 11 G 1 -2c 12 G 1 ξ 0 -G 2 • (-c 12 ), (11) 
where all the functions are evaluated at point ξ = (ξ 0 , 0). We differentiate the equation ( 6) with respect to ξ 0 and restrict this equation and its differentiated version to Ω l × 0:

Proof. 1. By Theorem 2.1, if N -= 0 then P m = 0 for all m ≥ 1. It also follows from formula (6) that G 1 = 0 in a neighborhood of any ξ * = (ξ * 0 , 0) with ξ * 0 ∈ Ω 0 . 2. It follows from Theorem 2.1 that P 1 (ξ 0 , ξ 1 ) = C 11 (ξ 1 ) + C 12 (ξ 1 )ξ 0 in a neigh- borhood of almost all ξ * = (ξ * 0 , 0) ∈ Ω l × 0,
h 1 (ξ 0 , 0) = G 1 (ξ 0 , 0) -c 11 -c 12 ξ 0 , ∂h 1 ∂ξ 1 (ξ 0 , 0) = ∂G 1 ∂ξ 1 (ξ 0 , 0) -Ċ11 (0) -Ċ12 (0)ξ 0 , ∂h 1 ∂ξ 0 (ξ 0 , 0) = ∂G 1 ∂ξ 0 (ξ 0 , 0) -c 12 , (12) 
where ξ 0 ∈ Ω 0 . By (1) there is the equality ∂h 1 ∂ξ 1 (ξ 0 , 0) = h 1 (ξ 0 , 0) ∂h 1 ∂ξ 0 (ξ 0 , 0). We substitute h 1 (ξ 0 , 0), ∂h 1 ∂ξ 1 (ξ 0 , 0), ∂h 1 ∂ξ 0 (ξ 0 , 0) in this equation by their expressions ( 12), and we obtain the equation

∂G 1 ∂ξ 1 (ξ 0 , 0) -Ċ11 (0) -Ċ12 (0)ξ 0 = = G 1 (ξ 0 , 0) -c 11 -c 12 ξ 0 ∂G 1 ∂ξ 0 (ξ 0 , 0) -c 12 . ( 13 
)
This equation is valid, in particular, for ξ 0 ∈ Ω 0 . We divide it by ξ 0 and tend ξ 0 → ∞.

As a result, we obtain the equality Ċ12 (0) = -c 2 12 . Taking into account this equality, we can rewrite equation [START_REF] Wermer | The hull of a curve in C n[END_REF] in the form

∂G 1 ∂ξ 1 (ξ 0 , 0) -Ċ11 (0) = = G 1 (ξ 0 , 0) -c 11 -c 12 ξ 0 ∂G 1 ∂ξ 0 (ξ 0 , 0) -G 1 (ξ 0 , 0) -c 11 c 12 . (14) 
Taking into account that ξ 0 ∂G 1 ∂ξ 0 (ξ 0 , 0) → 0 as ξ 0 → ∞ and passing ξ 0 → ∞ in (14), we obtain the equality Ċ11 (0) = -c 11 c 12 . Substituting ths explicit expression for Ċ11 (0) into (14), we get [START_REF] Kälberer | Stripe parametrization of tubular surfaces[END_REF].

3. By (1) functions h 1 (ξ) and h 2 (ξ) satisfy the Riemann-Burgers equation in a neighborhood of any ξ * = (ξ * 0 , 0) ∈ Ω 0 × 0, so that the following equalities are valid:

∂(h 1 h 2 ) ∂ξ 1 = h 1 ∂h 2 ∂ξ 1 + ∂h 1 ∂ξ 1 h 2 = h 1 h 2 ∂(h 1 + h 2 ) ∂ξ 0 , (15) 
∂(h 2 1 + h 2 2 ) ∂ξ 0 = 2h 1 ∂h 1 ∂ξ 0 + 2h 2 ∂h 2 ∂ξ 0 = 2 ∂(h 1 + h 2 ) ∂ξ 1 . ( 16 
) Note that h 1 h 2 = 1 2 h 1 + h 2 2 -1 2 h 2 1 + h 2 2 .
Therefore the system (15)-( 16) is equivalent to the system

∂(h 1 + h 2 ) 2 ∂ξ 1 - ∂(h 2 1 + h 2 2 ) ∂ξ 1 = h 1 + h 2 2 -h 2 1 + h 2 2 ∂(h 1 + h 2 ) ∂ξ 0 , (17) 
∂(h 2 1 + h 2 2 ) ∂ξ 0 = 2 ∂(h 1 + h 2 ) ∂ξ 1 . ( 18 
)
We substitute the expressions of (6) for h 2 1 + h 2 2 and h 1 + h 2 into (17), (18), using the notations P 1 (ξ 0 , ξ 1 ) = C 11 (ξ 1 ) + C 12 (ξ 1 )ξ 0 , P 2 (ξ 0 , ξ 1 ) = C 21 (ξ 1 ) + C 22 (ξ 1 )ξ 0 + C 23 (ξ 1 )ξ 2 0 . Then, equation (18) restricted to Ω 0 × 0 takes the form

∂G 2 ∂ξ 0 (ξ 0 , 0) -c 22 -2c 23 ξ 0 = 2 ∂G 1 ∂ξ 1 (ξ 0 , 0) -Ċ11 (0) -Ċ12 (0)ξ 0 . (19) 
We divide this equation by ξ 0 and tend ξ 0 → ∞. It leads to the equality Ċ12 (0) = c 23 .

Taking this equality into account and passing ξ 0 → ∞ in (19), we obtain the equality Ċ11 (0) = 1 2 c 22 . Next, we substitute the expressions of (6) for h 2 1 + h 2 2 and h 1 + h 2 into (17) and restrict the obtained formula to Ω 0 × 0. It leads to the equality

2 G 1 -c 11 -c 12 ξ 0 ∂G 1 ∂ξ 1 -Ċ11 (0)-Ċ12 (0)ξ 0 - ∂G 2 ∂ξ 1 + Ċ21 (0)+ Ċ22 (0)ξ 0 + Ċ23 (0)ξ 2 0 = = G 1 -c 11 -c 12 ξ 0 2 -G 2 + c 21 + c 22 ξ 0 + c 23 ξ 2 0 ∂G 1 ∂ξ 0 -c 12 . ( 20 
)
We divide this equation by ξ 2 0 and tend ξ 0 → ∞. This leads to the equality

2c 12 Ċ12 (0) + Ċ23 (0) = -c 2 12 + c 23 c 12 .
Taking this equality into account, dividing (20) by ξ 0 and passing ξ 0 → ∞, we obtain the equality

2c 11 Ċ12 (0) + 2c 12 Ċ11 (0) + Ċ22 (0) = -2c 11 c 12 + c 22 c 12 .
Using the obtained equalities, one can rewrite (20) in the form

2 G 1 -c 11 -c 12 ξ 0 ∂G 1 ∂ξ 1 -2G 1 Ċ11 (0) + Ċ12 (0)ξ 0 + 2c 11 Ċ11 (0) - ∂G 2 ∂ξ 1 + Ċ21 (0) = = G 1 -c 11 -c 12 ξ 0 2 -G 2 + c 21 + c 22 ξ 0 + c 23 ξ 2 0 ∂G 1 ∂ξ 0 + + G 1 -c 11 2 -2G 1 c 12 ξ 0 -G 2 + c 21 (-c 12 ). ( 21 
)
We pass ξ 0 → ∞ and note that the following relations are valid

lim ξ 0 →∞ ξ 0 ∂G 1 ∂ξ 1 = lim ξ 0 →∞ ξ 0 1 2πi γ z 1 dz 1 ξ 0 + z 2 = 1 2πi γ z 1 dz 1 = 0, lim ξ 0 →∞ ξ 0 G 1 = lim ξ 0 →∞ ξ 0 1 2πi γ z 1 dz 2 ξ 0 + z 2 = 1 2πi γ z 1 dz 2 = ae 10 , lim ξ 0 →∞ ξ 2 0 ∂G 1 ∂ξ 0 = -lim ξ 0 →∞ ξ 2 0 1 2πi γ z 1 dz 2 (ξ 0 + z 2 ) 2 = - 1 2πi γ z 1 dz 2 = -ae 10 .
As a result, we obtain Due to the obtained relations, we can express constants Ċij (0) as functions of c ij : 

Ċ11 (0) = 1 2 c 22 , Ċ12 ( 
Substituting these constants to (21), we obtain the third statement of Theorem 3.1.

Complement 3.1. The statement of Theorem 3.1 admits a development for the case N -≥ 3. In this case

P k (ξ 0 , ξ 1 ) = C k1 (ξ 1 ) + C k2 (ξ 1 )ξ 0 + • • • + C k,k+1 (ξ 1 )ξ k 0 , k = 1, . . . , N -. Denote Ċij (0) = ∂C ij
∂ξ 1 (0) and c ij = C ij (0) for i = 1, . . . , N -and j = 1, . . . , i + 1. Let us indicate the following general procedure for finding of constants c ij . Due to the Riemann-Burgers equations (1) the following identities in ξ 0 ∈ Ω 0 hold for k = 1, . . . , N --1:

- ∂G k ∂ξ 1 (ξ 0 , 0) + Ċk1 (0) + Ċk2 (0)ξ 0 + • • • + Ċk,k+1 (0)ξ k 0 = k k + 1 - ∂G k+1 ∂ξ 0 (ξ 0 , 0) + c k+1,2 + 2c k+1,3 ξ 0 + • • • + (k + 1)c k+1,k+2 ξ k 0 .
Taking into account that ∂G k ∂ξ 1 (ξ 0 , 0) → 0 and ∂G k+1 ∂ξ 0 (ξ 0 , 0) → 0 as ξ 0 → +∞ we obtain the equalities

Ċk,m (0) = km k + 1 c k+1,m+1 , k = 1, . . . , µ 0 -1, m = 1, . . . , k + 1.
Due to the Riemann-Burgers equations (1) the following identity in ξ 0 ∈ Ω 0 holds:

∂e µ 0 ∂ξ 1 (ξ 0 , 0) = e µ 0 (ξ 0 , 0) ∂p 1 ∂ξ 0 (ξ 0 , 0), (23) 
where functions e k are given by the following formulas:

ke k (ξ 0 , ξ 1 ) = k-1 i=1
(-1) i+1 e k-i (ξ 0 , ξ 1 )p i (ξ 0 , ξ 1 ) + (-1) k+1 p k (ξ 0 , ξ 1 ),

p k (ξ 0 , ξ 1 ) = G k (ξ 0 , ξ 1 ) -C k1 (ξ 1 ) -C k2 (ξ 1 )ξ 0 -• • • -C k,k+1 (ξ 1 )ξ k 0 , (24) 
where k = 1, . . . , µ 0 . Equality (23) allows to represent constants { Ċµ 0 ,j (0)} as functions of constants {c ij }. Finally, substituting the obtained expressions for constants { Ċij (0)} via constants {c ij } into equation ( 23) we obtain the identity in ξ 0 ∈ Ω 0 for computation of constants {c ij }.

For example, in the case N -= 3 the identity (23) in ξ 0 ∈ Ω 0 for finding of constants c ij takes the form

Ċ31 (0) + Ċ32 (0)ξ 0 + Ċ33 (0)ξ 2 0 + Ċ34 (0)ξ 3 0 = ∂G 3 ∂ξ 1 + + 3 4 (p 2 1 -p 2 ) ∂p 2 ∂ξ 0 -p 1 ∂p 3 ∂ξ 0 - 1 2 p 3 1 -3p 1 p 2 + 2p 3 ∂p 1 ∂ξ 0 ,
where all functions are evaluated at point (ξ 0 , 0), the functions p k are defined in formula (24) and the constants Ċ31 (0), Ċ32 (0), Ċ33 (0), Ċ34 (0) are given by formulas where ae 10 and ae 11 are defined in formula [START_REF] King | Open problems in geomtric function theory[END_REF].

Ċ31 (0) = 1 2
The next theorem permits to find

N -= |X ∩ CP 1 ∞ | from γ = ∂X. Theorem 3.2.
Let X ⊂ CP 2 \ (0 : 1 : 0) be a complex curve with rectifiable boundary γ ⊂ C 2 and satisfying ( * ). Let G m≥1 be the functions defined in (2) and let

N -= |X ∩ CP 1 ∞ |.
Fix any ξ * 0 ∈ Ω 0 and let W ξ * be a neighborhood of ξ * = (ξ * 0 , 0) in C 2 . Then the following statements are valid:

1. If G 1 = 0 in W ξ * , then either N -= 0, or γ bounds a complex curve in C 2 ,
where γ denotes γ with the opposite orientation.

2. If there exist complex constants c 11 , c 12 such that

∂ ∂ξ 1 G 1 -P 1 = (G 1 -P 1 ) ∂ ∂ξ 0 (G 1 -P 1 ) in W ξ * , (25) 
where P 1 (ξ 0 , ξ 1 ) = c 11 ξ 0 +c 12 1+c 11 ξ 1 , then N -≤ 1. Furthermore, c 11 , c 12 are the same constants as in Theorem 3.1.

If there exist complex constants a

1 , a 2 , b 1 , b 2 , c 1 , c 2 such that c 1 + c 2 = ae 10 , ∂ ∂ξ 1 ((G 1 -P 1 ) 2 -G 2 -P 2 ) = ((G 1 -P 1 ) 2 -G 2 -P 2 ) ∂ ∂ξ 0 (G 1 -P 1 ) in W ξ * , P 1 (ξ 0 , ξ 1 ) = -a 1 ξ 0 +b 1 1-a 1 ξ 1 -a 2 ξ 0 +b 2 1-a 2 ξ 0 , P 2 (ξ 0 , ξ 1 ) = - 2 j=1 a j ξ 0 +b j 1-a j ξ 1 2 + 2a j c j 1-a j ξ 1 , (26) 
then N -≤ 2. Furthermore, these constants are related to the constants of Theorem 3.1 by the equations:

a 1 + a 2 = -c 12 , b 1 + b 2 = -c 11 , a 2 1 + a 2 2 = -c 23 , a 1 b 1 + a 2 b 2 = -1 2 c 22 , b 2 1 + b 2 2 + 2a 1 c 1 + 2a 2 c 2 = -c 21 , c 1 + c 2 = ae 10 . (27) 
Proof. 1. The equality G 1 = 0 in W ξ * implies that G 1 = 0 for all ξ ∈ Ω 0 × C. In turn, it implies, according to [START_REF]Chaînes holomorphes de bord donné dans CP n[END_REF], the moment condition

γ z k 1 1 z k 2 2 dz 2 = 0, k 1 , k 2 ≥ 0.
Then, according to [START_REF] Wermer | The hull of a curve in C n[END_REF] and [START_REF] Harwey | Boundaries of complex analytic varieties[END_REF], for an appropriate choice of orientation, γ is the boundary of a complex curve in C 2 .

Set h

= G 1 -P 1 in a neighborhood W ξ * of ξ * . Then h satisfies ∂ 2 ∂ξ 2 0 (G 1 -h) = 0 in W ξ * , ∂h ∂ξ 1 = h ∂h ∂ξ 0 in W ξ * .
It follows from Theorem 2.2 that N -≤ 1. Note also that equation ( 10) is the restriction of (25) to W ξ * ∩ (Ω 0 × 0).

3. Consider the following quadratic equation in variable t:

t 2 -(G 1 -P 1 )t + 1 2 ((G 1 -P 1 ) 2 -G 2 -P 2 ) = 0. ( 28 
)
Suppose that the discriminant is non-zero at ξ * . Then, without loss of generality, it is non-zero in W ξ * (we can always choose a smaller neighborhood). We denote two different roots of this equation as

h 1 = h 1 (ξ), h 2 = h 2 (ξ).
Clearly, h 1 and h 2 are holomorphic in W ξ * . Furthermore, by the Vi?te formulas we have

h 1 + h 2 = e 1 := G 1 -P 1 in W ξ * , h 1 h 2 = e 2 := 1 2 ((G 1 -P 1 ) 2 -G 2 -P 2 ) in W ξ * .
Note that by definition

∂P 1 ∂ξ 1 = 1 2 ∂P 2
∂ξ 0 . Note also that by Lemma 3.3.1 of [START_REF]Chaînes holomorphes de bord donné dans CP n[END_REF] we have

∂G 1 ∂ξ 1 = 1 2 ∂G 2 ∂ξ 0 . It leads to the equation ∂ e 1 ∂ξ 1 = 1 2 ∂ ∂ξ 0 ( e 2 1 -2 e 2 ) in W ξ * . (29) 
Furthermore, equation (26) can be rewritten in the form

∂ e 2 ∂ξ 1 = e 2 ∂ e 1 ∂ξ 0 in W ξ * . (30) 
Now denote by h 1 , h 2 the shock-wave extensions of h 1 (•, 0) and h 1 (•, 0) to W ξ * which exist and are unique by the Cauchy-Kowalevski theorem. Set e 1 = h 1 + h 2 , e 2 = h 1 h 2 . Due to the shock-wave equations for h 1 and h 2 , the functions e 1 and e 2 satisfy ∂ e

1 ∂ξ 1 = 1 2 ∂ ∂ξ 0 ( e 2 1 -2 e 2 ) in W ξ * , ∂ e 2 ∂ξ 1 = e 1 ∂ e 2 ∂ξ 0 in W ξ * .
Thus, e 1 , e 2 and e 1 , e 2 are holomorphic solutions to the same system with the same restrictions at ξ 1 = 0. By the Cauchy-Kowalevski theorem, e 1 = e 1 and e 2 = e 2 . It follows from the Vi?te formulas that h 1 , h 2 coincide with h 1 , h 2 (up to order). Hence, h 1 , h 2 satisfy the shock-wave equations. Applying Theorem 2.2, we obtain that N -≤ 2.

It remains to consider the case when the determinant of equation ( 28) vanishes in W ξ * . Otherwise, it vanishes on (at most) a dimension one analytic set and in any neighborhood of ξ * there are balls where it does not vanish.

The zero discriminant condition reads

(G 1 -P 1 ) 2 = 2(G 2 -P 1 ) in W ξ * .
We set h = 1 2 (G 1 -P 1 ). Then by definition of P 1 and from the discriminant condition we get

∂ ∂ξ 2 0 (G 1 -2 h) = 0 in W ξ * , ∂ h ∂ξ 1 = h ∂ h ∂ξ 0 in W ξ * .
By Theorem 2.2 it implies N -≤ 2. Note also that if N -= 2, then all intersections of X with C 1 ξ , ξ ∈ W ξ * , are double. Finally, note that equation [START_REF] Nieser | Automatic generation of Riemann surface meshes[END_REF] is the restriction of (26) to the set W ξ * ∩ (Ω 0 × 0). Complement 3.2. The statement of Theorem 3.2 can be generalized to the case N -≥ 3 in the spirit of cases N -≤ 2. Such a generalization will be developed in a separate paper together with a statement of Theorem 3.1 for N -≥ 3, indicated in Complement 3.1.

We pass to the description of the algorithm of reconstruction of a complex curve X ⊂ CP 2 satisfying the minimality condition ( * ) from the known boundary γ

= ∂X ⊂ C 2 . Let {ξ k 0 } N k=1 , ξ k 0 ∈ C be an arbitrary grid in C, ξ i 0 = ξ j 0 , i = j, and ξ k 0 / ∈ π 2 γ, k = 1, . . . , N . The complex curve X intersects complex line {z 2 = -ξ k 0 } at points (h s (ξ k 0 , 0), -ξ k 0 ), 1 ≤ s ≤ N + (ξ k 0 , 0).
We are going to present the formulas for finding these points. in contained in Ω 0 . Without loss of generality, one can suppose that |ξ k 0 | < R for all k = 1, . . . , N .

Consider an auxiliary complex curve X R = {(z 1 , z 2 ) ∈ X | |z 2 | R}. Its boundary γ R consists of two disjoint parts (possibly, multiconnected): the first part is γ and the second part γ R is obtained by lifting the circle S R = {z ∈ C | |z| = R} to X via the projection π 2 : X → C.

The complex curve X R does not intersect infinity. Moreover, points of the form a, -ξ k 0 , k = 1, . . . , N belong to X if and only if they belong to X R . Therefore, in order to reconstruct X it is sufficient to reconstruct γ R and then to reconstruct X R , using the algorithm for the case when N -= 0. The algorithm can be formulated as follows:

1. New boundary. Choose a sufficiently large R > 0, so that B c R ⊂ Ω 0 and all ξ k 0 belong to B R . In the case of N -= 1, by virtue of formulas ( 6), we have that

h 1 (ξ 0 , 0) = 1 2πi γ z 1 dz 2 z 2 + ξ 0 -P 1 (ξ 0 , 0), |ξ 0 | = R,
where P 1 can be found using Theorem 3.1. This formula allows to recover γ R and, as a corollary, γ R = γ γ R = ∂X R .

In the case of N -= 2 we have two equalities:

h 1 (ξ 0 , 0) + h 2 (ξ 0 , 0) = 1 2πi γ z 1 dz 2 z 2 + ξ 0 -P 1 (ξ 0 , 0), |ξ 0 | = R, h 2 1 (ξ 0 , 0) + h 2 2 (ξ 0 , 0) = 1 2πi γ z 2 1 dz 2 z 2 + ξ 0 -P 2 (ξ 0 , 0), |ξ 0 | = R,
where P 1 and P 2 can be found using Theorem 3.1. Applying Newton identities and Vi?te formulas, we find h 1 (ξ 0 , 0) and h 2 (ξ 0 , 0). Thus, we have recovered γ R and, as a corollary, γ R = γ γ R = ∂X R .

2. Reduction. In order to find the complex curve X R with boundary ∂X R = γ R we apply the algorithm of reconstruction for the case of N -= 0.

Visualization

To our knowledge, there are, at least, two known algorithms for automatic visualisation of complex curves. The first one was proposed by Trott [START_REF] Trott | Visualization of Riemann surfaces of algebraic functions[END_REF] and requires the knowledge of an analytic expression for the curve. The second algorithm was proposed by Nieser-Poelke-Polthier [START_REF] Nieser | Automatic generation of Riemann surface meshes[END_REF] and requires the knowledge of the branching points and their indices for some fixed projection to C. Our algorithm requires the knowledge of the unordered set of points of intersections of the curve with complex lines C 1 ξ . Let us describe in few words the algorithm of visualisation of complex curves that we use in our examples. Denote by π 1 : C 2 → C the projection into the first factor: π 1 (z 1 , z 2 ) = z 1 . Suppose that X is a complex curve in C 2 such that the covering π 1 : X \ {ramification points} → C has multiplicity L. Consider, for simplicity, a rectangular grid Λ in C:

Λ = z ij 1 : Re z ij 1 = i N , Im z ij 1 = j N , i, j = 0, . . . , N ,
where N is a natural number. Suppose now that we are given the set X Λ = π -1 1 (Λ)∩X and we need to visualize the part of X lying above the rectangle 0

≤ Re z 1 ≤ 1, 0 ≤ Im z 1 ≤ 1.
Let us introduce some terminology. We define a path in Λ as a map γ : {1

, . . . , M } → Λ such that |γ(k + 1) -γ(k)| = 1
N for all admissable k, where M is some natural number.

Let γ : {1, . . . , M } → Λ be a path in Λ and let i : {1, . . . , M } → [1, M ] be the inclusion map. Define the function i

* γ : [1, M ] → C such that i * γ(k) = γ(k) for integer k and i * γ| [k,k+1
] is linear for all admissable k. It is clear that i * γ is a continuous function and hence it can be lifted to X by the map π 1 .

We define a path in X Λ as a map Γ : {1, . . . , M } → X Λ such that γ = π 1 • Γ is a path in Λ and Γ = i * L(i * γ), where i * is the pullback map with respect to i and L(i * γ) is some lift of i * γ to X by π 1 , i. e. L(i * γ) is a continuous map from [1, M ] to X such that π 1 • L(i * γ) = i * γ. We also say that Γ is obtained by lifting of γ.

We will call subsets of Λ and X Λ path-connected if every two points of these sets can be connected by a path in Λ and X Λ , respectively.

Let us describe the practical way to lift paths in Λ to paths in X Λ . Suppose that N is sufficiently large. Let γ : {1, . . . , M } → Λ be a path in Λ and let Γ(1) ∈ π -1 (γ(1)) ∩ X be an arbitrary point. We select Γ(k) ∈ π -1 (γ(k)) ∩ X in such a way that

|Γ(k) -Γ(k -1)| = min |z -Γ(k -1)| : z ∈ π -1 (γ(k)) ∩ X , k = 2, . . . , M.
Then Γ is a path in X Λ obtained by lifting of γ. All possible lifts of γ may be obtained by varying Γ(1). Note that if γ is closed, i. e. γ(1) = γ(M ), Γ need not to be closed.

Finding of ramification points and making branch cuts. The first step in visualization procedure consists in finding of ramification points of X with respect to projection π 1 . Since we have only a finite number of points on X we can find ramification points only approximately. More precisely, we will localize them in small circles. Examples of application of this algorithm are given at Fig. 1 and in Section 5. The visualization algorithm can be easily generalized to the case of general grids. For instance, in our examples we have used a modification with periodic grid.

Examples

1. No points at infinity. We consider the complex curve given by the equation

X 1 = (z 1 , z 2 ) ∈ C 2 : z 2 + 1 = z 2 1 -exp( z 2 4 ) 2 , |z 2 | ≤ 1.9 . (31) 
The boundary γ 1 = ∂X 1 of this curve is the disjoint union of two real curves γ r 1 and γ g 1 , see Fig. 2. We are going to recover X 1 from γ 1 . First, note that the real curve |z 2 | = 1.9 in C divides C into two parts Ω 0 = {|z 2 | > 1.9} and Ω 1 = {|z 2 | < 1.9}. We check numerically that G 1 (ξ) is zero in a neighborhood W ξ * of some ξ * = (ξ * 0 , 0), ξ 0 ∈ Ω 0 , and thus N -= 0 by Theorem 3.2. Next, we compute the value

µ 1 = σ 0 (ξ 0 ) = 1 2πi γ 1 dz 2 z 2 + ξ 0 ,
for some ξ 0 ∈ Ω 1 (it will be the same for any ξ 0 ∈ Ω 1 ). It turns out that µ 1 = 4 and thus π 2 : X 1 → Ω 1 is a (ramified) covering with 4 sheets. Denote X 1 ∩ C 1 ξ = {(h j (ξ), -ξ 0 )} 4 j=1 , ξ = (ξ 0 , 0), |ξ 0 | < 1.9. Using Newton identities, we determine the values of symmetric functions σ k : σ 1 = s 1 , σ 2 = 1 2 (s 2 1 -s 2 ), σ 3 = 1 6 (s 3 1 -3s 1 s 2 + 2s 3 ), σ 4 = 1 24 (s 4 1 -6s 2 1 s 2 + 3s 2 2 + 8s 1 s 3 -6s 4 ). Finally, taking into account Vi?te formulas, we find h 1 (ξ 0 , 0), . . . , h 4 (ξ 0 , 0) as the roots of the following polynomial in t: t N + (ξ 0 ) -σ 1 (ξ 0 )t N + (ξ 0 )-1 + • • • + (-1) N + (ξ 0 ) σ N + (ξ 0 ,0) (ξ 0 ) = 0.

Reconstructed surface is represented at Fig. 2.

2. One point at infinity. Consider the the complex curve X 2 which is the part of the curve X 2 = (w 0 : w 1 : w 2 ) ∈ CP 2 : w 2 1 = w 2 2 + w 2 0 , bounded by the real curve γ 2 = {(z 1 (t), z 2 (t)) ∈ C 2 : t ∈ [0, 2π]}, z 2 (t) = 1.9e it , z 1 (t) = z 2 2 (t) + 1, z 1 (0) > 0, Next, taking into account the Vi?te formulas, we find the values h 1 (ξ 0 , 0), h 2 (ξ 0 , 0), |ξ 0 | = R, as the roots of the following polynomial in t: t 2 -σ 1 (ξ 0 )t + σ 2 (ξ 0 ) = 0.

Then we put γ 3,R = γ 3 γ 3,R and recover X 3,R from γ 3,R using the algorithm for the case of no points at infinity. The result of reconstruction is depicted at Fig. 4.
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 1 Figure 1: Rieman surfaces of functions f (z) = sin(z), |z| 2 (left) and f (z) = √ z 4 + 1, |z| 2 (right) obtained by the visualization algorithm.
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 22 Figure 2: The given boundary γ 1 = γ r 1 γ g 1 (red and green) and the reconstructed complex curve X 1 ⊂ C 2 . The color indicates Im(z 1 ).
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 422 Figure 4: The real curve γ 3 (red) and the reconstructed complex curve X 3 with two points at infinity. The color indicates Im(z 1 ).
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The algorithm takes as input the points {ξ k 0 } N k=1 and the curve γ (for example, represented as a finite number of points belonging to γ). On the output of the algorithm we obtain the set of points (h s (ξ k 0 , 0), -ξ k 0 ), 1 ≤ k ≤ N ; 1 ≤ s ≤ N + (ξ k 0 , 0).

No points at infinity

1. Computation of N + . According to formula (4), for every domain Ω l≥0 , the number µ l = N + (ξ 0 , 0), ξ 0 ∈ Ω l , is equal to the winding number of the curve π 2 γ with respect to a point ξ 0 ∈ Ω l :

2. Computation of power sums. If N -= 0 then, according to Theorem 3.1, for every point ξ k 0 ∈ Ω l≥0 we have that P m (ξ k 0 , 0) = 0. Using formula ( 6) we obtain the following formulas for the power sums of the functions to be determined:

3. Computation of symmetric functions. For every point ξ k 0 ∈ Ω ≥1 , the Newton identities

allow to reconstruct the elementary symmetric functions:

Desymmetrisation.

For every point ξ k 0 ∈ Ω l , using Vi?te formulas, one can find the complex numbers h 1 (ξ k 0 , 0), . . . , h µ l (ξ k 0 , 0) (up to order). The points

are the required points of the complex curve X.

One or two points at infinity

These cases can be reduced to the case N -= 0 in the following way. Since π 2 γ ⊂ C is a compact real curve, there exists such R > 0, that the set

Without restriction of generality we suppose that all ramification points are projected by π 1 into interior points of Λ. Take any interior point z 1 ∈ Λ and select a small closed path γ : {1, . . . , M } → Λ around z 1 so that there is at most one ramification point inside the polygon γ(1) . . . γ(M ). For example, one can take as γ the following path:

where i is the imaginary unit. Now consider different lifts of γ to X Λ . If at least one lift is not closed, mark z 1 as a possible ramification point (meaning that it is situated near the projection of some ramification point of X). Now vary z 1 and mark all possible ramification points. The resulting set will consist of several path-connected components each of which localizes the position of one ramification point of X with respect to π 1 .

Next, we need to cut the grid Λ with branching points removed into simply connected domains. The natural choice is the shortest cut graph, which can be computed by the algorithm proposed in [START_REF] Kälberer | Stripe parametrization of tubular surfaces[END_REF], which, in turn, generalizes the algorithm for closed surfaces of [START_REF] Erickson | Greedy optimal homotopy and homology generators[END_REF].

Denote the cut graph by Λ c . An important observation is that every closed path in Λ \ Λ c always lifts to a closed path in X Λ since it doesn't contain π 1 -projections of ramification points inside.

Visualization. Now denote Λ \ Λ c = ∪ S s=1 Λ s , where Λ s are different path-connected components. Take any z s 1 ∈ Λ s and z s 2 ∈ π -1 1 (z s 1 ) ∩ X. Now take other z 1 ∈ Λ s and connect z s 1 with z 1 by some path γ. Then γ lifts to a path Γ with Γ(1) = (z s 1 , z s 2 ) and Γ(2) = (z 1 , z 2 ) for some z 2 ∈ π -1 1 (z 1 ) ∩ X and z 2 doesn't depend on γ. Varying z 1 we thus obtain the map Σ(z s 1 , z s 2 ) : Λ s → X Λ which allows us to visualize the part of X. Varying z s 2 ∈ π -1 1 (z s 1 ) ∩ X (the latter is the finite set, namely, it consists of L elements) we obtain the other maps Σ(z s 1 , z s 2 ) which allow us to visualize other parts of X. Clearly, the set of obtained maps doesn't depend on the choice of z s 1 ∈ Λ s . Hence we can denote the obtained maps by Σ l s , l = 1, . . . , L. It is clear that

The part π -1 (Λ c ) ∩ X Λ consists of cuts and preimages of possible ramification points.

The cuts can be visualized as the already visualized part of the surface. The only problem is the visualization of π 1 -preimages of possible ramification points. But the latter take a little part of the surface when N is large and one can just forget about their visualization. On the other hand, in our examples they were visualized using low-level graphics approach.

intersecting infinity at (0 : 1 : 1). We suppose that the number of points at infinity is apriori unknown. We are going to reconstruct X 2,R = X 2 ∩ {z 2 < R}, where R = 3, from γ 2 . Note that the curve

According to the algorithm, the first step is to determine the number of points at infinity. We choose some ξ * = (ξ * 0 , 0) with ξ * 0 ∈ Ω 0 and check that in some small neighborhood W ξ * of ξ * we have G 1 ≡ 0 and thus N -≥ 1 by Theorem 3.2.

Next, we fix two generic ξ 1 0 , ξ 2 0 ∈ Ω 0 and determine c 11 , c 12 from the linear system c 11

This system is uniquely solvable and gives c 11 ≈ 1, c 12 ≈ 0.

Next, we check numerically that in the neighborhood W ξ * of ξ * the following identity holds:

Theorem 3.2 together with the estimate N -≥ 1 imply that N -= 1.

Next, according to the algorithm, in order to reduce the problem to the case of no points at infinity, we need to recover the auxilary curve γ

∞ . Thus, it remains to recover X 2,R from the known boundary γ 2,R using the algorithm for the case of no points at infinity, see the previous example. The reconstructed curve is depicted at Fig. 3.

3. Two points at infinity. Consider the complex curve X 3 , which is the part of the algebraic curve

, bounded by the real curve

The curve X 3 has two points at infinity, namely, q 1 = (0 : 1 : e 2πi 3 ), q 2 = (0 : 1 : e -2πi

3 ). We suppose that the number of points at infinity is a priori unknown. We are going to reconstruct X 3 from γ 3 . The first step is to determine the number of points at infinity. Choose a generic ξ * = (ξ * 0 , 0), ξ * 0 ∈ Ω 0 , and some neighborhood W ξ * of ξ * .

1. We check that G 1 ≡ 0 in W ξ * so that N -≥ 1 by Theorem 3.2.

2. We choose two generic ξ 1 0 , ξ 2 0 ∈ Ω 0 and solve (32) for c 11 , c 12 . It turns out that system (32) is uniquely solvable. However, identity (33) does not hold in W ξ * . Using Theorem 3.2, we obtain that N -≥ 2.

3. We consider [START_REF] Nieser | Automatic generation of Riemann surface meshes[END_REF] as an identity in a neighborhood of ξ * 0 . We find numerically that c 11 ≈ 0.9974, c 12 ≈ -0.3335, c 21 ≈ 1.0133, c 22 ≈ -0.6699, c 23 ≈ 0.5567.

We check that (26) holds in a neighborhood of W ξ * with constants a 1 , a 2 , b 1 , b 2 , c 1 , c 2 given by equations ( 27). If follows from Theorem 3.2 and from the inequality N -≥ 2 that N -= 2.

Suppose that we want to recover X 3,R = X 3 ∩ {|z 2 | < R}, R = 3. According to the algorithm, we need to find the auxilary boundary γ 3,R = X 3 ∩ {|z 2 | = R}. Denote γ 3,R = {(h j (ξ 0 , 0), -ξ 0 ) : |ξ 0 | = R, j = 1, 2}. We compute the values of symmetric functions σ 1 (ξ 0 ) = h 1 (ξ 0 , 0) + h 2 (ξ 0 , 0), σ 2 (ξ 0 ) = h 1 (ξ 0 , 0)h 2 (ξ 0 , 0) using the explicit