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Abstract In this paper we propose the numerically realizable algorithm
for reconstruction of complex curve with known boundary and without com-
pact components in complex projective space.
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1 Introduction.

Let us denote by CP? complex projective space with homogeneous coordinates
(wo : wy : wy). Let real closed rectifiable, oriented curve v in CP? be bound-
ary of complex curve X C CP? with notation v = bX. Without restriction
of generality we suppose that the following conditions of general position be
realized:
0:1:0)€ X, wly#0, 1=0,1,2. ()
Put C? = {w € CP?: wy # 0} with coordinates z; = WL oz = 2. For
almost all £ = (&,&1) € (C?)* the points of intersection X with complex line
(Cg ={2€C?: & + &121 + 22 = 0} form finite set of points

(7€), 25(€)) = (hj(€0. €1), —€0 — E1h;(&0,€1)), G =1,...,N4(E).

The essential role in the reconstruction of X through ~ plaies the following
formula of Cauchy type from [2]:

Gm(6o, &) = w 271m./Z{n(f()+§121+22)71d(§0+§121+22):
5
Ny (§)
D B (&0, 6) + P60, &), m=0,1,..., (1)
j=1

where N4 (§) = Ny (&o,&1) be the number of points of intersection (multiplicity
taking into account) of X with complex line (Cé, P,,(&0,&1) be polynomial of
degree m with respect to &. In addition, Py(&,&1) = —N—, where N_ is the
number of points of intersection of X with infinity {w € CP?: wg = 0},

N_(§)

B aro — b
P1(€07§1) - ; akfl +1 ) (2)



ar = wa(qk), by = g,—lu‘jf)(qk), where qx, k=1, ..., N_, — be points of intersec-

tion of X with infinity {w : wg = 0}. In particular, the following corollary of
(1) takes place:

1 /d(fo +&121 + 22) = N, (&) - N_. 3)

Golbo, &) = 2mi §o +&121 + 22
5

Let further & = 0 and let mo: C2 — C — be projection: mo(z1, 22) = 22.

We have may C C, C\ m2y = UZL:OQl, where {§2;} — be connected component

of C\ may. For every component ; the number of points of intersection of X

with line zo = &y, & € €, multiplicity taking into account will be denoted by

wr = Ny(&,0). Let Qp denotes unbounded component of set C\ may. From
definition of N4 it follows the formula

po = Ny(60,0) = N_, & € Qo.

Assume that complex curve X does not contain compact components , or
equivalently, satisfies the following condition of minimality from the work [4]:

For arbitrary complex curve X C CP? with condition bX = bX =~
and for almost all ¢ € (C%)* the number of points of intersection N (&)

of X with line (Cé, multiplicity taking into account, is not less than
the number N (§) for curve X.

Condition of minimality (x) is condition of general position and is fulfilled for
X, if, for example, every irreducible component of X is transcendental complex
curve. Note, that from theorems of Chow [1]], [2] and Harvey, Shiffman [3],
it follows that arbitrary complex curve X C CP? with condition bX = bX
admits unique representation X = XUV, where X — is curve with condition
of minimality (%), and V' — is compact algebraic curve, possibly with multiple
components.

In this work in the development of [2] we obtained the numerically realizable
algorithm for reconstruction of complex curve X C CP? with known boundary
and with condition of minimality. This algorithm permits, in particular, to make
applicable the result of [4] about principal possibility to reconstruct topology
and conformal structure of two-dimensional surface X in R3 with constant
scalar conductivity from measurements on b.X of electric current densities, being
created by three potentials in general position.

Our algorithm depends of parameter py = Ni(&,0), & € Qo, verified for
many examples and rigorously justified for po = 0, 1, 2. The difficulty of
justification increases with increasing of .

(%)

2 Cauchy type formulas and Riemann-Burgers equa-
tions.

Let us give at first a new proof of Cauchy type formula (1) from [2], permitting
to obtain explicit expressions for functions Py, (&o,&1).



Theorem 2.1. Let X C CP? be complex curve without compact components ,
v = bX be real rectifiable oriented curve. Let conditions of general position
(1) be fulfilled and all points of intersection of X and CP}, for almost all
¢ € C2, have multiplicity one and their coordinate wy is not equal to zero.
Then following equalities are fulfilled

N4 ()

Gm(60,61) = R (€0, 61) + P (60, 1), (4)

Jj=1

where Pp,(&0,&1) is polynomial of degree at most m with respect to &, having
the form

P (&0,61) =

d" d'm
S i (@) - Gt (as) - gm—n

d dwém
Z In(§owo + & wy + w2)
— k= | —k
s=1 k=0 i1+ +inm=Fk (m k 1) dwgn

qs

Ho

dn w1 dim'wl
Z Z m(%) . (¢s)-

' im
s=1i14+Fim=m dwO

In particular, if po =0, then P,, =0.
Proof. Put g = &wo + &wi + we and g = w% = & + &121 + 2. Consider
differential forms
d m - m d~ m
del m@9 _ Wi @d(i) _ winrg_f_;ldwo, m=0,1,...
Wo Wy g W

Wm 1 g - UJS” gv
Then G (§) = 7 fv wm,. Let us calculate this integral explicitly. Denote by
pj, j=1,..., Nx(§) the points of intersection of X and (CP%, and by gs, s =1,

-, po the points of intersection of X with infinity {wo = 0}. Denote by B
intersections of X with ball of radius e in CP? with center in p; and by D2
intersections of X with ball of radius ¢ with center in ¢,. The restriction of
form wy, on X is meromorphic form with poles in points p; and ¢,. Thus the
following equality is valid

N4 (¢)

Gl = gz [m= Y o [ +§:L/w
&) = o ) T e omi ) T o ) O
¥ = 5=

bBS = bDs

If 1o = 0, then the second group of terms is absent. The integral [, . wy, can
J
be calculated as residue of the first order pole:

dg / wi / dg .
Wm = = - ——d = —= =2mi A" (€).
/ / “ g wgﬁ_l w0 “ g B ©)

bB; bB5 bB3 bB3



Let pp > 0. Calculation of integral fbD? wy will be done in two steps. Let us

calculate first fbDE %dwo. Consider expansion of wq(wp) into power series
s 0

in wp in the neighborhood of point g¢s:

2w

1
(gs)wg + -+

(QS )wO + dw%

dw;
wi(wo) = w1 (gs) + — Jo

Note further that

m > dw dimw
wi" (wo) = Z Z ill (gs) - — (qS)wlg-

Tm
=0 itk QW0 dwg

The coelficient near wy® can be presented in the form

w ‘ dwn dimawy
[ S =i Y ) T )

1 Tm
. it Fim=m QW0 dwg

T dg i i ~ _ dg
Now we can calculate the integral fbDE "y Using relation dg = z:Z-dwo and
expension of wi(wp) into power series in wo we obtain:

dg 1 dwn d?un 9 ™dg 1
- O+ 2% 0. e ) g, =
JED [ (sl S et S i) L,

wy' g Des Wy 5
bDs :
d w; dimwy m dg 1
S [, X G G v, =
Ds, Ly dw dwy wo g
m—1 . . ~
d" wq d"™w; _dg 1
Z/ — i (g) - — (g )wg " e = dwy =
< iyt H ok dwyg dwyg wo g

Sty X St m ()
—(qg) -+ , s) lim ———( —= .
= (m= k_l) S ) ! dwg™ w0 dwg " \dwo g
dg 1 _ dlng

From here, taking into account relation Twos = dus

we obtain finally

d’lwl( §) - 05;‘7’%1 (¢s) gk

wy® dg dwin \ds
-~ _—9 0 o 1 .
/ o i Z > k=1 g Comotbwntenly,

bDs= k=0 i1+ Fim=Fk

[t is polynomial of degree at most m with respect to &. O

Before considering the algorithm for reconstruction of complex curve we
need to prove one more theorem, which connects among themselves different
functions h;(&,&1), 7 =1, ..., N4(€,&). Denote by Ql(k) the infinitesimal
neighborhood of order k of the set €;.



Theorem 2.2. Let X C CP? be complex curve without compact components,
v =bX, and between points of intersection of X with infinity {wo = 0} there
is no point (0:1:0).

Then for existence and uniqueness of mutually distinct holomorphic in

¢ e Ql(l) functions /f\lj (&) and holomorphic functions ﬁm(f), being polynomials
of degree at most m in &, satisfying to system

N4 (8)
- Z E;n(f)+ﬁm(€)7 maj:]-v"'aNJr(g)vl:()a]-v"'aLa (5)

it is necessary and sufficient the existence and uniqueness of mutually distinct
holomorphic in £ € Ql(l) functions h;(€), satisfying to equation -2 %€ (G1(¢) —

Z;V:l(@ iNLj (€)) = 0 and to the system of Riemann-Burgers equations:
oh,;

Ohy _5 (60
&’

96

Moreover, functions {h;}, {h L, {Pn), satisfying these systems, exist and
h _hJ) i=1 ..., Ny(§).

=1,(€) j=1,...,N.(¢), ¢eaV 1=01,..., L

Proof. Proof. Necessity. Let there exist and unique up to order mutually

distinct holomorphic in £ € le) functions {Ej(g)} j=1,..., Ny(&,0),1=0,
1, ..., L, and holomorphic functions {P,, ()}, being polynomials of degree at
most m in &y, and satisfying system @), m =1, ..., Ny(£). By theorem II

from [2] and theorem 3 from [4] for almost all £* = (£F,0) in the neighborhood
of £* there exist and unique up to order mutually distinct holomorphic solutions
{h;(&)} of Riemann-Burgers equation:

on;(€) . 0hy(€)
oe, M o
such that 88&2( 16) =22, hi(€)) =0, j =1, ..., Np(€*). Proposition 3.3.3

from [2] ensure that functions {hj} satisfy to system (B). From uniqueness of
families of functions {ﬁj(f)} and {71](5)} it follows that these functions satisfy
simultaneously to Riemann-Burgers equation.

Sufficiency. Suppose, that there exist and unique up to order mutually
distinct holomorphic functions {h;(£)} on Ql(l), l=0,1, ..., L, satislying to
Riemann-Burgers equation and also to the following equation

852 Zh )=0, ¢eaV.

0)

In particular, for any & € Q( we have relations

(50; ) - J(anO)%(SOaO)

5 0o



By Cauchy-Kowalewski theorem for any [ =0, 1, ..., L in a neighborhood of
arbitrary £* € Ql(l) there exist holomorphic functions {%j(go,gl)}, satisfying to
Riemann-Burgers equation and such that ilj|Q§1) = h;.

From here and Proposition 3.3.3 from [2] we obtain existence and unique-
ness of holomorphic functions {P,,(£)}, being polynomials of degree at most m
in &, such that {h;(€)} and {P,,(§)} satisiy to system @) for m, j =1, ...,
Ny(€),1=0,1,..., L ¢c QP

Existence and uniqueness of functions {?L]} with necessary properties follow
from [2], theorem II, and from [4], theorem 3. From here and from already
proved sufficiency it follows the existence and uniqueness of functions {h } and

{P,.(¢)} with property (E[) Equalities h = h], j=1, ..., Ny, follow
from property of functions {h]} to satisly dE[) and from uniqueness of functions
satisfying to (B). O

3 Reconstruction algorithm.

Consider now the reconstruction algorithm of complex curve X C CP? with
given boundary bX and with condition of minimality (). Let us consider the
cases puo =0, 1, 2.

The reconstruction algorithm is based on formulas (@) with polynomials
P, m=0,1,.... The next theorem permits to calculate these polynomials.

Theorem 3.1. Let v = bX, X C CP? be complex curves without compact
components, v C C? be its boundary. Let mutually distinct holomorphic in
¢ € ol 1=0 1, , L, functions {h;(&)} and polynomials of degree at
most m in & P, (50,51) with holomorphic coefficients satisfy to system (@)

for € € Qz( , =1, ..., Np(&) (existence and uniqueness of such functions
follow from theorem of [22). Then the [ollowing statements are valid :

1. If uop =0, then P,,(£0,0) =0 for all m,

2. If up =1, then P1(£0,0) = c11 + c12&0, where constants c11 and ci12 can
be found from identity in & € Qq:

oG,
9o

0G1 oG,

(&os )+C12<§0 9% (0,0)— 96,

* (o, )+G1(§o,0)) = G1(60,0)5—

Cl1 77—

9o

3. If po = 2, then Pi(&,0) = c11 + c12€o, Pa(€0,0) = ca1 + c20&0 + c23&3,
where constants ci1, €12, Co1, Coa, C23 can be found from identity in

(507 )



o € Qo:

oG
2(Gh = enn = c1nbo) f = Gi(caz + 2c230) — gf — 3ciyae + @eas =
oG
N ((Gl o 612‘50)2 — G2+ a1 + e + 02353) W;Jr

+ (G% —2Gic11 — 2Gic12éo — G2)0127

_ 1
where @& = 3 fv 21 dzo.

Proof. By theorem functions P,, from condition of theorem coincide with
functions P, from theorem [2.11

1. By theorem BRIl P, =0, if po = 0.

2. For £ € Ql(o) we have equality P;(&o,&1) = C11(&1) + Ci2(€1)&. We need
to find constants ¢117 = C11(0) and ¢12 = C12(0). Let us write out the restriction

of equation (@) for ¢ € Ql(l) and equation derived by differentiation of (@) in &

and by restriction on £ € Ql(o):

h1(£0,0) = G1(&,0) — c11 — 1280,

Oh oG ) )
051 (€0,0) = 8«51 (&0,0) — C11(0) — C12(0)&o,
a}gl (&07 ) - 8(51 (&07 ) C12,

where &y € Q. By theorem [22]for & € Qo function hq(&p,0) satisfies to equal-

ity 5 8h1 1 (€0, 0) = hi(&o, )g}g; (€0, 0). I we substitute in this equality expressions

for h1(§0,0), Z—’g;(fo, 0) and 8h1 L (0,0), we obtain equation

oG,
23|

—(£0,0) = C11(0) = C12(0)éo = (01(5070)—011—01250) (%? (§0,0) — )
6

This equation is valid for &y € 9. Let us divide it into §, and tend §o — co. We
obtain equality C12(0) = —c2,. Taking into account this equality, the equation
(€) may be rewritten in the form

oG,

% —(£0,0)=C11(0) = (Gl(éoao)—Cn—Clzio) 9%, ~ (£0,0)— (Gl(ioao)—cn)cm-

(7)

2 1(&0,0) — 0 for & — oo, passage to the limit in

Taking into account that §o ¢

(7) when &y — oo gives equallty C11(0) = —c11¢12. Using just obtained equality,
equation (7)) takes the required form.
3. By theorem functions h1(€) and ho(€) satisly to Riemann-Burgers



equation for £ € Ql(l). So, the following equalities are valid.

d(hhs)  Ohs Ol d(h1 + ha)
— 22 T o, ST 2) 8
o6, "o Tag T M5 ®
a(h3 + h2) o Ohs _O(h1 + he)
— = 27 =2} + 2h =2—— =7 9
06 ot T2 ag, o6 ®)

Note that hyhy = (k1 + h2)2 — 1(h? + h3). Therefore the system (@)-(@) is
equivalent to the system

O(h1 + h2)*  O(h3 + h3) 9 o ) A(hy + h2)
- = (b +ho)* = (B2 +02) ) 22220 (10
6, 96 1+ hg) 3) % (10)
O(h? + h3) d(hy + hg)
=92 11
9o 06 ()

We substitute into this system hf + h3 and hy + he from equation (@), using
notations Py (£0,&1) = C11(&1) + Ci2(61)&0, Pa(&o,&1) = Ca1(&1) + Caa(&1)é0 +
Co3(£1)€2. Equation (II) restricted on Ql(o) takes the form

9G
9o

0G1

—(£0,0) — 0222023fo2<6§

(£0,0) — C11(0) 012(0)§0>~
Divide this equation into & and tend & — co. We obtain the equality C5(0) =
co3. In this equation, using last equality, in the passage to the limit for & — oo
we obtain the equality C11(0) = Leo.

Now substitute into (I0) expression for h? + h3 and hy + ho and restrict
obtained formula to Ql(o). We obtain the equality

oGy . oG . )
2(G1—C11—012€0) (Wl—cn(o)—cm(o)fo) —¥2+C21( )+Ca2(0)&0+Ca3(0)&5 =
1
0G1
= ((G1 —cn— 01250)2 — G2 +ca1 + c226p + 0235(2)) ( % + 012) (12)
Divide this equation into &2 and in passage to the limit for £, — oo we obtain

the equality _ '
2¢12C12 (0) + 023(0) = (6%2 + 623)012.

Using last equality, divide (I2) into & and in passage to the limit for & — oo
we obtain the equality

2¢11C12(0) + 2¢12C11(0) + Ca2(0) = (—2¢11 + c22)cro.



Taking into account obtained equalities one can rewrite (I2)) in the form

06,
231

oG
- <(G1 — e11 = c1n€o)” = G+ ca1 + ez + 0235(2>> %olJr

+ <(G1 - C11)2 —2Gic12é0 — G2 + 021)612~ (13)

0G2

—8—51"‘1‘021 (O) =

2(G1 —c11 —01250) —2G, (Cn (0)+C12 (0)50) +2¢1:C11 (0)

Take &y — oo in this equality and note that the following relations are valid

0G4 . 1 z1dz1 1 1 9
dm Goger = i G | e n, T | 2da = by e =0,
Y Y

1 Z1 dZQ 1
1 G = 1 — - d
I GoGh= lm S0 | e, T am ) 0
Y Y
. 86‘1 . 1 z1 dZQ 1
lim 22— 2—/7=——/ dzs.
N 0, T T 05 | o 2w ) 9

Y Y

We obtain
—238012(0) + 2011011(0) + 021(0) = _(C%Q + 023)88 + (Cfl — 2cio2e + 021)012-

In obtained equations we express constants Cy;(0) through c;;:

Substituting these constants to (I3]), we obtain the third statement of theorem
3.1. O

Let us describe algorithm of reconstruction of complex curve X in CP?
without compact components (satisfying minimality condition (x)). As above,
v = bX is compact real curve.

Algorithm for reconstruction of curve X permits, instead of original curves,
to find curve coinciding with original curve in the finite number of points and
obtained by interpolation in other points. Let {¢*}Y | ¢* € C be arbitrary
frame on C, &' # &7, i # j, and €% ¢ moy, k=1, ..., N. Complex curve X
intersects complex line {22 = &*} in N (&,0) points. Algorithm allows to find
these points.



For all algorithms in input we have points {¢*}2_, and curve ~ (for example,
as finite number of points belonging to «). In output we have a set of points
(hs(€¥,0),6%), k=1, ..., N; s =1, ..., N.(¢¥,0), belonging to complex
curve X.

The case of o = 0.

1. Calculation of ;. By formula (3) for every domain €, I =1, ..., L,
number g is equal to index of curve myy with respect to & € Q:

1 dzo 1 dz
=N 0)=— = — — Q.
p = Ny (§o,0) 2m‘/z2750 omi | & o € Y
Y ™2y

2. Calculation of power sums. For the case uo = 0 for every point ¥ € €,
I =1, ..., L, by theorem [3.1] we have equalities P,, = 0. By formula
(@) we have the following formulas for power sums:

1 21" dz

ky — pm(ck m ¢k _ 1 <2 —

€)= W (€4,0) + -+ h(eh0) = o [ A T
¥

By theorem [21] the points (hs(€¥,0),6%), s =1, ..., N4 (¢%,0); k = 1,

..., N, are required points of X.

3. Calculation of symmetric functions. For every point &8 € Q;, 1 =1, ...,
L, the Newton formulas

k

kow(€F) =) (1) or_i(€)si(€¥), k=1,... Ny (&F).

i=1

allow to reconstruct elementary symmetric functions:

Ul(fk) = hl(fkvo) +eee At hM (fkvo)a

Uﬂl(fk) = hl(fkao) X X hm(fkao)'

4. Desymmetrisation. For any point ¢* € ; using Vieta formulas one can
find numbers h1(£%,0), ..., h,, (€%,0). Required points (hs(£¥,0),&%),
s=1,..., Ny(&¥,0); k=1, ..., N, of complex curve X are obtained.

The cases for pg = 1, 2. These cases are reduced to the case pg = 0 by the
following way. Since mpy C C is compact real curve, there exists such R > 0,
that the set BS(0) = {z € C | |z| > R} belongs to Qy. Without restriction of
generality, one can suppose that [¢¥| < R for all k=1, ..., N. Otherwise one
can increase R.

Let us define auxiliary complex curve Xg = {(z1,22) € X | |22] < R}. Its
boundary ~g consists in two disjoint parts (possibly, multiconnected): ~ and

10



real curve , obtained by lifting of the circle Sg = {z € C | |z] = R} on surface
X, by inversion of projection m3: X — C. Complex curve Xr does not intersect
infinity and, as a consequence uo(Xg) = 0. Moreover, any point (z;(¢F), &F),
k=1, ..., N, belongs to X iff it belongs to Xg. Therefore, for reconstruction
of complex curve Xp it is sufficient to reconstruct, at first, real curve obtained
by lifting of Sg on X and after to solve reconstruction problem, as in the case
to = 0. Finally, we come to the following algorithm.

1. New boundary. We choose constant R so large, that the exterior of the
disk of radius R with center in zero belong to Qg and all £* belong to this
disk. Denote boundary of this disk by Sg. In the case pug = 1 for points
& € Si by formula (@) we have equality

ha (60, 0) i/ 242 pg.0),

C2mi ) 2 —&
g

In the case pg = 2 we have two equalities:

h1(&0,0) + h2(&o,0) L /ZleQ + P1(&0,0),

:2_7'('2 22—50
Y
1 22 dz
h3 h3 =— [ 1=2+P
£(60,0) + 13(60:0) = 5 [ 222 1 Pa.0)
Y

where polynomials can be found from theorem [3Il In the case po = 1
by lifting the curve Sk on X we obtain at once the real curve of the form
{(h1(£0,0),&0) | &0 € Sr}. In the case py = 2 we have to apply, at first,
Newton formula and after Vieta formula in order from functions hi + ho
and h? + h3 to obtain h; and hs.

2. Reduction. For finding of complex curve Xpr with boundary bXr = g
we apply algorithm of reconstruction for the case pg = 0. The points
obtained in such a way will be those, which we need due to explanation
before algorithm.

4 Visualization.

Let us write a little bit about algorithm of visualization of Riemann surface by
selection of appropriate finite number of points. For illustration of this algorithm
we consider visualization of Riemann surface of the function

f(z)= \/exp (Z) +vV22+1, |z| <2

Note, firstly, that Riemann surface of this function has six algebraic points of
ramification of index 2 in the domain {|z| < 2}, two of which correspond to

11



points z = ¢ and z = —¢ of nulling of argument of interior radical, and four
others correspond to points of nulling of argument of exterior radical.

We assume that we have grid {z;’} in variable z; and a set of points
{(2¥,2)} on Riemann surface X = {(z1,22) € C? | 20 = f(z1), |=1| < 2}
of function f(z), where 1 <14 < Ny, 1 < j < Na, and to neighbor values of i, j
correspond neighbor points of grid. Suppose, that for each point 2}’ the number
of corresponding points (2, z%) is equal to number of leafs of Riemann surface
X. Moreover, one can accept that some point z/ may be a projection of some
point of ramification on X, permitting also multiple points (zi] z;]) Suppose
also, that points of ramification can be only interior points of the grid {z/}. We
will solve further the problem of visualization in Matlab.

1. Finding of ramification points. The first step of visualization algo-
rithm consists in finding of ramification points. Choose an arbitrary point
(21°7°, 25°7°) such, that point 2°° is interior point of the grid. Let us
go around the point 2% along discrete circle of sufficiently small ra-
dius with center in z{°° (such that inside of the circle would not be
more than one projection of ramification point of X). Choose an arbi-
trary point from the grid {z;"', 25"}, corresponding to the first point
Z1% of this circuit and let us in the process of circuit associate with
current point z*7* the point z5*/* such, that the distance between points
(ziF=t7Rmt gk Rty and (2I87% | 229%) be minimal.We associate the initial
point of circuit (29", z271) with the final point (217", ziV/™) of circuit.
If in this case 257" # 24N we mark the disk with center in z{°° with
the same radius as for circuit of circle by the marked disk containing pro-
jection of some ramification point on X. This method of obtaining from
discret circle on the grid {2} of the set of points {(27,257)} will be
called by lifting of this circle .

2. Realization of slits. We joint the disks marked in the first item with
boundary of the grid by some discrete curves on the grid {27}, in such
a way that different discrete curves don’t intersect each other and call
these curves by slits. It is impossible now to go around any point 2}’
on discrete grid by closed discrete curve without intersections with these
slits and the marked disks such that for describing lifting of this discrete
curve into the set of points {(2}’, 25’} the initial and final points would be
lifted into different points of this set of points.

3. Representation of leafs. Due to previous item the discrete grid {zV/
without marked disks and without slits could be uniquely lifted into the
set {27, 25’ } by fixing of lifting of some arbitrary point for each connected
component on the set {z’}. These lifted sets of points we call leafs. These
leafs one can visualize as usual surfaces.

4. Lifting of slits. By definition of slits {27} every slit admits unique lifting
into the set {(zy’,25)} if for any slit to fix lifting of one of its points.

12



real z,

real z,

real z,
real z,

Figure 1: Riemann surface for function f(z) = \/exp (2) +Vz2+1, |2] < 2,
obtained by visualization algorithm. Red and green curves— two connected
components of surface boundary, colored small balls — points of ramification.

This item is similar to previous one.

5 Examples.

5.1 The case py=1.

Consider example of reconstruction of Riemann surface for the case pp = 1. The
case pup = 2 will be considered further. The case pg = 0 is directly included in
considered cases because of specific character of reconstruction algorithm. Let
us reconstruct surface

X, = {(21,22) e C? | (21 — 1)z2 = exp(zf), |21] < 2}.

The boundary +; = bX; is given in the form of discrete number of points ( see
further fig. [3).

Note, that if point (z1,22) € X; is such that z; approaches to 1, then
z9 increases indefinitely. Choose R large enough, for example R = 60, and
reconstruct real curve I' = {(z1,22) € X1 | |22| = R}. Compute, first, for two

13



real z,

0
2
imag z, real z,

imag z, realz,

Figure 2: From the left Riemann surface of function f(z) = /sin(z), |z| < 2,
from the right — functions f(z) = V2% +1, |z| < 2, obtained by visualization

algorithm.

real ;

0
60
20 40

imag z, 40 60 real z,
imag z,

Figure 3: Boundary v; = bX; of the surface X; by which the surfaceX; is to

reconstruct.
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-100

Figure 4. By black is represented contour of surface X3, by blue — =4, by red
— reconstructed curve I', belonging to X;.

different &, €2, |¢4| = |€2| = R, the values of functions

G1(€0,0) L/ z1dzo

- 21 2o+ &o ’
Y2
0G, 1 / Z%dZQ
A 50 = T35 . e 9
9&o (&,0) 2mi ) (22 +60)?
Y2
0G4 1 z1dz1 zidzy

78, 00 = %/ (zz+£o B ww)

V2

and find from linear system for ¢17 and ¢q

oG oG oG oG
en Gt 60) + ez (6 G600+ Grl6h0) ) = Gr(6h 0) G2 6,0) - FEHE0)
oG oG oG oG
C11¥01(§§, O) + ci2 (goyol(gga O) + Gl(gga O)) = Gl(&%? 0)?;(&3’ O) - Wll(ggv 0)

values ¢;1 =1, ¢12 = 0. Now calculate the values of functions G1(&,0) on the
circle |§o] = R and find function hi(&) = G1(£0,0) + c11 + c12&0, |€0] = R. So
we reconstruct a real curve I' = {(h1(&), —&) | [é0] = R} C X1 (see fig. [).

We can apply further the reconstruction algorithm of Riemann surface for
the case pp = 0 to the surface X{¥ = {2z € X; | |22| < 60} with boundary
bXJE =~ +T. We can calculate the values of function

1 dZQ

o0(&o) = i .

Y1+I
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The value of function o¢(&p) in point & is equal to number N, (&) of points of
surface X{%, projected into the point —&y under projection (z1, z2) — 2. Further
for every point with Ni (&) > 0 we calculate functions

1 zf dzo

sk (60) = i P k=1,...,Ny(&)-

Y1+I

From functions sg(§p) we can find functions o (&p), using Newton formulas:

k
kon(€o) = D> (1) lori(Co)si(&o),  k=1,..., Ny (%)
i=1
After we find roots h1(&o), - .., Rg(eo)(§0) of polynomial

tN+(&0) _ 5y (fo)tN+(€0)_1 4 (_1)N+(€0)0'N+(£o)(§0) =0.

The points {(hx(£0), —&0) | K =1,..., N4+ (&)} represent the set of all points of
X, projected into —&, by projection (z1,22) — z». Visualization, obtained for
all &, of set of points can be realized by visualization algorithm described in
previous section. Reconstructed surface is represented in fig.

5.2 The case py = 2.

Consider example of reconstruction of Riemann surface for the case pg = 2. As
surface for reconstruction we choose the reconstruction

X, = {(21,22) eC? | 20(2 — 1) = z1exp(z}), |z1| < 2} )

From definition of X5 one can see that if (z1,22) € X3 and z; approaches to 1
or to —1, then 2o increases indefinitely. From given boundary v, = bX5 (see
fig. [B), we need to reconstruct surface X5 as a finite number of points.

Choose R large enough, for example, R = 60,and consider circle Cr of
radius R in the plane of variable z, with center in zero. Calculate for —§, € Cg
the values of functions

(50 B ) = / a dZ2 3

27TZ 2o+ &o
Y2
1 Z%dZQ
(507 ) 27TZ/ZQ+§O,
Y2
g, 00 =50 (22 + &)2
Y2
3671(g 0) = 1/<zldzl B 22dzy >
ae 2mi m+&  (2+6)%)]
Y2
3672(g 0) = 1/<zfdzl | 2dz >
06 " T omi J \ e+ & (2 +6)2
2
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100

-50 -50

imag z, -100 -100 real z,

Figure 5: By black is represented contour of surface X5, by blue — ~4, by red
— reconstructed curve I', belonging to X;, colored domains — reconstructed
leafs of surface Xj.

real z, 40 -40
real zZ,

Figure 6: Boundary bX5s of surface X5 by which surfaceXs is to reconstruct.
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M

Figure 7: Graph of function || ferror||(c11,¢21) in the neighborhood of point of
global minimum.

and the value of constant & = ﬁ fw z1dze, for example, using the method of
rectangles. We will solve numerically the problem of minimization of La(Cg)-
norm of function

Jerror(§0) = 2(G1 —C11 _01250) %—Zl —Gi (022 +2023§0) N 88—22 — 3¢+ acas+
2 2\ 9G1
+ (*1) (Gl —C11 — 01250) — Ga + ca1 + c22&0 + 02350 8—«50+

+ (—1) (G% —2G1c11 — 2Grc12€0 — G2>0127

in variables ¢11, ¢12, €21, C22, C23. As a result of solving of minimization problem
we find C11 — 0, Cl2 — 0, Co1 — 2, Cog — 0, Co3 — 0 (see flg E[)

Let us calculate symmetric functions o3 = G1 + ¢11 + ¢12€0, 02 = Ga2 +c21 +
2260 + ca3&2 and o on the circle Cr and we do its desymmetrization, using
Newton formulas. Value of 0¢(&p) is a sum of pp = 2 and index of point —&p with
respect to curve -9, which by definition is equal to Gy(&p,0) = %m vz ijzo.
As a result of desymmetrization we obtain functions hi(&p) and hz2(&) on the
circle Cgr, which realize lifting of circle Cr on the surface Xs. Denote by
Iy 2 = {(h1,2(#2), —22) | 22 € Cr} curves, obtained by corresponding lifting Cr
on X» (see fig. [B)

Now we consider the curve ~»+1"1 41" as a new initial curve and reconstruct
the surface X& = {2z € X5 | |z2| < R}. Further, our considerations are similar
to those for the case pg = 1. We calculate, first, functions s, then symmetric
functions oy, then we solve algebraic equation (numerically) and find functions
hi(&0), k=1, ..., Ny(&). Reconstructed surface is given by fig.
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real z,

100 -1

-15

-2
50 100 100 imag z, 710%\00

imaa z..

Figure 8: By black is represented contour of surface X5, by blue — ~9, by red
— reconstructed curves I'q 2, belonging to Xs.

100

imag z, 100 -100 real z,

Figure 9: By black is represented contour of surface X5, by blue — ~9, by red
— reconstructed curves I'y o, belonging to Xo, colored by dark-blue, orange, red
and blue domains — reconstructed leafs of surface.
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