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1 Introduction.

Let us denote by CP2 complex projective space with homogeneous coordinates
(w0 : w1 : w2). Let real closed rectifiable, oriented curve γ in CP2 be bound-
ary of complex curve X ⊂ CP2 with notation γ = bX . Without restriction
of generality we suppose that the following conditions of general position be
realized:

(0 : 1 : 0) 6∈ X, wl|γ 6= 0, l = 0, 1, 2. (♯)

Put C2 = {w ∈ CP2 : w0 6= 0} with coordinates z1 = w1

w0
, z2 = w2

w0
. For

almost all ξ = (ξ0, ξ1) ∈ (C2)∗ the points of intersection X with complex line
C1

ξ = {z ∈ C2 : ξ0 + ξ1z1 + z2 = 0} form finite set of points

(
z
(j)
1 (ξ), z

(j)
2 (ξ)

)
=

(
hj(ξ0, ξ1),−ξ0 − ξ1hj(ξ0, ξ1)

)
, j = 1, . . . , N+(ξ).

The essential role in the reconstruction of X through γ plaies the following
formula of Cauchy type from [2]:

Gm(ξ0, ξ1)
def
===

1

2πi

∫

γ

zm1 (ξ0 + ξ1z1 + z2)
−1d(ξ0 + ξ1z1 + z2) =

N+(ξ)∑

j=1

hm
j (ξ0, ξ1) + Pm(ξ0, ξ1), m = 0, 1, . . . , (1)

where N+(ξ) = N+(ξ0, ξ1) be the number of points of intersection (multiplicity
taking into account) of X with complex line C1

ξ, Pm(ξ0, ξ1) be polynomial of
degree m with respect to ξ0. In addition, P0(ξ0, ξ1) = −N−, where N− is the
number of points of intersection of X with infinity {w ∈ CP2 : w0 = 0},

P1(ξ0, ξ1) =

N
−
(ξ)∑

k=1

akξ0 − bk
akξ1 + 1

, (2)

1



ak = w2(qk), bk = dw2

dw0
(qk), where qk, k = 1, . . . , N−, — be points of intersec-

tion of X with infinity {w : w0 = 0}. In particular, the following corollary of
(1) takes place:

G0(ξ0, ξ1) =
1

2πi

∫

γ

d(ξ0 + ξ1z1 + z2)

ξ0 + ξ1z1 + z2
= N+(ξ)−N−. (3)

Let further ξ1 = 0 and let π2 : C
2 → C — be projection: π2(z1, z2) = z2.

We have π2γ ⊂ C, C \ π2γ = ∪L
l=0Ωl, where {Ωl} — be connected component

of C \ π2γ. For every component Ωl the number of points of intersection of X
with line z2 = ξ0, ξ0 ∈ Ωl, multiplicity taking into account will be denoted by
µl = N+(ξ0, 0). Let Ω0 denotes unbounded component of set C \ π2γ. From
definition of N± it follows the formula

µ0 = N+(ξ0, 0) = N−, ξ0 ∈ Ω0.

Assume that complex curve X does not contain compact components , or
equivalently, satisfies the following condition of minimality from the work [4]:

For arbitrary complex curve X̃ ⊂ CP2 with condition bX̃ = bX = γ

and for almost all ξ ∈ (C2)∗ the number of points of intersection Ñ+(ξ)

of X̃ with line C1
ξ, multiplicity taking into account, is not less than

the number N+(ξ) for curve X .

(∗)

Condition of minimality (∗) is condition of general position and is fulfilled for
X , if, for example, every irreducible component of X is transcendental complex
curve. Note, that from theorems of Chow [1], [2] and Harvey, Shiffman [3],

it follows that arbitrary complex curve X ⊂ CP2 with condition bX̃ = bX

admits unique representation X̃ = X ∪ V , where X — is curve with condition
of minimality (∗), and V — is compact algebraic curve, possibly with multiple
components.

In this work in the development of [2] we obtained the numerically realizable
algorithm for reconstruction of complex curve X ⊆ CP2 with known boundary
and with condition of minimality. This algorithm permits, in particular, to make
applicable the result of [4] about principal possibility to reconstruct topology
and conformal structure of two-dimensional surface X in R3 with constant
scalar conductivity from measurements on bX of electric current densities, being
created by three potentials in general position.

Our algorithm depends of parameter µ0 = N±(ξ0, 0), ξ0 ∈ Ω0, verified for
many examples and rigorously justified for µ0 = 0, 1, 2. The difficulty of
justification increases with increasing of µ0.

2 Cauchy type formulas and Riemann-Burgers equa-

tions.

Let us give at first a new proof of Cauchy type formula (1) from [2], permitting
to obtain explicit expressions for functions Pm(ξ0, ξ1).
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Theorem 2.1. Let X ⊂ CP2 be complex curve without compact components ,
γ = bX be real rectifiable oriented curve. Let conditions of general position
(♯) be fulfilled and all points of intersection of X and CP1

ξ, for almost all

ξ ∈ C2, have multiplicity one and their coordinate w2 is not equal to zero.
Then following equalities are fulfilled

Gm(ξ0, ξ1) =

N+(ξ)∑

j=1

hm
j (ξ0, ξ1) + Pm(ξ0, ξ1), (4)

where Pm(ξ0, ξ1) is polynomial of degree at most m with respect to ξ0, having
the form

Pm(ξ0, ξ1) =

µ0∑

s=1

m−1∑

k=0

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · dimw1

dw
im
0

(qs)

(m− k − 1)!

dm−k

dwm−k
0

ln(ξ0w0 + ξ1w1 + w2)|qs−

µ0∑

s=1

∑

i1+···+im=m

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs).

In particular, if µ0 = 0, then Pm ≡ 0.

Proof. Put g̃ = ξ0w0 + ξ1w1 + w2 and g = g̃
w0

= ξ0 + ξ1z1 + z2. Consider
differential forms

ωm
def
=== zm1

dg

g
=

wm
1

wm
0

w0

g̃
d

(
g̃

w0

)
=

wm
1

wm
0

dg̃

g̃
− wm

1

wm+1
0

dw0, m = 0, 1, . . .

Then Gm(ξ) = 1
2πi

∫
γ
ωm. Let us calculate this integral explicitly. Denote by

pj, j = 1, . . . , N+(ξ) the points of intersection of X and CP1
ξ, and by qs, s = 1,

. . . , µ0 the points of intersection of X with infinity {w0 = 0}. Denote by Bε
j

intersections of X with ball of radius ε in CP2 with center in pj and by Dε
s

intersections of X with ball of radius ε with center in qs. The restriction of
form ωm on X is meromorphic form with poles in points pj and qs. Thus the
following equality is valid

Gm(ξ) =
1

2πi

∫

γ

ωm =

N+(ξ)∑

j=1

1

2πi

∫

bBε
j

ωm +

µ0∑

s=1

1

2πi

∫

bDε
s

ωm.

If µ0 = 0, then the second group of terms is absent. The integral
∫
bBε

j

ωm can

be calculated as residue of the first order pole:

∫

bBε
j

ωm =

∫

bBε
j

zm1
dg̃

g̃
−

∫

bBε
j

wm
1

wm+1
0

dw0 =

∫

bBε
j

zm1
dg̃

g̃
= 2πi hm

j (ξ).
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Let µ0 > 0. Calculation of integral
∫
bDε

s
ω1 will be done in two steps. Let us

calculate first
∫
bDε

s

wm
1

w
m+1
0

dw0. Consider expansion of w1(w0) into power series

in w0 in the neighborhood of point qs:

w1(w0) = w1(qs) +
dw1

dw0
(qs)w0 +

d2w1

dw2
0

(qs)w
2
0 + · · · .

Note further that

wm
1 (w0) =

∞∑

k=0

∑

i1+···+im=k

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs)w
k
0 .

The coefficient near wm
0 can be presented in the form

∫

bDε
s

wm
1

wm+1
0

dw0 = 2πi
∑

i1+···+im=m

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs).

Now we can calculate the integral
∫
bDε

s

wm
1

wm
0

dg̃
g̃

. Using relation dg̃ = dg̃
dw0

dw0 and

expension of w1(w0) into power series in w0 we obtain:

∫

bDε
s

wm
1

wm
0

dg̃

g̃
=

∫

bDε
s

1

wm
0

(
w1(qs)+

dw1

dw0
(qs)w0+

d2w1

dw2
0

(qs)w
2
0+· · ·

)m
dg̃

dw0

1

g̃
dw0 =

∞∑

k=0

∫

bDε
s

∑

i1+···+im=k

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs)w
k−m
0

dg̃

dw0

1

g̃
dw0 =

m−1∑

k=0

∫

bDε
s

∑

i1+···+im=k

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs)w
k−m
0

dg̃

dw0

1

g̃
dw0 =

m−1∑

k=0

2πi

(m− k − 1)!

∑

i1+···+im=k

di1w1

dwi1
0

(qs) · · ·
dimw1

dwim
0

(qs) lim
w0→0

dm−k−1

dwm−k−1
0

(
dg̃

dw0

1

g̃

)
.

From here, taking into account relation dg̃
dw0

1
g̃
= d ln g̃

dw0
, we obtain finally

∫

bDε
s

wm
1

wm
0

dg̃

g̃
== 2πi

m−1∑

k=0

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · dimw1

dw
im
0

(qs)

(m− k − 1)!

dm−k

dwm−k
0

ln(ξ0w0+ξ1w1+w2)|qs .

It is polynomial of degree at most m with respect to ξ0.

Before considering the algorithm for reconstruction of complex curve we
need to prove one more theorem, which connects among themselves different

functions hj(ξ0, ξ1), j = 1, . . . , N+(ξ0, ξ1). Denote by Ω
(k)
l the infinitesimal

neighborhood of order k of the set Ωl.
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Theorem 2.2. Let X ⊂ CP2 be complex curve without compact components,
γ = bX, and between points of intersection of X with infinity {w0 = 0} there
is no point (0 : 1 : 0).

Then for existence and uniqueness of mutually distinct holomorphic in

ξ ∈ Ω
(1)
l functions ĥj(ξ) and holomorphic functions P̂m(ξ), being polynomials

of degree at most m in ξ0, satisfying to system

Gm(ξ) =

N+(ξ)∑

j=1

ĥm
j (ξ) + P̂m(ξ), m, j = 1, . . . , N+(ξ), l = 0, 1, . . . , L, (5)

it is necessary and sufficient the existence and uniqueness of mutually distinct

holomorphic in ξ ∈ Ω
(1)
l functions h̃j(ξ), satisfying to equation ∂2

∂ξ20

(
G1(ξ) −

∑N+(ξ)
j=1 h̃j(ξ)

)
= 0 and to the system of Riemann-Burgers equations:

∂h̃j

∂ξ1
= h̃j(ξ)

∂h̃j

∂ξ0
, j = 1, . . . , N+(ξ), ξ ∈ Ω

(1)
l , l = 0, 1, . . . , L.

Moreover, functions {h̃j}, {ĥj}, {P̂m}, satisfying these systems, exist and

h̃j = ĥj , j = 1, . . . , N+(ξ).

Proof. Proof. Necessity. Let there exist and unique up to order mutually

distinct holomorphic in ξ ∈ Ω
(1)
l functions {ĥj(ξ)}, j = 1, . . . , N+(ξ0, 0), l = 0,

1, . . . , L, and holomorphic functions {P̂m(ξ)}, being polynomials of degree at
most m in ξ0, and satisfying system (5), m = 1, . . . , N+(ξ). By theorem II
from [2] and theorem 3 from [4] for almost all ξ∗ = (ξ∗0 , 0) in the neighborhood
of ξ∗ there exist and unique up to order mutually distinct holomorphic solutions

{h̃j(ξ)} of Riemann-Burgers equation:

∂h̃j(ξ)

∂ξ1
= h̃j(ξ)

∂h̃j(ξ)

∂ξ0
,

such that ∂2

∂ξ20

(
G1(ξ) −

∑
j h̃j(ξ)

)
= 0, j = 1, . . . , N+(ξ

∗). Proposition 3.3.3

from [2] ensure that functions {h̃j} satisfy to system (5). From uniqueness of

families of functions {ĥj(ξ)} and {h̃j(ξ)} it follows that these functions satisfy
simultaneously to Riemann-Burgers equation.

Sufficiency. Suppose, that there exist and unique up to order mutually

distinct holomorphic functions {hj(ξ)} on Ω
(1)
l , l = 0, 1, . . . , L, satisfying to

Riemann-Burgers equation and also to the following equation

∂2

∂ξ20

(
G1(ξ) −

∑

j

hj(ξ)
)
= 0, ξ ∈ Ω

(1)
l .

In particular, for any ξ0 ∈ Ω
(0)
l we have relations

∂hj

∂ξ1
(ξ0, 0) = hj(ξ0, 0)

∂hj

∂ξ0
(ξ0, 0).
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By Cauchy-Kowalewski theorem for any l = 0, 1, . . . , L in a neighborhood of

arbitrary ξ∗ ∈ Ω
(1)
l there exist holomorphic functions {h̃j(ξ0, ξ1)}, satisfying to

Riemann-Burgers equation and such that h̃j |Ω(1)
l

= hj .

From here and Proposition 3.3.3 from [2] we obtain existence and unique-
ness of holomorphic functions {Pm(ξ)}, being polynomials of degree at most m
in ξ0, such that {hj(ξ)} and {Pm(ξ)} satisfy to system (5) for m, j = 1, . . . ,

N+(ξ), l = 0, 1, . . . , L, ξ ∈ Ω
(1)
l .

Existence and uniqueness of functions {h̃j} with necessary properties follow
from [2], theorem II, and from [4], theorem 3. From here and from already

proved sufficiency it follows the existence and uniqueness of functions {ĥj} and

{P̂m(ξ)} with property (5). Equalities ĥj = h̃j , j = 1, . . . , N+(ξ), follow

from property of functions {h̃j} to satisfy (5) and from uniqueness of functions
satisfying to (5).

3 Reconstruction algorithm.

Consider now the reconstruction algorithm of complex curve X ⊆ CP2 with
given boundary bX and with condition of minimality (∗). Let us consider the
cases µ0 = 0, 1, 2.

The reconstruction algorithm is based on formulas (4) with polynomials
Pm, m = 0, 1, . . . . The next theorem permits to calculate these polynomials.

Theorem 3.1. Let γ = bX, X ⊆ CP2 be complex curves without compact
components, γ ⊆ C2 be its boundary. Let mutually distinct holomorphic in

ξ ∈ Ω
(1)
l , l = 0, 1, . . . , L, functions {hj(ξ)} and polynomials of degree at

most m in ξ0 Pm(ξ0, ξ1) with holomorphic coefficients satisfy to system (4)

for ξ ∈ Ω
(1)
l , j = 1, . . . , N+(ξ) (existence and uniqueness of such functions

follow from theorem of 2.2). Then the following statements are valid :

1. If µ0 = 0, then Pm(ξ0, 0) ≡ 0 for all m,

2. If µ0 = 1, then P1(ξ0, 0) = c11 + c12ξ0, where constants c11 and c12 can
be found from identity in ξ0 ∈ Ω0:

c11
∂G1

∂ξ0
(ξ0, 0)+c12

(
ξ0

∂G1

∂ξ0
(ξ0, 0)+G1(ξ0, 0)

)
= G1(ξ0, 0)

∂G1

∂ξ0
(ξ0, 0)−

∂G1

∂ξ1
(ξ0, 0).

3. If µ0 = 2, then P1(ξ0, 0) = c11 + c12ξ0, P2(ξ0, 0) = c21 + c22ξ0 + c23ξ
2
0 ,

where constants c11, c12, c21, c22, c23 can be found from identity in

6



ξ0 ∈ Ω0:

2
(
G1 − c11 − c12ξ0

)∂G1

∂ξ1
−G1

(
c22 + 2c23ξ0

)
− ∂G2

∂ξ1
− 3c212æ+ æc23 =

=

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)
∂G1

∂ξ0
+

+

(
G2

1 − 2G1c11 − 2G1c12ξ0 −G2

)
c12,

where æ = 1
2πi

∫
γ
z1 dz2.

Proof. By theorem 2.2 functions Pm from condition of theorem coincide with
functions Pm from theorem 2.1.

1. By theorem 2.1 Pm ≡ 0, if µ0 = 0.

2. For ξ ∈ Ω
(0)
l we have equality P1(ξ0, ξ1) = C11(ξ1) + C12(ξ1)ξ0. We need

to find constants c11 = C11(0) and c12 = C12(0). Let us write out the restriction

of equation (4) for ξ ∈ Ω
(1)
l and equation derived by differentiation of (4) in ξ0

and by restriction on ξ ∈ Ω
(0)
l :

h1(ξ0, 0) = G1(ξ0, 0)− c11 − c12ξ0,

∂h1

∂ξ1
(ξ0, 0) =

∂G1

∂ξ1
(ξ0, 0)− Ċ11(0)− Ċ12(0)ξ0,

∂h1

∂ξ0
(ξ0, 0) =

∂G1

∂ξ0
(ξ0, 0)− c12,

where ξ0 ∈ Ω0. By theorem 2.2 for ξ0 ∈ Ω0 function h1(ξ0, 0) satisfies to equal-
ity ∂h1

∂ξ1
(ξ0, 0) = h1(ξ0, 0)

∂h1

∂ξ0
(ξ0, 0). If we substitute in this equality expressions

for h1(ξ0, 0),
∂h1

∂ξ1
(ξ0, 0) and ∂h1

∂ξ0
(ξ0, 0), we obtain equation

∂G1

∂ξ1
(ξ0, 0)− Ċ11(0)− Ċ12(0)ξ0 =

(
G1(ξ0, 0)− c11− c12ξ0

)(
∂G1

∂ξ0
(ξ0, 0)− c12

)
.

(6)
This equation is valid for ξ0 ∈ Ω0. Let us divide it into ξ0 and tend ξ0 → ∞. We
obtain equality Ċ12(0) = −c212. Taking into account this equality, the equation
(6) may be rewritten in the form

∂G1

∂ξ1
(ξ0, 0)−Ċ11(0) =

(
G1(ξ0, 0)−c11−c12ξ0

)
∂G1

∂ξ0
(ξ0, 0)−

(
G1(ξ0, 0)−c11

)
c12.

(7)
Taking into account that ξ0

∂G1

∂ξ0
(ξ0, 0) → 0 for ξ0 → ∞, passage to the limit in

(7) when ξ0 → ∞ gives equality Ċ11(0) = −c11c12. Using just obtained equality,
equation (7) takes the required form.

3. By theorem 2.2 functions h1(ξ) and h2(ξ) satisfy to Riemann-Burgers

7



equation for ξ ∈ Ω
(1)
l . So, the following equalities are valid.

∂(h1h2)

∂ξ1
= h1

∂h2

∂ξ1
+

∂h1

∂ξ1
h2 = h1h2

∂(h1 + h2)

∂ξ0
, (8)

∂(h2
1 + h2

2)

∂ξ0
= 2h1

∂h1

∂ξ0
+ 2h2

∂h2

∂ξ0
= 2

∂(h1 + h2)

∂ξ1
. (9)

Note that h1h2 = 1
2

(
h1 + h2

)2 − 1
2

(
h2
1 + h2

2

)
. Therefore the system (8)–(9) is

equivalent to the system

∂(h1 + h2)
2

∂ξ1
− ∂(h2

1 + h2
2)

∂ξ1
=

((
h1 + h2

)2 −
(
h2
1 + h2

2

))∂(h1 + h2)

∂ξ0
, (10)

∂(h2
1 + h2

2)

∂ξ0
= 2

∂(h1 + h2)

∂ξ1
. (11)

We substitute into this system h2
1 + h2

2 and h1 + h2 from equation (4), using
notations P1(ξ0, ξ1) = C11(ξ1) + C12(ξ1)ξ0, P2(ξ0, ξ1) = C21(ξ1) + C22(ξ1)ξ0 +

C23(ξ1)ξ
2
0 . Equation (11) restricted on Ω

(0)
l takes the form

∂G2

∂ξ0
(ξ0, 0)− c22 − 2c23ξ0 = 2

(
∂G1

∂ξ1
(ξ0, 0)− Ċ11(0)− Ċ12(0)ξ0

)
.

Divide this equation into ξ0 and tend ξ0 → ∞. We obtain the equality Ċ12(0) =
c23. In this equation, using last equality, in the passage to the limit for ξ0 → ∞
we obtain the equality Ċ11(0) =

1
2c22.

Now substitute into (10) expression for h2
1 + h2

2 and h1 + h2 and restrict

obtained formula to Ω
(0)
l . We obtain the equality

2

(
G1−c11−c12ξ0

)(
∂G1

∂ξ1
−Ċ11(0)−Ċ12(0)ξ0

)
−∂G2

∂ξ1
+Ċ21(0)+Ċ22(0)ξ0+Ċ23(0)ξ

2
0 =

=

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)(
∂G1

∂ξ0
+ c12

)
. (12)

Divide this equation into ξ20 and in passage to the limit for ξ0 → ∞ we obtain
the equality

2c12Ċ12(0) + Ċ23(0) =
(
c212 + c23

)
c12.

Using last equality, divide (12) into ξ0 and in passage to the limit for ξ0 → ∞
we obtain the equality

2c11Ċ12(0) + 2c12Ċ11(0) + Ċ22(0) =
(
−2c11 + c22

)
c12.
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Taking into account obtained equalities one can rewrite (12) in the form

2
(
G1−c11−c12ξ0

)∂G1

∂ξ1
−2G1

(
Ċ11(0)+Ċ12(0)ξ0

)
+2c11Ċ11(0)−

∂G2

∂ξ1
+Ċ21(0) =

=

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)
∂G1

∂ξ0
+

+

((
G1 − c11

)2 − 2G1c12ξ0 −G2 + c21

)
c12. (13)

Take ξ0 → ∞ in this equality and note that the following relations are valid

lim
ξ0→∞

ξ0
∂G1

∂ξ1
= lim

ξ0→∞

ξ0
1

2πi

∫

γ

z1 dz1
ξ0 + z2

=
1

2πi

∫

γ

z1 dz1 = 〈bγ, 1

4πi
z21〉 = 0,

lim
ξ0→∞

ξ0G1 = lim
ξ0→∞

ξ0
1

2πi

∫

γ

z1 dz2
ξ0 + z2

=
1

2πi

∫

γ

z1 dz2,

lim
ξ0→∞

ξ20
∂G1

∂ξ0
= − lim

ξ0→∞

ξ20
1

2πi

∫

γ

z1 dz2
(ξ0 + z2)2

= − 1

2πi

∫

γ

z1 dz2.

We obtain

−2æĊ12(0) + 2c11Ċ11(0) + Ċ21(0) = −
(
c212 + c23

)
æ+

(
c211 − 2c12æ+ c21

)
c12.

In obtained equations we express constants Ċij(0) through cij :

Ċ11(0) =
1

2
c22,

Ċ12(0) = c23,

Ċ23(0) = c312 − c12c23,

Ċ22(0) = −2c11
(
c12 + c23

)
,

Ċ21(0) =
(
c211 − 3c12æ + c21

)
c12 +æc23 − c11c22.

Substituting these constants to (13), we obtain the third statement of theorem
3.1.

Let us describe algorithm of reconstruction of complex curve X in CP 2

without compact components (satisfying minimality condition (∗)). As above,
γ = bX is compact real curve.

Algorithm for reconstruction of curve X permits, instead of original curves,
to find curve coinciding with original curve in the finite number of points and
obtained by interpolation in other points. Let {ξk}Nk=1, ξk ∈ C be arbitrary
frame on C, ξi 6= ξj , i 6= j, and ξk /∈ π2γ, k = 1, . . . , N . Complex curve X
intersects complex line {z2 = ξk} in N+(ξk, 0) points. Algorithm allows to find
these points.

9



For all algorithms in input we have points {ξk}Nk=1 and curve γ (for example,
as finite number of points belonging to γ). In output we have a set of points
(hs(ξ

k, 0), ξk), k = 1, . . . , N ; s = 1, . . . , N+(ξ
k, 0), belonging to complex

curve X .

The case of µ0 = 0.

1. Calculation of µl. By formula (3) for every domain Ωl, l = 1, . . . , L,
number µl is equal to index of curve π2γ with respect to ξ0 ∈ Ωl:

µl ≡ N+(ξ0, 0) =
1

2πi

∫

γ

dz2
z2 − ξ0

≡ 1

2πi

∫

π2γ

dz

z − ξ0
, ξ0 ∈ Ωl.

2. Calculation of power sums. For the case µ0 = 0 for every point ξk ∈ Ωl,
l = 1, . . . , L, by theorem 3.1 we have equalities Pm ≡ 0. By formula
(4) we have the following formulas for power sums:

sm(ξk) ≡ hm
1 (ξk, 0) + · · ·+ hm

µl
(ξk, 0) =

1

2πi

∫

γ

zm1 dz2
z2 − ξk

, m = 1, µl.

By theorem 2.1 the points (hs(ξ
k, 0), ξk), s = 1, . . . , N+(ξ

k, 0); k = 1,
. . . , N , are required points of X .

3. Calculation of symmetric functions. For every point ξk ∈ Ωl, l = 1, . . . ,
L, the Newton formulas

kσk(ξ
k) =

k∑

i=1

(−1)i−1σk−i(ξ
k)si(ξ

k), k = 1, . . . , N+(ξ
k).

allow to reconstruct elementary symmetric functions:

σ1(ξ
k) = h1(ξ

k, 0) + · · ·+ hµl
(ξk, 0),

· · · = · · ·
σµl

(ξk) = h1(ξ
k, 0)× · · · × hµl

(ξk, 0).

4. Desymmetrisation. For any point ξk ∈ Ωl using Vieta formulas one can
find numbers h1(ξ

k, 0), . . . , hµl
(ξk, 0). Required points (hs(ξ

k, 0), ξk),
s = 1, . . . , N+(ξ

k, 0); k = 1, . . . , N , of complex curve X are obtained.

The cases for µ0 = 1, 2. These cases are reduced to the case µ0 = 0 by the
following way. Since π2γ ⊂ C is compact real curve, there exists such R > 0,
that the set Bc

R(0) = {z ∈ C | |z| > R} belongs to Ω0. Without restriction of
generality, one can suppose that |ξk| < R for all k = 1, . . . , N . Otherwise one
can increase R.

Let us define auxiliary complex curve XR = {(z1, z2) ∈ X | |z2| 6 R}. Its
boundary γR consists in two disjoint parts (possibly, multiconnected): γ and

10



real curve , obtained by lifting of the circle SR = {z ∈ C | |z| = R} on surface
X , by inversion of projection π2 : X → C. Complex curve XR does not intersect
infinity and, as a consequence µ0(XR) = 0. Moreover, any point (z1(ξ

k), ξk),
k = 1, . . . , N , belongs to X iff it belongs to XR. Therefore, for reconstruction
of complex curve XR it is sufficient to reconstruct, at first, real curve obtained
by lifting of SR on X and after to solve reconstruction problem, as in the case
µ0 = 0. Finally, we come to the following algorithm.

1. New boundary. We choose constant R so large, that the exterior of the
disk of radius R with center in zero belong to Ω0 and all ξk belong to this
disk. Denote boundary of this disk by SR. In the case µ0 = 1 for points
ξ0 ∈ SR by formula (4) we have equality

h1(ξ0, 0) =
1

2πi

∫

γ

z1 dz2
z2 − ξ0

+ P1(ξ0, 0).

In the case µ0 = 2 we have two equalities:

h1(ξ0, 0) + h2(ξ0, 0) =
1

2πi

∫

γ

z1 dz2
z2 − ξ0

+ P1(ξ0, 0),

h2
1(ξ0, 0) + h2

2(ξ0, 0) =
1

2πi

∫

γ

z21 dz2
z2 − ξ0

+ P2(ξ0, 0),

where polynomials can be found from theorem 3.1. In the case µ0 = 1
by lifting the curve SR on X we obtain at once the real curve of the form
{(h1(ξ0, 0), ξ0) | ξ0 ∈ SR}. In the case µ0 = 2 we have to apply, at first,
Newton formula and after Vieta formula in order from functions h1 + h2

and h2
1 + h2

2 to obtain h1 and h2.

2. Reduction. For finding of complex curve XR with boundary bXR = γR
we apply algorithm of reconstruction for the case µ0 = 0. The points
obtained in such a way will be those, which we need due to explanation
before algorithm.

4 Visualization.

Let us write a little bit about algorithm of visualization of Riemann surface by
selection of appropriate finite number of points. For illustration of this algorithm
we consider visualization of Riemann surface of the function

f(z) =

√
exp

(z
4

)
+
√
z2 + 1, |z| 6 2.

Note, firstly, that Riemann surface of this function has six algebraic points of
ramification of index 2 in the domain {|z| 6 2}, two of which correspond to

11



points z = i and z = −i of nulling of argument of interior radical, and four
others correspond to points of nulling of argument of exterior radical.

We assume that we have grid {zij1 } in variable z1 and a set of points

{(zij1 , zij2 )} on Riemann surface X = {(z1, z2) ∈ C2 | z2 = f(z1), |z1| 6 2}
of function f(z), where 1 6 i 6 N1, 1 6 j 6 N2, and to neighbor values of i, j
correspond neighbor points of grid. Suppose, that for each point zij1 the number

of corresponding points (zij1 , zij2 ) is equal to number of leafs of Riemann surface

X . Moreover, one can accept that some point zij1 may be a projection of some

point of ramification on X , permitting also multiple points (zij1 , zij2 ). Suppose

also, that points of ramification can be only interior points of the grid {zij1 }. We
will solve further the problem of visualization in Matlab.

1. Finding of ramification points. The first step of visualization algo-
rithm consists in finding of ramification points. Choose an arbitrary point
(zi0j01 , zi0j02 ) such, that point zi0j01 is interior point of the grid. Let us

go around the point zi0j01 along discrete circle of sufficiently small ra-

dius with center in zi0j01 (such that inside of the circle would not be
more than one projection of ramification point of X). Choose an arbi-
trary point from the grid {zi1j11 , zi1j12 }, corresponding to the first point

zi1j11 of this circuit and let us in the process of circuit associate with

current point zikjk1 the point zikjk2 such, that the distance between points

(z
ik−1jk−1

1 , z
ik−1jk−1

2 ) and (zikjk1 , zikjk2 ) be minimal.We associate the initial

point of circuit (zi1j11 , zi1j12 ) with the final point (zi1j11 , ziN ,jN
2 ) of circuit.

If in this case zi1j12 6= ziN jN
2 , we mark the disk with center in zi0j01 with

the same radius as for circuit of circle by the marked disk containing pro-
jection of some ramification point on X . This method of obtaining from
discret circle on the grid {zij1 } of the set of points {(zij1 , zij2 )} will be
called by lifting of this circle .

2. Realization of slits. We joint the disks marked in the first item with
boundary of the grid by some discrete curves on the grid {zij1 }, in such
a way that different discrete curves don’t intersect each other and call
these curves by slits. It is impossible now to go around any point zij1
on discrete grid by closed discrete curve without intersections with these
slits and the marked disks such that for describing lifting of this discrete
curve into the set of points {(zij1 , zij2 } the initial and final points would be
lifted into different points of this set of points.

3. Representation of leafs. Due to previous item the discrete grid {zij1 }
without marked disks and without slits could be uniquely lifted into the
set {zij1 , zij2 } by fixing of lifting of some arbitrary point for each connected

component on the set {zij1 }. These lifted sets of points we call leafs. These
leafs one can visualize as usual surfaces.

4. Lifting of slits. By definition of slits {zij1 } every slit admits unique lifting

into the set {(zij1 , zij2 )} if for any slit to fix lifting of one of its points.

12



Figure 1: Riemann surface for function f(z) =
√
exp

(
z
4

)
+
√
z2 + 1, |z| 6 2,

obtained by visualization algorithm. Red and green curves— two connected
components of surface boundary, colored small balls — points of ramification.

This item is similar to previous one.

5 Examples.

5.1 The case µ0 = 1.

Consider example of reconstruction of Riemann surface for the case µ0 = 1. The
case µ0 = 2 will be considered further. The case µ0 = 0 is directly included in
considered cases because of specific character of reconstruction algorithm. Let
us reconstruct surface

X1 =
{
(z1, z2) ∈ C

2 | (z1 − 1)z2 = exp(z21), |z1| 6 2
}
.

The boundary γ1 = bX1 is given in the form of discrete number of points ( see
further fig. 3).

Note, that if point (z1, z2) ∈ X1 is such that z1 approaches to 1, then
z2 increases indefinitely. Choose R large enough, for example R = 60, and
reconstruct real curve Γ = {(z1, z2) ∈ X1 | |z2| = R}. Compute, first, for two

13



Figure 2: From the left Riemann surface of function f(z) =
√
sin(z), |z| 6 2,

from the right — functions f(z) =
√
z4 + 1, |z| 6 2, obtained by visualization

algorithm.
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Figure 3: Boundary γ1 = bX1 of the surface X1 by which the surfaceX1 is to
reconstruct.
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Figure 4: By black is represented contour of surface X1, by blue — γ1, by red
— reconstructed curve Γ, belonging to X1.

different ξ10 , ξ
2
0 , |ξ10 | = |ξ20 | = R, the values of functions

G1(ξ0, 0) =
1

2πi

∫

γ2

z1dz2
z2 + ξ0

,

∂G1

∂ξ0
(ξ0, 0) = − 1

2πi

∫

γ2

z21dz2
(z2 + ξ0)2

,

∂G1

∂ξ1
(ξ0, 0) =

1

2πi

∫

γ2

(
z1dz1
z2 + ξ0

− z21dz2
(z2 + ξ0)2

)

and find from linear system for c11 and c12

c11
∂G1

∂ξ0
(ξ10 , 0) + c12

(
ξ10

∂G1

∂ξ0
(ξ10 , 0) +G1(ξ

1
0 , 0)

)
= G1(ξ

1
0 , 0)

∂G1

∂ξ0
(ξ10 , 0)−

∂G1

∂ξ1
(ξ10 , 0),

c11
∂G1

∂ξ0
(ξ20 , 0) + c12

(
ξ0

∂G1

∂ξ0
(ξ20 , 0) +G1(ξ

2
0 , 0)

)
= G1(ξ

2
0 , 0)

∂G1

∂ξ0
(ξ20 , 0)−

∂G1

∂ξ1
(ξ20 , 0)

values c11 = 1, c12 = 0. Now calculate the values of functions G1(ξ0, 0) on the
circle |ξ0| = R and find function h1(ξ0) = G1(ξ0, 0) + c11 + c12ξ0, |ξ0| = R. So
we reconstruct a real curve Γ = {(h1(ξ0),−ξ0) | |ξ0| = R} ⊆ X1 (see fig. 4).

We can apply further the reconstruction algorithm of Riemann surface for
the case µ0 = 0 to the surface XR

1 = {z ∈ X1 | |z2| 6 60} with boundary
bXR

1 = γ1 + Γ. We can calculate the values of function

σ0(ξ0) =
1

2πi

∫

γ1+Γ

dz2
z2 + ξ0

.

15



The value of function σ0(ξ0) in point ξ0 is equal to number N+(ξ0) of points of
surface XR

1 , projected into the point −ξ0 under projection (z1, z2) 7→ z2. Further
for every point with N+(ξ0) > 0 we calculate functions

sk(ξ0) =
1

2πi

∫

γ1+Γ

zk1dz2
z2 + ξ0

, k = 1, . . . , N+(ξ0).

From functions sk(ξ0) we can find functions σk(ξ0), using Newton formulas:

kσk(ξ0) =

k∑

i=1

(−1)i−1σk−i(ξ0)si(ξ0), k = 1, . . . , N+(ξ0).

After we find roots h1(ξ0), . . . , hσ0(ξ0)(ξ0) of polynomial

tN+(ξ0) − σ1(ξ0)t
N+(ξ0)−1 + · · ·+ (−1)N+(ξ0)σN+(ξ0)(ξ0) = 0.

The points {(hk(ξ0),−ξ0) | k = 1, . . . , N+(ξ0)} represent the set of all points of
XR

1 , projected into −ξ0 by projection (z1, z2) → z2. Visualization, obtained for
all ξ0, of set of points can be realized by visualization algorithm described in
previous section. Reconstructed surface is represented in fig. 5.

5.2 The case µ0 = 2.

Consider example of reconstruction of Riemann surface for the case µ0 = 2. As
surface for reconstruction we choose the reconstruction

X2 =
{
(z1, z2) ∈ C

2 | z2(z21 − 1) = z1 exp(z
2
1), |z1| 6 2

}
.

From definition of X2 one can see that if (z1, z2) ∈ X2 and z1 approaches to 1
or to −1, then z2 increases indefinitely. From given boundary γ2 = bX2 (see
fig. 6), we need to reconstruct surface X2 as a finite number of points.

Choose R large enough, for example, R = 60,and consider circle CR of
radius R in the plane of variable z2 with center in zero. Calculate for −ξ0 ∈ CR

the values of functions

G1(ξ0, 0) =
1

2πi

∫

γ2

z1dz2
z2 + ξ0

,

G2(ξ0, 0) =
1

2πi

∫

γ2

z21dz2
z2 + ξ0

,

∂G1

∂ξ0
(ξ0, 0) = − 1

2πi

∫

γ2

z21dz2
(z2 + ξ0)2

,

∂G1

∂ξ1
(ξ0, 0) =

1

2πi

∫

γ2

(
z1dz1
z2 + ξ0

− z21dz2
(z2 + ξ0)2

)
,

∂G2

∂ξ1
(ξ0, 0) =

1

2πi

∫

γ2

(
z21dz1
z2 + ξ0

− z31dz2
(z2 + ξ0)2

)
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Figure 5: By black is represented contour of surface X1, by blue — γ1, by red
— reconstructed curve Γ, belonging to X1, colored domains — reconstructed
leafs of surface X1.
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Figure 6: Boundary bX2 of surface X2 by which surfaceX2 is to reconstruct.
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Figure 7: Graph of function ‖ferror‖(c11, c21) in the neighborhood of point of
global minimum.

and the value of constant æ = 1
2πi

∫
γ2

z1dz2, for example, using the method of

rectangles. We will solve numerically the problem of minimization of L2(CR)-
norm of function

ferror(ξ0) = 2
(
G1−c11−c12ξ0

)∂G1

∂ξ1
−G1

(
c22+2c23ξ0

)
− ∂G2

∂ξ1
−3c212æ+æc23+

+ (−1)

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)
∂G1

∂ξ0
+

+ (−1)

(
G2

1 − 2G1c11 − 2G1c12ξ0 −G2

)
c12,

in variables c11, c12, c21, c22, c23. As a result of solving of minimization problem
we find c11 = 0, c12 = 0, c21 = 2, c22 = 0, c23 = 0 (see fig 7).

Let us calculate symmetric functions σ1 = G1 + c11+ c12ξ0, σ2 = G2 + c21+
c22ξ0 + c23ξ

2
0 and σ0 on the circle CR and we do its desymmetrization, using

Newton formulas. Value of σ0(ξ0) is a sum of µ0 = 2 and index of point −ξ0 with
respect to curve γ2, which by definition is equal to G0(ξ0, 0) = 1

2πi

∫
γ2

dz2
z2+ξ0

.

As a result of desymmetrization we obtain functions h1(ξ0) and h2(ξ0) on the
circle CR, which realize lifting of circle CR on the surface X2. Denote by
Γ1,2 = {(h1,2(z2),−z2) | z2 ∈ CR} curves, obtained by corresponding lifting CR

on X2 (see fig. 8).
Now we consider the curve γ2+Γ1+Γ2 as a new initial curve and reconstruct

the surface XR
2 = {z ∈ X2 | |z2| 6 R}. Further, our considerations are similar

to those for the case µ0 = 1. We calculate, first, functions sk, then symmetric
functions σk, then we solve algebraic equation (numerically) and find functions
hk(ξ0), k = 1, . . . , N+(ξ0). Reconstructed surface is given by fig. 9.
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Figure 8: By black is represented contour of surface X2, by blue — γ2, by red
— reconstructed curves Γ1,2, belonging to X2.

Figure 9: By black is represented contour of surface X2, by blue — γ2, by red
— reconstructed curves Γ1,2, belonging to X2, colored by dark-blue, orange, red
and blue domains — reconstructed leafs of surface.
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