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Algorithm for reconstruction of Riemann surface

with given boundary in complex projective space

A.D. Agaltsov1, G.M. Henkin2

Abstract

In this paper we propose a numerically realizable algorithm for re-
construction of a complex curve with known boundary and without
compact components in complex projective space.

Key words: Riemann surface, reconstruction algorithm, Burgers
equation, Cauchy type formulas.

1 Introduction

Let us denote by CP2 the complex projective space with homogeneous coordi-
nates (w0 : w1 : w2). Let a real closed rectifiable, oriented curve γ in CP2 be the
boundary of a complex curve X ⊂ CP2 with notation γ = bX. Without restric-
tion of generality we suppose that the following conditions of general position
hold:

(0 : 1 : 0) 6∈ X, w0|γ 6= 0.

Put C
2 = {w ∈ CP2 : w0 6= 0} with coordinates z1 = w1

w0
, z2 = w2

w0
. For

almost all ξ = (ξ0, ξ1) ∈ (C2)∗ the points of intersection of X with complex line
C

1
ξ = {z ∈ C

2 : ξ0 + ξ1z1 + z2 = 0} form a finite set of points

(
z
(j)
1 (ξ), z

(j)
2 (ξ)

)
=

(
hj(ξ0, ξ1),−ξ0 − ξ1hj(ξ0, ξ1)

)
, j = 1, . . . , N+(ξ).

The following Cauchy type formula from [DH2] plays the essential role in recon-
struction of X through γ:

Gm(ξ0, ξ1)
def
==

1

2πi

∫

γ

zm1 (ξ0 + ξ1z1 + z2)
−1d(ξ0 + ξ1z1 + z2) =

N+(ξ)∑

j=1

hm
j (ξ0, ξ1) + Pm(ξ0, ξ1), m = 0, 1, . . . , (1)

where N+(ξ) = N+(ξ0, ξ1) is the number of points of intersection (multiplicities
taken into account) of X with complex line C

1
ξ , Pm(ξ0, ξ1) is a polynomial of
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degree at most m with respect to ξ0. In addition, P0(ξ0, ξ1) = −N−, where N−

is the number of points of intersection of X with infinity {w ∈ CP2 : w0 = 0},

P1(ξ0, ξ1) =

N
−
(ξ)∑

k=1

akξ0 − bk
akξ1 + 1

, (2)

ak = w2(qk), bk = dw2

dw0
(qk), where qk, k = 1, . . . , N−, are the points of in-

tersection of X with infinity {w ∈ CP2 : w0 = 0}. In particular, the following
corollary of (1) holds:

G0(ξ0, ξ1) =
1

2πi

∫

γ

d(ξ0 + ξ1z1 + z2)

ξ0 + ξ1z1 + z2
= N+(ξ)−N−. (3)

Let further ξ1 = 0 and let π2 : C
2 → C be the projection on second factor:

π2(z1, z2) = z2. We have π2γ ⊂ C, C \ π2γ = ∪L
l=0Ωl, where {Ωl} are the

connected components of C \ π2γ. For every component Ωl the number of
points of intersection of X with line z2 = −ξ0, ξ0 ∈ Ωl, multiplicities taken
into account, will be denoted by µl = N+(ξ0, 0). Let Ω0 denote the unbounded
component of set C \ π2γ. From definition of N± it follows that

µ0 = N+(ξ0, 0) = N−, ξ0 ∈ Ω0. (4)

Assume that complex curve X does not contain compact components, or
equivalently, satisfies the following condition of minimality from the work [HM]:

For arbitrary complex curve X̃ ⊂ CP2 with condition bX̃ =
bX = γ and for almost all ξ ∈ (C2)∗ the number of points of

intersection Ñ+(ξ) of X̃ with line C
1
ξ, multiplicities taken into

account, is not less than the number N+(ξ) for curve X.

(∗)

Condition of minimality (∗) is a condition of general position and is fulfilled
for X if, for example, every irreducible component of X is a transcendental
complex curve. Note that from theorems of Chow [C] and Harvey, Shiffman [HS]

it follows that an arbitrary complex curve X̃ ⊂ CP2 with condition bX̃ = bX
admits the unique representation X̃ = X∪V , where X is a curve with condition
of minimality (∗), and V is a compact algebraic curve, possibly with multiple
components.

In this work in development of [DH2] we have obtained a numerically re-
alizable algorithm for reconstruction of complex curve X ⊆ CP2 with known
boundary and with condition of minimality. This algorithm permits, in par-
ticular, to make applicable the result of [HM] about principal possibility to
reconstruct topology and conformal structure of a two-dimensional surface X
in R

3 with constant scalar conductivity from measurements on bX of electric
current densities, being created by three potentials in general position.

Our algorithm depends on parameter µ0 = N±(ξ0, 0), ξ0 ∈ Ω0. It was tested
on many examples and was rigorously justified for µ0 = 0, 1, 2. Despite the
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difficulty of justification of the algorithm for µ0 ≥ 3, there are no principal ob-
stacles for the realization of our algorithm for any µ0. Moreover, in Theorem 3.2
we propose a method for finding parameter µ0 in terms of γ. This makes the
algorithm much more applicable.

This paper is an extended version of our work [AH]. We have added new
results (Theorem 3.2 and Proposition 3.1) and we have improved Section 4
(Visualization).

2 Cauchy type formulas and Riemann-Burgers

equations

Let us give at first a new proof of the Cauchy type formula (1) from [DH2],
permitting to obtain explicit expressions for functions Pm(ξ0, ξ1).

Theorem 2.1. Let X ⊂ CP2 \ [0 : 1 : 0] be a complex curve without compact
components, γ = bX ⊂ C

2 be a real rectifiable oriented curve. Suppose that for
almost all ξ ∈ (C2)∗ all the points of intersection of X with CP1

ξ have multiplicity
at most one. Then the following equalities are fulfilled:

Gm(ξ0, ξ1) =

N+(ξ)∑

j=1

hm
j (ξ0, ξ1) + Pm(ξ0, ξ1), ξ = (ξ0, ξ1) ∈ (C2)∗, m ≥ 1, (5)

where Pm(ξ0, ξ1) is a polynomial of degree at most m with respect to ξ0 of the
following form:

Pm(ξ0, ξ1) =

µ0∑

s=1

m−1∑

k=0

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · dimw1

dw
im
0

(qs)

(m− k − 1)!

dm−k

dwm−k
0

ln(ξ0w0 + ξ1w1 + w2)|qs−

µ0∑

s=1

∑

i1+···+im=m

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs).

In particular, if µ0 = 0 then Pm ≡ 0.

Remark 2.1. In the exceptional case, when [0 : 1 : 0] ∈ X, the term Pm(ξ0, ξ1)
in (5) need not to be a polynomial in general.

Proof. Put g̃ = ξ0w0 + ξ1w1 + w2 and g = g̃
w0

= ξ0 + ξ1z1 + z2. Consider
differential forms

ωm
def
== zm1

dg

g
=

wm
1

wm
0

w0

g̃
d

(
g̃

w0

)
=

wm
1

wm
0

dg̃

g̃
− wm

1

wm+1
0

dw0, m = 0, 1, . . .

Then Gm(ξ) = 1
2πi

∫
γ
ωm. Let us compute this integral explicitly. Denote by

pj , j = 1, . . . , N+(ξ) the points of intersection of X with CP1
ξ , and by qs,
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s = 1, . . . , µ0 the points of intersection of X with infinity {w ∈ CP2 : w0 = 0}.
Denote by Bε

j the intersection of X with the ball of radius ε in CP2 centered
at pj and by Dε

s the intersection of X with the ball of radius ε centered at qs.
The restriction of form ωm on X is meromorphic with poles at points pj and
qs. Thus the following equality is valid:

Gm(ξ) =
1

2πi

∫

γ

ωm =

N+(ξ)∑

j=1

1

2πi

∫

bBε
j

ωm +

µ0∑

s=1

1

2πi

∫

bDε
s

ωm.

If µ0 = 0, then the second group of terms is absent. The integral
∫
bBε

j

ωm can

be calculated as a residue at the first order pole:
∫

bBε
j

ωm =

∫

bBε
j

zm1
dg̃

g̃
−

∫

bBε
j

wm
1

wm+1
0

dw0 =

∫

bBε
j

zm1
dg̃

g̃
= 2πi hm

j (ξ).

Let µ0 > 0. Computation of integral
∫
bDε

s
ω1 will be done in two steps. Let

us calculate first
∫
bDε

s

wm
1

wm+1
0

dw0. Consider the expansion of w1(w0) into power

series in w0 in the neighborhood of point qs:

w1(w0) = w1(qs) +
dw1

dw0
(qs)w0 +

d2w1

dw2
0

(qs)w
2
0 + · · · .

Note further that

wm
1 (w0) =

∞∑

k=0

∑

i1+···+im=k

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs)w
k
0 .

The coefficient near wm
0 can be presented in the form

∫

bDε
s

wm
1

wm+1
0

dw0 = 2πi
∑

i1+···+im=m

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs).

Now we can calculate the integral
∫
bDε

s

wm
1

wm
0

dg̃
g̃

. Using relation dg̃ = dg̃
dw0

dw0

and expansion of w1(w0) into power series in w0 we obtain:

∫

bDε
s

wm
1

wm
0

dg̃

g̃
=

∫

bDε
s

1

wm
0

(
w1(qs)+

dw1

dw0
(qs)w0+

d2w1

dw2
0

(qs)w
2
0+· · ·

)m
dg̃

dw0

1

g̃
dw0 =

∞∑

k=0

∫

bDε
s

∑

i1+···+im=k

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs)w
k−m
0

dg̃

dw0

1

g̃
dw0 =

m−1∑

k=0

∫

bDε
s

∑

i1+···+im=k

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs)w
k−m
0

dg̃

dw0

1

g̃
dw0 =

m−1∑

k=0

2πi

(m− k − 1)!

∑

i1+···+im=k

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs) lim
w0→0

dm−k−1

dwm−k−1
0

(
dg̃

dw0

1

g̃

)
.
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From here, taking into account the relation dg̃
dw0

1
g̃
= d ln g̃

dw0
, we obtain, finally

∫

bDε
s

wm
1

wm
0

dg̃

g̃
= 2πi

m−1∑

k=0

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · dimw1

dw
im
0

(qs)

(m− k − 1)!

dm−k

dwm−k
0

ln(ξ0w0+ξ1w1+w2)|qs .

It is a polynomial of degree at most m with respect to ξ0.

Before considering the algorithm for reconstruction of complex curve we
need to prove one more theorem, which connects among themselves different

functions hj(ξ0, ξ1), j = 1, . . . , N+(ξ0, ξ1). Denote by Ω
(k)
l the infinitesimal

neighborhood of order k of the set Ωl.

Theorem 2.2. Let X ⊂ CP2 \ [0 : 1 : 0] be a complex curve without compact

components, γ = bX ⊂ C
2. Fix l ∈ {0, . . . , L}. Suppose that functions ĥj, j =

1, . . . , µl, are mutually distinct and analytic in Ω
(1)
l and satisfy the Riemann–

Burgers equation in ξ ∈ Ω
(1)
l :

∂ĥj

∂ξ1
(ξ) = ĥj(ξ)

∂ĥj

∂ξ0
(ξ), j = 1, . . . , µl. (6)

Then the functions ĥj, j = 1, . . . , µl, satisfy the system

Gm(ξ) =

µl∑

j=1

ĥm
j (ξ) + P̂m(ξ), ξ ∈ Ω

(1)
l , m = 1, 2, . . . , (7)

where P̂m, m = 1, 2, . . . , are some analytic functions in Ω
(1)
l , being polynomials

of degree at most m with respect to ξ0, if and only if the functions ĥj, j = 1,
. . . , µl, satisfy the equation

0 =
∂2

∂ξ20

(
G1(ξ)−

µl∑

j=0

ĥj(ξ)

)
, ξ ∈ Ω

(1)
l . (8)

Moreover, for minimal {µl} with properties (7)–(8) there exists the unique set

of functions ĥj, j = 1, . . . , µl, satisfying the equivalent conditions (7)–(8) and

the unique set of functions P̂m, m = 1, 2, . . . , from condition (7). Furthermore,

ĥj = hj, P̂m = Pm for j = 1, . . . , µl, m = 1, . . . , where functions hj and Pm

are defined in Theorem (2.1).

Proof. Necessity. From (7) it follows that

G1(ξ)−
µl∑

j=1

ĥj(ξ) = P̂1(ξ), ξ ∈ Ω
(1)
l .

Differentiating the latter equality two times with repsect to ξ0 and taking into
account that P̂1 is a polynomial in ξ0 of degree at most 1 we obtain (8).
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Sufficiency. Suppose that mutually distinct functions {ĥj(ξ)} on Ω
(1)
l , l = 0,

1, . . . , L, are holomorphic and satisfy the equations (6), (8). In particular, for

any ξ0 ∈ Ω
(0)
l we have

∂ĥj

∂ξ1
(ξ0, 0) = ĥj(ξ0, 0)

∂ĥj

∂ξ0
(ξ0, 0).

By Cauchy–Kowalewski theorem in a neighborhood of arbitrary ξ∗ ∈ Ω
(1)
l there

exist unique holomorphic functions {h̃j(ξ0, ξ1)}, satisfying the Riemann–Burgers

equation (6) and such that h̃j |Ω(1)
l

= ĥj .

From here and from Proposition 3.3.3 of [DH2] we obtain existence and

uniqueness of holomorphic functions {P̂m(ξ)}, being polynomials of degree at

most m in ξ0, such that {ĥj(ξ)} and {P̂m(ξ)} satisfy the system (7) for m = 1,

2, . . . , j = 1, . . . , µl, ξ ∈ Ω
(1)
l .

Existence and uniqueness. Existence of functions {ĥj} and {P̂m} with nec-

essary properties follows from Theorem 2.1. More precisely, ĥj = hj and

P̂m = Pm, j = 1, . . . , µl, m ≥ 1. Uniqueness of functions {ĥj} for mini-
mal {µl} with properties (7)–(8) follows from Theorem II of [DH2] and from

Theorem 3 of [HM]. Uniqueness of polynomials {P̂m} for minimal {µl} with
properties (7)–(8) follows from the proof of sufficiency.

3 Reconstruction algorithm

Consider now the reconstruction algorithm of complex curve X ⊆ CP2 with
given boundary bX and with condition of minimality (∗). Let us consider the
cases µ0 = 0, 1, 2.

The reconstruction algorithm is based on formulas (5) with polynomials Pm,
m = 0, 1, . . . . The next theorem permits to calculate these polynomials.

Theorem 3.1. Let X ⊆ CP2 be a complex curve without algebraic subdomains,

γ ⊆ C
2 be its boundary. Let mutually distinct holomorphic in ξ ∈ Ω

(1)
l , l = 0, 1,

. . . , L, functions {hj(ξ)} and holomorphic in ξ ∈ Ω
(1)
l , l = 0, . . . , L, functions

Pm(ξ0, ξ1), being polynomials of degree at most m in ξ0, satisfy the system (5)

for ξ ∈ Ω
(1)
l , j = 1, . . . , N+(ξ) with minimal N+(ξ) (existence and uniqueness

of such functions follow from Theorem 2.2). Then the following statements are
valid:

1. If µ0 = 0, then Pm(ξ0, 0) ≡ 0 for all m. Besides, G1(ξ0, ξ1) = 0, if
|ξ0| ≥ const(X)(1 + |ξ1|).

2. If µ0 = 1, then P1(ξ0, 0) = c11+ c12ξ0, where constants c11 and c12 satisfy
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identity in ξ0 ∈ Ω0:

c11
∂G1

∂ξ0
(ξ0, 0) + c12

(
ξ0

∂G1

∂ξ0
(ξ0, 0) +G1(ξ0, 0)

)
=

= G1(ξ0, 0)
∂G1

∂ξ0
(ξ0, 0)−

∂G1

∂ξ1
(ξ0, 0).

(9)

3. If µ0 = 2, then P1(ξ0, 0) = c11 + c12ξ0, P2(ξ0, 0) = c21 + c22ξ0 + c23ξ
2
0 ,

where constants c11, c12, c21, c22, c23 satisfy identity in ξ0 ∈ Ω0:

2
(
G1 − c11 − c12ξ0

)∂G1

∂ξ1
−G1

(
c22 + 2c23ξ0

)
− ∂G2

∂ξ1
− 3c212æ+ æc23 =

=

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)
∂G1

∂ξ0
+ (10)

+

(
G2

1 − 2G1c11 − 2G1c12ξ0 −G2

)
c12, where æ =

1

2πi

∫

γ

z1 dz2.

Proof. By Theorem 2.2 functions Pm from condition of this theorem are defined
in Theorem 2.1.

1. By Theorem 2.1 Pm ≡ 0, if µ0 = 0.

2. For ξ ∈ Ω
(1)
l we have equality P1(ξ0, ξ1) = C11(ξ1) + C12(ξ1)ξ0. We need

to find constants c11 = C11(0) and c12 = C12(0).
Differentiate the equation (5) with respect to ξ0 and rescrict this equation

and its differentiated version to ξ ∈ Ω
(0)
l :

h1(ξ0, 0) = G1(ξ0, 0)− c11 − c12ξ0,

∂h1

∂ξ1
(ξ0, 0) =

∂G1

∂ξ1
(ξ0, 0)− Ċ11(0)− Ċ12(0)ξ0,

∂h1

∂ξ0
(ξ0, 0) =

∂G1

∂ξ0
(ξ0, 0)− c12,

where ξ0 ∈ Ω0. By Theorem 2.2 for ξ0 ∈ Ω0 function h1(ξ0, 0) satisfies the
equality ∂h1

∂ξ1
(ξ0, 0) = h1(ξ0, 0)

∂h1

∂ξ0
(ξ0, 0). If we substitute in this equality the

expressions for h1(ξ0, 0),
∂h1

∂ξ1
(ξ0, 0) and ∂h1

∂ξ0
(ξ0, 0), we will obtain the equation

∂G1

∂ξ1
(ξ0, 0)− Ċ11(0)− Ċ12(0)ξ0 =

=

(
G1(ξ0, 0)− c11 − c12ξ0

)(
∂G1

∂ξ0
(ξ0, 0)− c12

)
.

(11)

This equation is valid for ξ0 ∈ Ω0. Let us divide it into ξ0 and tend ξ0 → ∞.
We obtain equality Ċ12(0) = −c212. Taking into account this equality, we can
rewrite the equation (11) in the form

∂G1

∂ξ1
(ξ0, 0)− Ċ11(0) =

=

(
G1(ξ0, 0)− c11 − c12ξ0

)
∂G1

∂ξ0
(ξ0, 0)−

(
G1(ξ0, 0)− c11

)
c12.

(12)

7



Taking into account that ξ0
∂G1

∂ξ0
(ξ0, 0) → 0 as ξ0 → ∞ and passing ξ0 → ∞

in (12), we obtain the equality Ċ11(0) = −c11c12. Due to the just obtained
equality the equation (12) takes the desired form.

3. By Theorem 2.2 functions h1(ξ) and h2(ξ) satisfy the Riemann–Burgers

equation for ξ ∈ Ω
(1)
l . So, the following equalities are valid:

∂(h1h2)

∂ξ1
= h1

∂h2

∂ξ1
+

∂h1

∂ξ1
h2 = h1h2

∂(h1 + h2)

∂ξ0
, (13)

∂(h2
1 + h2

2)

∂ξ0
= 2h1

∂h1

∂ξ0
+ 2h2

∂h2

∂ξ0
= 2

∂(h1 + h2)

∂ξ1
. (14)

Note that h1h2 = 1
2

(
h1 + h2

)2 − 1
2

(
h2
1 + h2

2

)
. Therefore the system (13)–(14) is

equivalent to the system

∂(h1 + h2)
2

∂ξ1
− ∂(h2

1 + h2
2)

∂ξ1
=

((
h1 + h2

)2 −
(
h2
1 + h2

2

))∂(h1 + h2)

∂ξ0
, (15)

∂(h2
1 + h2

2)

∂ξ0
= 2

∂(h1 + h2)

∂ξ1
. (16)

We substitute into this system h2
1 + h2

2 and h1 + h2 from equation (5), using
notations P1(ξ0, ξ1) = C11(ξ1) + C12(ξ1)ξ0, P2(ξ0, ξ1) = C21(ξ1) + C22(ξ1)ξ0 +

C23(ξ1)ξ
2
0 . Equation (16) restricted to Ω

(0)
l takes the form

∂G2

∂ξ0
(ξ0, 0)− c22 − 2c23ξ0 = 2

(
∂G1

∂ξ1
(ξ0, 0)− Ċ11(0)− Ċ12(0)ξ0

)
. (17)

Divide this equation into ξ0 and tend ξ0 → ∞. We obtain the equality Ċ12(0) =
c23. Taking this equality into account and passing ξ0 → ∞ in (17) we obtain
the equality Ċ11(0) =

1
2c22.

Now substitute the expressions for h2
1+h2

2 and h1+h2 into (15) and restrict

the obtained formula to Ω
(0)
l . We obtain the equality

2

(
G1−c11−c12ξ0

)(
∂G1

∂ξ1
−Ċ11(0)−Ċ12(0)ξ0

)
−∂G2

∂ξ1
+Ċ21(0)+Ċ22(0)ξ0+Ċ23(0)ξ

2
0 =

=

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)(
∂G1

∂ξ0
+ c12

)
. (18)

Divide this equation into ξ20 and pass ξ0 → ∞. This leads to the equality

2c12Ċ12(0) + Ċ23(0) =
(
c212 + c23

)
c12.

Using the latter equality, divide (18) into ξ0 and pass ξ0 → ∞ to obtain the
equality

2c11Ċ12(0) + 2c12Ċ11(0) + Ċ22(0) =
(
−2c11 + c22

)
c12.

8



Taking into account the obtained equalities one can rewrite (18) in the form

2
(
G1−c11−c12ξ0

)∂G1

∂ξ1
−2G1

(
Ċ11(0)+Ċ12(0)ξ0

)
+2c11Ċ11(0)−

∂G2

∂ξ1
+Ċ21(0) =

=

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)
∂G1

∂ξ0
+

+

((
G1 − c11

)2 − 2G1c12ξ0 −G2 + c21

)
c12. (19)

Pass ξ0 → ∞ in this equality and note that the following relations are valid

lim
ξ0→∞

ξ0
∂G1

∂ξ1
= lim

ξ0→∞

ξ0
1

2πi

∫

γ

z1 dz1
ξ0 + z2

=
1

2πi

∫

γ

z1 dz1 = 〈bγ, 1

4πi
z21〉 = 0,

lim
ξ0→∞

ξ0G1 = lim
ξ0→∞

ξ0
1

2πi

∫

γ

z1 dz2
ξ0 + z2

=
1

2πi

∫

γ

z1 dz2,

lim
ξ0→∞

ξ20
∂G1

∂ξ0
= − lim

ξ0→∞

ξ20
1

2πi

∫

γ

z1 dz2
(ξ0 + z2)2

= − 1

2πi

∫

γ

z1 dz2.

We obtain

−2æĊ12(0) + 2c11Ċ11(0) + Ċ21(0) = −
(
c212 + c23

)
æ+

(
c211 − 2c12æ+ c21

)
c12.

Express constants Ċij(0) through cij in obtained equations:

Ċ11(0) =
1

2
c22,

Ċ12(0) = c23,

Ċ23(0) = c312 − c12c23,

Ċ22(0) = −2c11
(
c12 + c23

)
,

Ċ21(0) =
(
c211 − 3c12æ+ c21

)
c12 +æc23 − c11c22.

(20)

Substituting these constants to (19), we obtain the third statement of Theo-
rem 3.1.

The next theorem permits to find µ0 through γ.

Theorem 3.2. Let X ⊂ CP2 \ [0 : 1 : 0] be a complex curve without algebraic
subdomains, γ = bX ⊂ C

2 be the boundary of X. Let functions Gm(ξ0, ξ1),
m ≥ 1, be defined by formula (1) and number µ0 defined by formula (4). Then
the following statements are valid:

1. If G1(ξ0, ξ1) = 0 for |ξ0| ≥ const(X)(1 + |ξ1|), then µ0 = 0.
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2. If there exist such complex constants c11, c12 that for any ξ ∈ Ω
(1)
0 the

following equality is valid:

c11
∂G1

∂ξ0
(ξ) + c12

(
ξ0

∂G1

∂ξ0
(ξ) +G1(ξ)

)
= G1(ξ)

∂G1

∂ξ0
(ξ)− ∂G1

∂ξ1
(ξ), (21)

then µ0 ≤ 1.

3. If there exist such complex constants c11, c12, c21, c22, c23 that the follow-
ing equality is valid:

2
(
G1(ξ)− c11 − c12ξ0

)∂G1

∂ξ1
(ξ)−G1(ξ)

(
c22 + 2c23ξ0

)
−

−∂G2

∂ξ1
(ξ)− 3c212æ+ æc23 =

((
G1(ξ)− c11 − c12ξ0

)2 −G2(ξ)+

+c21 + c22ξ0 + c23ξ
2
0

)
∂G1

∂ξ0
(ξ) +

(
G2

1(ξ)− 2G1(ξ)c11−

−2G1(ξ)c12ξ0 −G2(ξ)

)
c12, where æ =

1

2πi

∫

γ

z1 dz2, ξ ∈ Ω
(1)
0 ,

(22)

then µ0 ≤ 2.

Proof. 1. Equality G1(ξ0, ξ1) = 0 for |ξ0| ≥ const(X)(1 + |ξ1|) imply according
to [DH2] the moment condition

∫

γ

zk1
1 zk2

2 dz2 = 0 for all k1, k2 ∈ N.

From here according to [W] and [HL] it follows that for an appropriate choice of
orientation γ is the boundary of a complex curve in C

2. Hence either µ0 = 0 or
X is a domain on algebraic curve in CP2. But X can’t be a domain on algebraic
curve in CP2 because X doesn’t contain algebraic subdomains.

2. Let conditions of general position be fullfiled. Put

h(ξ0, ξ1) = G1(ξ0, ξ1)− C11(ξ1)− C12(ξ1)ξ0,

C11(ξ1) = c11 − c11c12ξ1,

C12(ξ1) = c12 − c211ξ1,

(23)

where ξ = (ξ0, ξ1) ∈ Ω
(1)
0 .

Taking into account (23), we can rewrite the equality (21) in the form

∂h

∂ξ1
(ξ0, ξ1) = h(ξ0, ξ1)

∂h

∂ξ0
(ξ0, ξ1), ξ = (ξ0, ξ1) ∈ Ω

(1)
0 . (24)

From definition (23) we obtain the following equality:

∂2

∂ξ20

(
G1(ξ0, ξ1)− h(ξ0, ξ1)

)
= 0, ξ = (ξ0, ξ1) ∈ Ω

(1)
0 . (25)

10



From equalities (24), (25) due to Theorems 2.1, 2.2 and Theorem 3 from [HM]
we obtain

X ∩
{
z2 = −ξ0

}
=

{(
h(ξ0, 0),−ξ0

)}
, ξ0 ∈ Ω0. (26)

From here it follows that µ0 ≤ 1.
3. Let conditions of general position be fullfiled. Let us define functions h1

and h2 by the following relations:

h1(ξ0, ξ1) + h2(ξ0, ξ1) = G1(ξ0, ξ1)− C11(ξ1)− C12(ξ1)ξ0,

h2
1(ξ0, ξ1) + h2

2(ξ0, ξ1) = G2(ξ0, ξ1)− C21(ξ1)− C22(ξ1)ξ0 − C23(ξ1)ξ
2
0 ,

(27)

Cij(ξ1) = cij + Ċij(0)ξ1, i = 1, j = 1, 2 and i = 2, j = 1, 2, 3, (28)

where ξ = (ξ0, ξ1) ∈ Ω
(1)
0 and constants Ċij(0) are defined by formulas (20).

Taking into account definitions (28) the identity (22) is equivalent to the

identity (18), where ξ = (ξ0, ξ1) ∈ Ω
(1)
0 .

Taking into account definitions (27) the identity (18) for ξ = (ξ0, ξ1) ∈ Ω
(1)
0

is equivalent to the indentity (15) for ξ ∈ Ω
(1)
0 .

By Lemma 3.2.1 from paper [DH1] for ξ = (ξ0, ξ1) ∈ Ω
(1)
0 the following

equality is valid:
∂G2

∂ξ0
(ξ0, ξ1) = 2

∂G1

∂ξ1
(ξ0, ξ1). (29)

From definitions (27), (28) and from equality (29) we obtain the equality (16)

for ξ ∈ Ω
(1)
0 .

Equalities (15), (16) mean that functions h1 and h2 satisfy the Riemann–
Burgers equations:

∂hj

∂ξ1
(ξ0, ξ1) = hj(ξ0, ξ1)

∂hj

∂ξ0
(ξ0, ξ1), ξ = (ξ0, ξ1) ∈ Ω

(1)
0 . (30)

Further, because of definition (27) the following equality is valid:

∂2

∂ξ0

(
G1(ξ0, ξ1)− h1(ξ0, ξ1)− h2(ξ0, ξ1)

)
= 0. (31)

From equalities (30), (31) and using Theorems 2.1, 2.2 and Theorem 3 of
the paper [HM] we obtain:

X ∩
{
z2 = −ξ0

}
=

{(
hj(ξ0, 0),−ξ0

)
| j = 1, 2

}
, ξ0 ∈ Ω0.

From here it follows that µ0 ≤ 2.

Let us describe an effective method of finding of constants {cij} from con-
ditions of Theorem (3.1).
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Let X ⊂ CP2 be a complex curve without compact components, γ = bX ⊂
C

2 be its compact boundary. Put

æα,β
δ,ρ =

1

2πi

∫

γ

zα1 z
β
2 dz1 + zδ1z

ρ
2dz2,

where α, β, γ, δ are nonnegative integers. Put by definition αα,β
γ,δ = 0, if at least

one number of α, β, γ, δ is negative.
Let us define constants

a11,k = kæ00
1,k−1,

a12,k = −kæ00
1,k,

b1k =
k

2

∑

i+j=k−2

æ00
1,iæ

00
1,j + kæ00

2,k−1 +æ1,k
00 ,

and constants

a21,k = (k − 1)
∑

i+j=k−3

æ00
1,iæ

00
1,j + 2(k − 1)æ00

2,k−2 + 2æ1,k−1
00 ,

a22,k = (k + 1)
∑

i+j=k−2

æ00
1,iæ

00
1,j + (2k + 1)æ00

2,k−1 + 2æ1,k
00 ,

a23,k = (k − 1)æ00
1,k−2,

a24,k = −(k − 1)æ00
1,k−1,

a25,k = (k − 1)æ00
1,k,

a26,k = −2(k + 1)æ00
1,k−1,

a27,k = (k + 3)æ00
1,k,

b2k =
k − 1

3

∑

i+j+l=k−4

æ00
1,iæ

00
1,jæ

00
1,l + 2

∑

i+j=k−2

æ00
1,iæ

1,j
00 +

+
k−3∑

i=0

(k + i)æ00
2,iæ

00
1,k−3−i + (k − 1)æ00

3,k−2 +æ2,k−1
00 ,

where k = 1, 2, . . . .
For arbitrary collection of integers k1, . . . , ks, where 1 ≤ k1 < . . .< ks,

s ≥ 2, let us define

Aj(k1, . . . , ks) =



aj1,k1

· · · ajs,k1

...
. . .

...

aj1,ks
· · · ajs,ks


 , bj(k1, . . . , ks) =



bjk1

...

bjks


 , (32)

where j = 1, 2.
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Proposition 3.1. Let X ⊂ CP2\ [0 : 1 : 0] be a complex curve without algebraic
subdomains, γ = bX ⊂ C

2 be its compact boundary, where µ0 is defined by
formula (4) and matrices Ak(k1, . . . , ks) and vectors bj(k1, . . . , ks) are defined
by formula (32). Then the following statements are valid:

1. Let µ0 = 1 and numbers c11, c12 be defined in the statement 2 of The-
orem 3.1. Suppose that for some collection of integers k1, k2, where
1 ≤ k1 < k2, the inequality detA1(k1, k2) 6= 0 is valid. Let us define num-

bers x1, x2 by formula (x1, x2) =
(
A1(k1, k2)

)−1
b1(k1, k2). Then c11 = x1,

c12 = x2.

2. Let µ0 = 2 and numbers c11, c12, c21, c22, c23 be defined in the state-
ment 3 of Theorem 3.1. Suppose that for some collection of integers k1,
. . . , k7, where 1 ≤ k1 < . . .< k7, the inequality detA2(k1, . . . , k7) 6= 0
is valid. Let us define integers x1, . . . , x7 by formula (x1, . . . , x7) =(
A2(k1, . . . , k7)

)−1
b2(k1, . . . , k7). Then the following equalities are valid:

c11 = x1, c12 = x2, c21 = x3 − x2
1, c22 = x4, c23 = x5.

Proof. Statements 1, 2 follow from decompositions of identities (9) and (10) into
power series by degrees of ξ0 and by equalizations of coefficients near the terms
of equal degree in ξ0.

Let us describe the algorithm of reconstruction of a complex curve X in CP 2

without compact components (satisfying minimality condition (∗)). As above,
γ = bX is a compact real curve.

The algorithm for reconstruction of curve X permits to find a curve co-
inciding with original curve in given finite number of points and obtained by
interpolation in other points. Let {ξk}Nk=1, ξ

k ∈ C be an arbitrary grid on C,
ξi 6= ξj , i 6= j, and ξk /∈ π2γ, k = 1, . . . , N . Complex curve X intersects
complex line {z2 = ξk} in N+(ξk, 0) points. Algorithm allows to find these
points.

The algorithm takes as input points {ξk}Nk=1 and a curve γ (for example,
represented as a finite number of points belonging to γ). On the output of the
algorithm we obtain a set of points (hs(ξ

k, 0), ξk), k = 1, . . . , N ; s = 1, . . . ,
N+(ξ

k, 0), belonging to the complex curve X.

The case of µ0 = 0

1. Calculation of µl. By formula (3) for every domain Ωl, l = 1, . . . , L, the
number µl is equal to the winding number of curve π2γ with respect to
ξ0 ∈ Ωl:

µl ≡ N+(ξ0, 0) =
1

2πi

∫

γ

dz2
z2 − ξ0

≡ 1

2πi

∫

π2γ

dz

z − ξ0
, ξ0 ∈ Ωl.
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2. Computation of power sums. In the case of µ0 = 0 for every point ξk ∈ Ωl,
l = 1, . . . , L, by Theorem 3.1 we have equalities Pm(ξk, 0) ≡ 0. By
formula (5) we have the following formulas for the power sums:

sm(ξk) ≡ hm
1 (ξk, 0) + · · ·+ hm

µl
(ξk, 0) =

1

2πi

∫

γ

zm1 dz2
z2 − ξk

, m = 1, µl.

By Theorem 2.1 the points (hs(ξ
k, 0), ξk), s = 1, . . . , N+(ξ

k, 0); k = 1,
. . . , N , are the desired points of X.

3. Computation of symmetric functions. For every point ξk ∈ Ωl, l = 1, . . . ,
L, the Newton identities

kσk(ξ
k) =

k∑

i=1

(−1)i−1σk−i(ξ
k)si(ξ

k), k = 1, . . . , N+(ξ
k).

allow to reconstruct the elementary symmetric functions:

σ1(ξ
k) = h1(ξ

k, 0) + · · ·+ hµl
(ξk, 0),

· · · = · · ·
σµl

(ξk) = h1(ξ
k, 0)× · · · × hµl

(ξk, 0).

4. Desymmetrisation. For every point ξk ∈ Ωl using Vieta formulas one can
find complex numbers h1(ξ

k, 0), . . . , hµl
(ξk, 0). The points (hs(ξ

k, 0), ξk),
s = 1, . . . , N+(ξ

k, 0); k = 1, . . . , N , are the required points of complex
curve X.

The cases of µ0 = 1, 2

These cases are reduced to the case µ0 = 0 in the following way. Since π2γ ⊂ C

is a compact real curve, there exists such R > 0, that the set Bc
R(0) = {z ∈ C |

|z| > R} belongs to Ω0. Without restriction of generality, one can suppose that
|ξk| < R for all k = 1, . . . , N . Otherwise one can increase R.

Let us define the auxiliary complex curve XR = {(z1, z2) ∈ X | |z2| 6 R}.
Its boundary γR consists in two disjoint parts (possibly, multiconnected): the
first part is γ and the second is a real curve obtained by lifting of the circle
SR = {z ∈ C | |z| = R} on surface X by inversion of projection π2 : X → C.
Complex curve XR does not intersect infinity and, as a consequence µ0(XR) = 0.
Moreover, every point (z1(ξ

k), ξk), k = 1, . . . , N , belongs to X if and only if
it belongs to XR. Therefore, in order to reconstruct the complex curve XR it
is sufficient to reconstruct the real curve obtained by lifting of SR on X and to
solve the reconstruction problem for surface XR, being in conditions of the case
of µ0 = 0. Finally, we come to the following algorithm:

1. New boundary. Choose a sufficiently large constant R, so that the exterior
of the disk of radius R centered at origin belongs to Ω0 and all ξk belong
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to this disk. Denote the boundary of this disk by SR. In the case of µ0 = 1
by virtue of formulas (5) the points ξ0 ∈ SR satisfy the equality

h1(ξ0, 0) =
1

2πi

∫

γ

z1 dz2
z2 − ξ0

+ P1(ξ0, 0).

In the case of µ0 = 2 we have two equalities:

h1(ξ0, 0) + h2(ξ0, 0) =
1

2πi

∫

γ

z1 dz2
z2 − ξ0

+ P1(ξ0, 0),

h2
1(ξ0, 0) + h2

2(ξ0, 0) =
1

2πi

∫

γ

z21 dz2
z2 − ξ0

+ P2(ξ0, 0),

where the polynomials can be found using Theorem 3.1. In the case of
µ0 = 1 by lifting the curve SR on X we obtain at once the real curve of
the form {(h1(ξ0, 0), ξ0) | ξ0 ∈ SR}. In the case of µ0 = 2 we have to apply
Newton identities and Vieta formulas in order to obtain h1 and h2 from
functions h1 + h2 and h2

1 + h2
2.

2. Reduction. In order to find the complex curve XR with boundary bXR =
γR we apply the algorithm of reconstruction for the case of µ0 = 0. The
discussion before the description of the algorithm shows that we will obtain
the desired points.

4 Visualization

Let us describe in few words the algorithm of visualisation of complex curves
that we have used in our examples. Denote by π1 : C

2 → C the projection into
the first factor: π1(z1, z2) = z1. Suppose that X is a complex curve in C

2

such that the covering π1 : X \ {ramification points} → C has multiplicity L.
Consider, for simplicity, a rectangular grid Λ in C:

Λ =
{
zij1 : Re zij1 =

i

N
, Im zij1 =

j

N
, i, j = 0, . . . , N

}
,

where N is a natural number. Suppose now that we are given the set XΛ =
π−1
1 (Λ) ∩ X and we need to visualize the part of X lying above the rectangle

0 ≤ Re z1 ≤ 1, 0 ≤ Im z1 ≤ 1.
Let us introduce some terminology. We define a path in Λ as a map γ : {1, . . . ,M} →

Λ such that |γ(k+1)−γ(k)| = 1
N

for all admissable k, where M is some natural
number.

Let γ : {1, . . . ,M} → Λ be a path in Λ and let i : {1, . . . ,M} → [1,M ] be
the inclusion map. Define the function i∗γ : [1,M ] → C such that i∗γ(k) = γ(k)
for integer k and i∗γ|[k,k+1] is linear for all admissable k. It is clear that i∗γ is
a continuous function and hence it can be lifted to X by the map π1.
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We define a path in XΛ as a map Γ: {1, . . . ,M} → XΛ such that γ = π1 ◦Γ
is a path in Λ and Γ = i∗L(i∗γ), where i∗ is the pullback map with respect to
i and L(i∗γ) is some lift of i∗γ to X by π1, i. e. L(i∗γ) is a continuous map
from [1,M ] to X such that π1 ◦ L(i∗γ) = i∗γ. We also say that Γ is obtained
by lifting of γ.

We will call subsets of Λ and XΛ path-connected if every two points of these
sets can be connected by a path in Λ and XΛ, respectively.

Let us describe the practical way to lift paths in Λ to paths in XΛ. Suppose
that N is sufficiently large. Let γ : {1, . . . ,M} → Λ be a path in Λ and let
Γ(1) ∈ π−1(γ(1)) ∩ X be an arbitrary point. We select Γ(k) ∈ π−1(γ(k)) ∩ X
in such a way that

|Γ(k)− Γ(k − 1)| = min
{
|z − Γ(k − 1)| : z ∈ π−1(γ(k)) ∩X

}
, k = 2, . . . ,M.

Then Γ is a path in XΛ obtained by lifting of γ. All possible lifts of γ may be
obtained by varying Γ(1). Note that if γ is closed, i. e. γ(1) = γ(M), Γ need
not to be closed.

Finding of ramification points and making branch cuts. The first step
in visualization procedure consists in finding of ramification points of X with
respect to projection π1. Since we have only a finite number of points on X we
can find ramification points only approximately. More precisely, we will localize
them in small circles.

Without restriction of generality we suppose that all ramification points are
projected by π1 into interior points of Λ. Take any interior point z1 ∈ Λ and
select a small closed path γ : {1, . . . ,M} → Λ around z1 so that there is at most
one ramification point inside the polygon γ(1) . . . γ(M). For example, one can
take as γ the following path:

z1 +
1

N
→ z1 +

1 + i

N
→ z1 +

i

N
→ · · · → z1 +

1− i

N
→ z1 +

1

N
,

where i is the imaginary unit.
Now consider different lifts of γ to XΛ. If at least one lift is not closed,

mark z1 as a possible ramification point (meaning that it is situated near the
projection of some ramification point of X). Now vary z1 and mark all possible
ramification points. The resulting set will consist of several path-connected
components each of which localizes the position of one ramification point of X
with respect to π1.

Now connect each of the obtained connected components of possible ramifi-
cation points by path with boundary of the grid Λ in such a way that different
paths don’t intersect. Denote the union of the set of possible ramification points
with images of these paths by Λc. An important observation is that every closed
path in Λ \ Λc always lifts to a closed path in XΛ since it doesn’t contain π1-
projections of ramification points inside.
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Figure 1: Riemann surface of function f(z) =
√

exp
(
z
4

)
+
√
z2 + 1, |z| 6 2,

obtained by the visualization algorithm. Red and green curves represent two
connected components of the surface boundary, colored small balls represent
ramification points

Visualization. Now denote Λ \ Λc = ∪S
s=1Λs, where Λs are different path-

connected components. Take any zs1 ∈ Λs and zs2 ∈ π−1
1 (zs1) ∩ X. Now take

other z1 ∈ Λs and connect zs1 with z1 by some path γ. Then γ lifts to a path
Γ with Γ(1) = (zs1, z

s
2) and Γ(2) = (z1, z2) for some z2 ∈ π−1

1 (z1) ∩ X and z2
doesn’t depend on γ. Varying z1 we thus obtain the map Σ(zs1, z

s
2) : Λs → XΛ

which allows us to visualize the part of X.
Varying zs2 ∈ π−1

1 (zs1)∩X (the latter is the finite set, namely, it consists of L
elements) we obtain the other maps Σ(zs1, z

s
2) which allow us to visualize other

parts of X. Clearly, the set of obtained maps doesn’t depend on the choice of
zs1 ∈ Λs. Hence we can denote the obtained maps by Σl

s, l = 1, . . . , L. It is
clear that ∪L

l=1Σ
l
s(Λs) = π−1(Λs) ∩X. Now vary s to visualize

∪S
s=1 ∪L

l=1 Σ
l
s(Λs) = π−1(∪S

s=1Λs) ∩X = XΛ \ π−1(Λc).

The part π−1(Λc) ∩XΛ consists of cuts and preimages of possible ramification
points. The cuts can be visualized as the already visualized part of the surface.
The only problem is the visualization of π1-preimages of possible ramification
points. But the latter take a little part of the surface when N is large and one
can just forget about their visualization. On the other hand, in our examples
they were visualized using low-level graphics approach.

Examples of application of this algorithm are given in fig. 1 and 2. The
visualization algorithm can be easily generalized to the case of general grids.
For instance, in our examples we have used a modification with periodic grid.
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Figure 2: Rieman surfaces of functions f(z) =
√
sin(z), |z| 6 2 (left) and

f(z) =
√
z4 + 1, |z| 6 2 (right) obtained by the visualization algorithm.

5 Examples

5.1 The case of µ0 = 1

Consider an example of reconstruction of a Riemann surface with given bound-
ary. The simpliest case is the case of µ0 = 0 but it follows from discussion of the
reconstruction algorithm that this case is directly included in any other case.
Therefore, we begin with the next simpliest case, namely, the case of µ0 = 1.

Let us reconstruct the surface

X1 =
{
(z1, z2) ∈ C

2 | (z1 − 1)z2 = exp(z21), |z1| 6 2
}
.

We suppose that the boundary γ1 = bX1 is given in the form of discrete number
of points (see further fig. 3).

Note that if point (z1, z2) ∈ X1 is such that z1 approaches to 1, then z2
approaches infinity. Choose R large enough, e. g. R = 60, and reconstruct the
real curve Γ = {(z1, z2) ∈ X1 | |z2| = R}. Compute, first, for two different ξ10 ,
ξ20 , |ξ10 | = |ξ20 | = R, the values of functions

G1(ξ0, 0) =
1

2πi

∫

γ2

z1dz2
z2 + ξ0

,

∂G1

∂ξ0
(ξ0, 0) = − 1

2πi

∫

γ2

z21dz2
(z2 + ξ0)2

,

∂G1

∂ξ1
(ξ0, 0) =

1

2πi

∫

γ2

(
z1dz1
z2 + ξ0

− z21dz2
(z2 + ξ0)2

)
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Figure 3: Boundary γ1 = bX1 of the surface X1.

and find from linear system for c11 and c12

c11
∂G1

∂ξ0
(ξ10 , 0) + c12

(
ξ10

∂G1

∂ξ0
(ξ10 , 0) +G1(ξ

1
0 , 0)

)
= G1(ξ

1
0 , 0)

∂G1

∂ξ0
(ξ10 , 0)−

∂G1

∂ξ1
(ξ10 , 0),

c11
∂G1

∂ξ0
(ξ20 , 0) + c12

(
ξ0

∂G1

∂ξ0
(ξ20 , 0) +G1(ξ

2
0 , 0)

)
= G1(ξ

2
0 , 0)

∂G1

∂ξ0
(ξ20 , 0)−

∂G1

∂ξ1
(ξ20 , 0)

values c11 = 1, c12 = 0. Now calculate the values of functions G1(ξ0, 0) on the
circle |ξ0| = R and find function h1(ξ0) = G1(ξ0, 0) + c11 + c12ξ0, |ξ0| = R. So
we reconstruct a real curve Γ = {(h1(ξ0),−ξ0) | |ξ0| = R} ⊆ X1 (see fig. 4).

We apply further the reconstruction algorithm for the case of µ0 = 0 to the
surface XR

1 = {z ∈ X1 | |z2| 6 60} with boundary bXR
1 = γ1 + Γ. We can

compute the values of function

σ0(ξ0) =
1

2πi

∫

γ1+Γ

dz2
z2 + ξ0

.

The value of function σ0(ξ0) at point ξ0 is equal to number N+(ξ0) of points
of surface XR

1 , projected into the point −ξ0 under projection (z1, z2) 7→ z2.
Further, for every point with N+(ξ0) > 0 we compute functions

sk(ξ0) =
1

2πi

∫

γ1+Γ

zk1dz2
z2 + ξ0

, k = 1, . . . , N+(ξ0).

From functions sk(ξ0) we can find functions σk(ξ0) using Newton identities:

kσk(ξ0) =

k∑

i=1

(−1)i−1σk−i(ξ0)si(ξ0), k = 1, . . . , N+(ξ0).
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Figure 4: The contour of surface X1 (black), boundary γ1 of X1 (blue), recon-
structed curve Γ, belonging to X1 (red).

After, we find roots h1(ξ0), . . . , hσ0(ξ0)(ξ0) of polynomial

tN+(ξ0) − σ1(ξ0)t
N+(ξ0)−1 + · · ·+ (−1)N+(ξ0)σN+(ξ0)(ξ0) = 0.

The points {(hk(ξ0),−ξ0) | k = 1, . . . , N+(ξ0)} represent the set of all points
of XR

1 , projected into −ξ0 by projection (z1, z2) → z2. Visualization of the
obtained set of points {(hk(ξ0),−ξ0)} corresponding to varying ξ0 can be realized
by the visualization algorithm described in the previous section. Reconstructed
surface is represented in fig. 5.

5.2 The case of µ0 = 2

Consider an example of reconstruction of Riemann surface for the case of µ0 = 2.
We are going to reconstruct the surface

X2 =
{
(z1, z2) ∈ C

2 | z2(z21 − 1) = z1 exp(z
2
1), |z1| 6 2

}

given its boundary γ2 represented as an array of finite number of equidistributed
points on γ2 (see fig. 6).

Choose R large enough, e. g. R = 60, and consider the circle CR of radius

20



Figure 5: The contour of surface X1 (black), boundary γ1 of X1 (blue), recon-
structed curve Γ, belonging to X1 (red), colored domains represent the recon-
structed leaves of surface X1.
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Figure 6: Boundary γ2 of the surface X2.
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R in z2-plane centered at origin. Compute for −ξ0 ∈ CR the values of functions

G1(ξ0, 0) =
1

2πi

∫

γ2

z1dz2
z2 + ξ0

,

G2(ξ0, 0) =
1

2πi

∫

γ2

z21dz2
z2 + ξ0

,

∂G1

∂ξ0
(ξ0, 0) = − 1

2πi

∫

γ2

z21dz2
(z2 + ξ0)2

,

∂G1

∂ξ1
(ξ0, 0) =

1

2πi

∫

γ2

(
z1dz1
z2 + ξ0

− z21dz2
(z2 + ξ0)2

)
,

∂G2

∂ξ1
(ξ0, 0) =

1

2πi

∫

γ2

(
z21dz1
z2 + ξ0

− z31dz2
(z2 + ξ0)2

)

and the value of constant æ = 1
2πi

∫
γ2

z1dz2, for example, using the method of
rectangles.

In order to find constants c11, c12, c21, c22, c23 we solve numerically the
problem of minimization of L2(CR)-norm of function

ferror(ξ0) = 2
(
G1−c11−c12ξ0

)∂G1

∂ξ1
−G1

(
c22+2c23ξ0

)
− ∂G2

∂ξ1
−3c212æ+æc23+

+ (−1)

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)
∂G1

∂ξ0
+

+ (−1)

(
G2

1 − 2G1c11 − 2G1c12ξ0 −G2

)
c12,

in variables c11, c12, c21, c22, c23. As a result of solving of this minimization
problem we find c11 = 0, c12 = 0, c21 = 2, c22 = 0, c23 = 0 (see fig. 7).

Let us compute symmetric functions σ1 = G1 + c11 + c12ξ0, σ2 = G2 + c21 +
c22ξ0 + c23ξ

2
0 and σ0 on the circle CR and desymmetrize them using Newton

identities. The value of σ0(ξ0) is a sum of µ0 = 2 and of the winding number of
γ2 with respect to −ξ0, which by definition is equal to G0(ξ0, 0) =

1
2πi

∫
γ2

dz2
z2+ξ0

.

As a result of desymmetrization we obtain functions h1(ξ0) and h2(ξ0) on the
circle CR, which perform lifting of the circle CR to the surface X2. Denote by
Γ1,2 = {(h1,2(z2),−z2) | z2 ∈ CR} the curves, obtained by corresponding lifting
of CR to X2 (see fig. 8).

Now we consider the curve γ2 + Γ1 + Γ2 as a new initial curve and we
reconstruct the surface XR

2 = {z ∈ X2 | |z2| 6 R}. Further, our considerations
are similar to those for the case of µ0 = 1. At first, we compute functions sk.
Then, we find symmetric functions σk. Further, we solve the algebraic equation
(numerically) and find functions hk(ξ0), k = 1, . . . , N+(ξ0). The reconstructed
surface is given by fig. 9.
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Figure 7: Graph of function ‖ferror‖(c11, c21) in a neighborhood of the point of
global minimum.
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Figure 8: The contour of surface X2 (black), boundary γ2 of X2 (blue), recon-
structed curves Γ1,2, belonging to X2 (red).
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Figure 9: The contour of surface X2 (black), boundary γ2 of X2 (blue), recon-
structed curves Γ1,2, belonging to X2 (red), reconstructed leaves of the surface
are represented by dark-blue, orange, red and blue domains.
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