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Explicit reconstruction of Riemann surface with given
boundary in complex projective space1

A. D. Agaltsov 2, G. M. Henkin3

In this paper we propose a numerically realizable method for reconstruction
of a complex curve with known boundary and without compact compo-
nents in complex projective space.

Keywords: Riemann surface, reconstruction algorithm, Burgers equation,
Cauchy-type formulas

1 Introduction
Let CP 2 be the complex projective plane with homogeneous coordinates (w0 : w1 : w2).
Let X ⊂ CP 2 be a complex curve with rectifiable boundary γ = ∂X. Without loss of
generality, we suppose that the following conditions of general position hold:

(0 : 1 : 0) 6∈ X, w0|γ 6= 0.

Put C2 = {w ∈ CP 2 : w0 6= 0} with coordinates z1 = w1

w0
, z2 = w2

w0
. For almost

all ξ = (ξ0, ξ1) ∈ C2 the points of intersection of X with complex line C1
ξ = {z ∈

C2 : ξ0 + ξ1z1 + z2 = 0} form a finite set of points(
z

(j)
1 (ξ), z

(j)
2 (ξ)

)
=
(
hj(ξ),−ξ0 − ξ1hj(ξ)

)
, ξ = (ξ0, ξ1), j = 1, . . . , N+(ξ).

By Darboux lemma [2, 4] functions {hj} satisfy the following equations

∂hj(ξ)

∂ξ1

= hj(ξ)
∂hj(ξ)

∂ξ0

, ξ = (ξ0, ξ1), j = 1, . . . , N+(ξ), (1)

which are often called the shock-wave equations, the inviscid Burgers equations or the
Riemann-Burgers equations. In this interpretation ξ1 is the time variable and ξ0 is the
space variable.
1This is an improved version of the article A. D. Agaltsov, G. M. Henkin, Explicit reconstruction of
Riemann surface with given boundary in complex projective space, Journal of Geometric Analysis
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The following Cauchy-type formula from [4] plays the essential role in the recon-
struction of X from γ:

Gm(ξ)
def
==

1

2πi

∫
γ

zm1 d(ξ0 + ξ1z1 + z2)

ξ0 + ξ1z1 + z2

=

N+(ξ)∑
j=1

hmj (ξ) + Pm(ξ), m ≥ 1, (2)

where N+(ξ) = |X ∩ C1
ξ | and Pm(ξ0, ξ1) is a polynomial of degree at most m with

respect to ξ0 at fixed ξ1. In addition, P0(ξ0, ξ1) = −N−, where N− = |X ∩ CP 1
∞|,

CP 1
∞ = {w ∈ CP 2 : w0 = 0}, and

P1(ξ0, ξ1) = −
N−∑
k=1

akξ0 + bk
1− akξ1

, if hk(ξ0, 0) ∼ akξ0 + bk +O(ξ−1
0 ) at ∞. (3)

In particular, it follows from (2) that:

G0(ξ) =
1

2πi

∫
γ

d(ξ0 + ξ1z1 + z2)

ξ0 + ξ1z1 + z2

= N+(ξ)−N−. (4)

Let π2 : C2 → C be the projection onto the second coordinate: π2(z1, z2) = −z2.
We have that C\π2γ = ∪Ll=0Ωl, where Ωl≥0 are connected and Ω0 is unbounded. From
the definition of N± it follows that

N+(ξ0, 0) = N−, ξ0 ∈ Ω0. (5)

Assume that complex curve X does not contain compact components without
boundary, or equivalently, satisfies the following condition of minimality:

for any complex curve X̃ ⊂ CP 2 such that ∂X̃ = ∂X = γ

and for almost all ξ ∈ C2 we have |X̃ ∩ C1
ξ | ≥ |X ∩ C1

ξ |.
(∗)

Condition of minimality (∗) is a condition of general position and is fulfilled forX if,
for example, every irreducible component ofX is a transcendental complex curve. Note
that from theorems of Chow [1] and Harvey-Shiffman [7] it follows that an arbitrary
complex curve X̃ ⊂ CP 2 satisfying ∂X̃ = ∂X admits the unique representation X̃ =
X∪V , where X is a curve satisfying (∗), and V is a compact algebraic curve, possibly,
with multiple components.

The main result of [3] gives a solution to the important problem of J.King [9], when
a real curve γ ⊂ CP 2 is the boundary of a complex curve X ⊂ CP 2. Let γ ⊂ C2.
Then γ = ∂X for some open connected complex curve X in CP 2 if and only if in a
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neighborhood Wξ∗ of some point ξ∗ ∈ C2 one can find mutually distinct holomorphic
functions h1, . . . , hN(ξ∗) satisfying shock-wave equations (1) and also the equation

∂2

∂ξ2
0

(
G1(ξ0, ξ1)−

p∑
j=1

hj(ξ0, ξ1)
)

= 0, ξ = (ξ0, ξ1) ∈ Wξ∗ .

In this work in development of [3, 4] we propose a numerically realizable algorithm
for reconstruction of a complex curve X ⊂ CP 2 from the known boundary and sat-
isfying the condition of minimality. This algorithm permits, in particular, to make
applicable the result of [8] about principal possibility to reconstruct the topology and
the conformal structure of a two-dimensional bordered surface X in R3 with constant
scalar conductivity from measurements on ∂X of electric current densities, induced
by three potentials in general position.

Our algorithm depends on the number of points at infinity N− of the complex curve
X. It was tested on many examples and admits a simple and complete justification
for N− = 0, 1, 2. Despite a cumbersome description for N− ≥ 3, we show that, in
principle, there are no obstacles for the justification and numerical realization for any
N− ≥ 0. Moreover, in Theorem 3.2 we propose a method for finding the parameter
N− in terms of γ. This makes the algorithm much more applicable.

2 Cauchy-type formulas and Riemann-Burgers equa-
tions

We begin by giving a new proof of the Cauchy type formulas (2) from [4], which allows
to obtain explicit expressions for functions Pm.

Theorem 2.1. Let X ⊂ CP 2 \ (0 : 1 : 0) be a complex curve with rectifiable boundary
γ ⊂ C2 and satisfying (∗). Suppose that for almost all ξ ∈ C2 all the points of
intersection of X with C1

ξ have multiplicity at most one. Then the following formulas
hold for almost all ξ = (ξ0, ξ1) ∈ C2:

Gm(ξ) =
∑N+(ξ)

j=1
hmj (ξ) + Pm(ξ), m ≥ 1, (6)

where Pm(ξ) is holomorphic in a neighborhood of almost all (ξ0, 0), ξ0 ∈ C\π2(γ), and
is polynomial in ξ0 of degree at most m for any fixed ξ1. Furthermore, the following
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explicit formulas hold:

Pm(ξ0, ξ1) =

N−∑
s=1

m−1∑
k=0

∑
i1+···+im=k

di1w1

dw
i1
0

(qs) · · · d
imw1

dwim0
(qs)

(m− k − 1)!

dm−k

dwm−k0

ln(ξ0w0 + ξ1w1 + w2)|qs

−
µ0∑
s=1

∑
i1+···+im=m

di1w1

dwi10
(qs) · · ·

dimw1

dwim0
(qs),

where X ∩ CP 1
∞ = {q1, . . . , qN−}. In particular, if N− = 0 then Pm = 0, m ≥ 1.

Proof. Put g̃ = ξ0w0 + ξ1w1 + w2 and g = g̃
w0

= ξ0 + ξ1z1 + z2. Consider differential
forms

ωm
def
== zm1

dg

g
=
wm1
wm0

w0

g̃
d

(
g̃

w0

)
=
wm1
wm0

dg̃

g̃
− wm1
wm+1

0

dw0, m = 0, 1, . . .

Then Gm(ξ) = 1
2πi

∫
γ
ωm. Let us compute this integral explicitly. Denote by pj, j = 1,

. . . , N+(ξ) the points of intersection of X with CP 1
ξ , and by qs, s = 1, . . . , N− the

points of intersection of X with infinity CP 1
∞. Denote by Bε

j the intersection of X
with the ball of radius ε in CP 2 centered at pj and by Dε

s the intersection of X with
the ball of radius ε centered at qs. The restriction of form ωm on X is meromorphic
with poles at points pj and qs. Thus the following equality is valid:

Gm(ξ) =
1

2πi

∫
γ

ωm =

N+(ξ)∑
j=1

1

2πi

∫
bBεj

ωm +

N−∑
s=1

1

2πi

∫
bDεs

ωm.

If N− = 0, then the second group of terms is absent. The integral
∫
bBεj

ωm can be
calculated as a residue at the first order pole:∫

bBεj

ωm =

∫
bBεj

zm1
dg̃

g̃
−
∫
bBεj

wm1
wm+1

0

dw0 =

∫
bBεj

zm1
dg̃

g̃
= 2πi hmj (ξ).

Let N− > 0. Computation of integral
∫
bDεs

ω1 will be done in two steps. Let us
calculate first

∫
bDεs

wm1
wm+1

0

dw0. Consider the expansion of w1(w0) into power series in w0

in the neighborhood of point qs:

w1(w0) = w1(qs) +
dw1

dw0

(qs)w0 +
d2w1

dw2
0

(qs)w
2
0 + · · · .
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Note further that

wm1 (w0) =
∞∑
k=0

∑
i1+···+im=k

di1w1

dwi10
(qs) · · ·

dimw1

dwim0
(qs)w

k
0 .

The coefficient near wm0 can be presented in the form∫
bDεs

wm1
wm+1

0

dw0 = 2πi
∑

i1+···+im=m

di1w1

dwi10
(qs) · · ·

dimw1

dwim0
(qs).

Now we can calculate the integral
∫
bDεs

wm1
wm0

dg̃
g̃
. Using relation dg̃ = dg̃

dw0
dw0 and

expansion of w1(w0) into power series in w0 we obtain:∫
bDεs

wm1
wm0

dg̃

g̃
=

∫
bDεs

1

wm0

(
w1(qs) +

dw1

dw0

(qs)w0 +
d2w1

dw2
0

(qs)w
2
0 + · · ·

)m
dg̃

dw0

1

g̃
dw0 =

∞∑
k=0

∫
bDεs

∑
i1+···+im=k

di1w1

dwi10
(qs) · · ·

dimw1

dwim0
(qs)w

k−m
0

dg̃

dw0

1

g̃
dw0 =

m−1∑
k=0

∫
bDεs

∑
i1+···+im=k

di1w1

dwi10
(qs) · · ·

dimw1

dwim0
(qs)w

k−m
0

dg̃

dw0

1

g̃
dw0 =

m−1∑
k=0

2πi

(m− k − 1)!

∑
i1+···+im=k

di1w1

dwi10
(qs) · · ·

dimw1

dwim0
(qs) lim

w0→0

dm−k−1

dwm−k−1
0

(
dg̃

dw0

1

g̃

)
.

From here, taking into account the relation dg̃
dw0

1
g̃

= d ln g̃
dw0

, we obtain, finally

∫
bDεs

wm1
wm0

dg̃

g̃
= 2πi

m−1∑
k=0

∑
i1+···+im=k

di1w1

dw
i1
0

(qs) · · · d
imw1

dwim0
(qs)

(m− k − 1)!

dm−k

dwm−k0

ln(ξ0w0 + ξ1w1 + w2)|qs .

It is a polynomial of degree at most m with respect to ξ0.

Remark 2.1. We excluded the case (0 : 1 : 0) ∈ X because the point (0 : 1 : 0) can
lead to a non-polynomial contribution in ξ0 in functions Pm.

Consider, for example, the projective curve X̃: w2
0 = w1w2 and the meromorphic

1-form Ωξ0 on it:
Ωξ0 = z1dz2

z2+ξ0
, ξ0 ∈ C \ 0,

where z1 = w1

w0
, z2 = w2

w0
. The form Ωξ0 is holomorphic on X except the points

q1 = (0 : 0 : 1), q2 = (0 : 1 : 0) and pξ0 = (−ξ0 : 1 : ξ2
0).
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One can see that the residues of Ωξ0 at q1, q2 are equal to 0 and 1/ξ0, respectively.
It follows that the residue at pξ0 is equal to −1/ξ0.

Now, consider the part X of X̃ obtained by cutting off some small neighborhood
of the point q1. Let γ denote the boundary of X. Choose any ξ = (ξ0, 0) such that
X ∩C1

ξ 6= ∅. Then X ∩C1
ξ = {(−1/ξ0,−ξ0)} and, as far as the residue of Ωξ0 at q1 is

zero, we have that

0 = G1(ξ0, 0) =
1

2πi

∫
γ

Ωξ0 = − 1

ξ0

+ P1(ξ0, 0),

so that P1(ξ0, 0) = 1/ξ0.

We will also use the following result of [8], which gives an effective characterization
of functions hj≥1 of Theorem 2.1.

Theorem 2.2 (Remark 4 to Theorem 3a of [8]). Let X ⊂ CP 2 \ (0 : 1 : 0) be a
complex curve with rectifiable boundary γ ⊂ C2 and satisfying (∗). Fix any ξ∗0 ∈ Ω0

and let Wξ∗ be a neighborhood of ξ∗ = (ξ∗0 , 0) in C2. Let Gk≥1, hj≥1 be defined as in
(2) and (6). Suppose that there exist functions h̃1, . . . , h̃p, holomorphic in Wξ∗ and
satisfying

∂2

∂ξ20
(G1 − h̃1 − · · · − h̃p) = 0 in Wξ∗ , (7)

∂h̃k
∂ξ1

= h̃k
∂h̃k
∂ξ0

in Wξ∗, k = 1, . . . , p. (8)

Then p ≥ N−. Furthermore, if p = N− := |X ∩CP 1
∞|, then h1, . . . , hN− coincide with

h̃1, . . . , h̃N− in Wξ∗ (up to order).

3 Reconstruction algorithm
We now pass to the reconstruction algorithm for a complex curve X ⊆ CP 2 with given
boundary ∂X and satisfying the condition of minimality (∗). Let us consider the cases
N− = 0, 1, 2.

The reconstruction algorithm is based on formulas (6). The next theorem permits
to find the functions Pm of (6). We will use the notation

ækl =
1

2πi

∫
γ

zk1z
l
2 dz2, k, l ≥ 0. (9)

Theorem 3.1. Let X ⊂ CP 2, (0 : 1 : 0) 6∈ X, be a complex curve with rectifiable
boundary γ ⊂ C2 and satisfying (∗). Let hj≥1 and Pm≥1 be the functions defined in
Theorem 2.1. Then the following statements are valid:
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1. If N− = 0, then Pm = 0 for all m ≥ 1. Besides, G1 = 0 in a neighborhood of
any ξ∗ = (ξ∗0 , 0) with ξ∗0 ∈ Ω0.

2. If N− = 1, then P1(ξ0, 0) = c11 + c12ξ0, where constants c11 and c12 satisfy the
following identity in ξ = (ξ0, 0) ∈ Ω0 × 0:

c11
∂G1

∂ξ0
(ξ) + c12

(
ξ0
∂G1

∂ξ0
(ξ) +G1(ξ)

)
= G1(ξ)∂G1

∂ξ0
(ξ0, 0)− ∂G1

∂ξ1
(ξ). (10)

3. If N− = 2, then P1(ξ0, 0) = c11 + c12ξ0, P2(ξ0, 0) = c21 + c22ξ0 + c23ξ
2
0, where

constants c11, c12, c21, c22, c23 satisfy the following identity in ξ = (ξ0, 0) ∈ Ω0×0:

æ10(c2
12 + c23) = ∂G2

∂ξ1
− 2∂G1

∂ξ1
(G1 − c11 − c12ξ0) +G1(c22 + 2c23ξ0)

+
∂G1

∂ξ0

·
(
(G1 − c11 − c12ξ0)2 −G2 + c21 + c22ξ0 + c23ξ

2
0

)
+
(
G2

1 − 2c11G1 − 2c12G1ξ0 −G2

)
· (−c12),

(11)

where all the functions are evaluated at point ξ = (ξ0, 0).

Proof. 1. By Theorem 2.1, if N− = 0 then Pm = 0 for all m ≥ 1. It also follows from
formula (6) that G1 = 0 in a neighborhood of any ξ∗ = (ξ∗0 , 0) with ξ∗0 ∈ Ω0.

2. It follows from Theorem 2.1 that P1(ξ0, ξ1) = C11(ξ1) + C12(ξ1)ξ0 in a neigh-
borhood of almost all ξ∗ = (ξ∗0 , 0) ∈ Ωl × 0, where C11, C12 are holomorphic in a
neighborhood of zero. We need to find constants c11 = C11(0) and c12 = C12(0).

We differentiate the equation (6) with respect to ξ0 and restrict this equation and
its differentiated version to Ωl × 0:

h1(ξ0, 0) = G1(ξ0, 0)− c11 − c12ξ0,

∂h1

∂ξ1

(ξ0, 0) =
∂G1

∂ξ1

(ξ0, 0)− Ċ11(0)− Ċ12(0)ξ0,

∂h1

∂ξ0

(ξ0, 0) =
∂G1

∂ξ0

(ξ0, 0)− c12,

(12)

where ξ0 ∈ Ω0. By (1) there is the equality ∂h1
∂ξ1

(ξ0, 0) = h1(ξ0, 0)∂h1
∂ξ0

(ξ0, 0). We
substitute h1(ξ0, 0), ∂h1

∂ξ1
(ξ0, 0), ∂h1

∂ξ0
(ξ0, 0) in this equation by their expressions (12),

and we obtain the equation

∂G1

∂ξ1

(ξ0, 0)− Ċ11(0)− Ċ12(0)ξ0 =

=

(
G1(ξ0, 0)− c11 − c12ξ0

)(
∂G1

∂ξ0

(ξ0, 0)− c12

)
.

(13)
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This equation is valid, in particular, for ξ0 ∈ Ω0. We divide it by ξ0 and tend ξ0 →∞.
As a result, we obtain the equality Ċ12(0) = −c2

12. Taking into account this equality,
we can rewrite equation (13) in the form

∂G1

∂ξ1

(ξ0, 0)− Ċ11(0) =

=

(
G1(ξ0, 0)− c11 − c12ξ0

)
∂G1

∂ξ0

(ξ0, 0)−
(
G1(ξ0, 0)− c11

)
c12.

(14)

Taking into account that ξ0
∂G1

∂ξ0
(ξ0, 0)→ 0 as ξ0 →∞ and passing ξ0 →∞ in (14), we

obtain the equality Ċ11(0) = −c11c12. Substituting ths explicit expression for Ċ11(0)
into (14), we get (10).

3. By (1) functions h1(ξ) and h2(ξ) satisfy the Riemann-Burgers equation in a
neighborhood of any ξ∗ = (ξ∗0 , 0) ∈ Ω0 × 0, so that the following equalities are valid:

∂(h1h2)

∂ξ1

= h1
∂h2

∂ξ1

+
∂h1

∂ξ1

h2 = h1h2
∂(h1 + h2)

∂ξ0

, (15)

∂(h2
1 + h2

2)

∂ξ0

= 2h1
∂h1

∂ξ0

+ 2h2
∂h2

∂ξ0

= 2
∂(h1 + h2)

∂ξ1

. (16)

Note that h1h2 = 1
2

(
h1 + h2

)2 − 1
2

(
h2

1 + h2
2

)
. Therefore the system (15)–(16) is

equivalent to the system
∂(h1 + h2)2

∂ξ1

− ∂(h2
1 + h2

2)

∂ξ1

=

((
h1 + h2

)2 −
(
h2

1 + h2
2

))∂(h1 + h2)

∂ξ0

, (17)

∂(h2
1 + h2

2)

∂ξ0

= 2
∂(h1 + h2)

∂ξ1

. (18)

We substitute the expressions of (6) for h2
1 + h2

2 and h1 + h2 into (17), (18), using the
notations P1(ξ0, ξ1) = C11(ξ1) +C12(ξ1)ξ0, P2(ξ0, ξ1) = C21(ξ1) +C22(ξ1)ξ0 +C23(ξ1)ξ2

0 .
Then, equation (18) restricted to Ω0 × 0 takes the form

∂G2

∂ξ0

(ξ0, 0)− c22 − 2c23ξ0 = 2

(
∂G1

∂ξ1

(ξ0, 0)− Ċ11(0)− Ċ12(0)ξ0

)
. (19)

We divide this equation by ξ0 and tend ξ0 →∞. It leads to the equality Ċ12(0) = c23.
Taking this equality into account and passing ξ0 →∞ in (19), we obtain the equality
Ċ11(0) = 1

2
c22.

Next, we substitute the expressions of (6) for h2
1 + h2

2 and h1 + h2 into (17) and
restrict the obtained formula to Ω0 × 0. It leads to the equality

2
(
G1−c11−c12ξ0

)(∂G1

∂ξ1

−Ċ11(0)−Ċ12(0)ξ0

)
− ∂G2

∂ξ1

+Ċ21(0)+Ċ22(0)ξ0 +Ċ23(0)ξ2
0 =

=

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)(
∂G1

∂ξ0

− c12

)
. (20)
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We divide this equation by ξ2
0 and tend ξ0 →∞. This leads to the equality

2c12Ċ12(0) + Ċ23(0) = −
(
c2

12 + c23

)
c12.

Taking this equality into account, dividing (20) by ξ0 and passing ξ0 →∞, we obtain
the equality

2c11Ċ12(0) + 2c12Ċ11(0) + Ċ22(0) = −
(
2c11c12 + c22

)
c12.

Using the obtained equalities, one can rewrite (20) in the form

2
(
G1 − c11 − c12ξ0

)∂G1

∂ξ1

− 2G1

(
Ċ11(0) + Ċ12(0)ξ0

)
+ 2c11Ċ11(0)− ∂G2

∂ξ1

+ Ċ21(0) =

=

((
G1 − c11 − c12ξ0

)2 −G2 + c21 + c22ξ0 + c23ξ
2
0

)
∂G1

∂ξ0

+

+

((
G1 − c11

)2 − 2G1c12ξ0 −G2 + c21

)
(−c12). (21)

We pass ξ0 →∞ and note that the following relations are valid

lim
ξ0→∞

ξ0
∂G1

∂ξ1

= lim
ξ0→∞

ξ0
1

2πi

∫
γ

z1 dz1

ξ0 + z2

=
1

2πi

∫
γ

z1 dz1 = 0,

lim
ξ0→∞

ξ0G1 = lim
ξ0→∞

ξ0
1

2πi

∫
γ

z1 dz2

ξ0 + z2

=
1

2πi

∫
γ

z1 dz2 = æ10,

lim
ξ0→∞

ξ2
0

∂G1

∂ξ0

= − lim
ξ0→∞

ξ2
0

1

2πi

∫
γ

z1 dz2

(ξ0 + z2)2
= − 1

2πi

∫
γ

z1 dz2 = −æ10.

As a result, we obtain

−2æ10Ċ12(0) + 2c11Ċ11(0) + Ċ21(0) = −
(
c2

12 + c23

)
æ10 −

(
c2

11 − 2c12æ10 + c21

)
c12.

Due to the obtained relations, we can express constants Ċij(0) as functions of cij:

Ċ11(0) =
1

2
c22,

Ċ12(0) = c23,

Ċ23(0) = −c3
12 − 3c12c23,

Ċ22(0) = −2
(
c11c

2
12 + c12c22 + c11c23

)
,

Ċ21(0) = æ10(c2
12 + c23)− c12(c2

11 + c21)− c11c22.

(22)

Substituting these constants to (21), we obtain the third statement of Theorem 3.1.
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Complement 3.1. The statement of Theorem 3.1 admits a development for the case
N− ≥ 3. In this case

Pk(ξ0, ξ1) = Ck1(ξ1) + Ck2(ξ1)ξ0 + · · ·+ Ck,k+1(ξ1)ξk0 , k = 1, . . . , N−.

Denote Ċij(0) =
∂Cij
∂ξ1

(0) and cij = Cij(0) for i = 1, . . . , N− and j = 1, . . . , i+ 1.
Let us indicate the following general procedure for finding of constants cij. Due

to the Riemann–Burgers equations (1) the following identities in ξ0 ∈ Ω0 hold for
k = 1, . . . , N− − 1:

−∂Gk

∂ξ1

(ξ0, 0) + Ċk1(0) + Ċk2(0)ξ0 + · · ·+ Ċk,k+1(0)ξk0

=
k

k + 1

(
−∂Gk+1

∂ξ0

(ξ0, 0) + ck+1,2 + 2ck+1,3ξ0 + · · ·+ (k + 1)ck+1,k+2ξ
k
0

)
.

Taking into account that ∂Gk
∂ξ1

(ξ0, 0)→ 0 and ∂Gk+1

∂ξ0
(ξ0, 0)→ 0 as ξ0 → +∞ we obtain

the equalities

Ċk,m(0) =
km

k + 1
ck+1,m+1, k = 1, . . . , µ0 − 1, m = 1, . . . , k + 1.

Due to the Riemann–Burgers equations (1) the following identity in ξ0 ∈ Ω0 holds:

∂eµ0
∂ξ1

(ξ0, 0) = eµ0(ξ0, 0)
∂p1

∂ξ0

(ξ0, 0), (23)

where functions ek are given by the following formulas:

kek(ξ0, ξ1) =
k−1∑
i=1

(−1)i+1ek−i(ξ0, ξ1)pi(ξ0, ξ1) + (−1)k+1pk(ξ0, ξ1),

pk(ξ0, ξ1) = Gk(ξ0, ξ1)− Ck1(ξ1)− Ck2(ξ1)ξ0 − · · · − Ck,k+1(ξ1)ξk0 ,

(24)

where k = 1, . . . , µ0.
Equality (23) allows to represent constants {Ċµ0,j(0)} as functions of constants

{cij}. Finally, substituting the obtained expressions for constants {Ċij(0)} via con-
stants {cij} into equation (23) we obtain the identity in ξ0 ∈ Ω0 for computation of
constants {cij}.

For example, in the case N− = 3 the identity (23) in ξ0 ∈ Ω0 for finding of constants
cij takes the form

Ċ31(0) + Ċ32(0)ξ0 + Ċ33(0)ξ2
0 + Ċ34(0)ξ3

0 =
∂G3

∂ξ1

+

+
3

4
(p2

1 − p2)
∂p2

∂ξ0

− p1
∂p3

∂ξ0

− 1

2

(
p3

1 − 3p1p2 + 2p3

)∂p1

∂ξ0

,

10



where all functions are evaluated at point (ξ0, 0), the functions pk are defined in formula
(24) and the constants Ċ31(0), Ċ32(0), Ċ33(0), Ċ34(0) are given by formulas

Ċ31(0) =
1

2
æ10

(
3c11c

2
12 + 3c12c22 + 3c11c23 + 2c33

)
− 1

2
æ11

(
c3

12 + 3c12c23 + 2c34

)
− 3

2

1

2πi

∫
γ

z1z2 dz1

(
c2

12 + c23

)
− 1

2
c3

11c12 −
3

2
c11c12c21 −

3

4
c2

11c22 −
3

4
c21c22 − c12c31 − c11c32,

Ċ32(0) = æ10

(
c3

12 + 3c12c23 + 2c34

)
− 3

2
c2

11c
2
12 −

3

2
c2

12c21 − 3c11c12c22

− 3

4
c2

22 −
3

2
c2

11c23 −
3

2
c21c23 − 2c12c32 − 2c11c33,

Ċ33(0) = −3

2
c11c

3
12 −

9

4
c2

12c22 −
9

2
c11c12c23 −

9

4
c22c23 − 3c12c33 − 3c11c34

Ċ34(0) = −1

2
c4

12 − 3c2
12c23 −

3

2
c2

23 − 4c12c34,

where æ10 and æ11 are defined in formula (9).

The next theorem permits to find N− = |X ∩ CP 1
∞| from γ = ∂X.

Theorem 3.2. Let X ⊂ CP 2 \ (0 : 1 : 0) be a complex curve with rectifiable boundary
γ ⊂ C2 and satisfying (∗). Let Gm≥1 be the functions defined in (2) and let N− =
|X∩CP 1

∞|. Fix any ξ∗0 ∈ Ω0 and let Wξ∗ be a neighborhood of ξ∗ = (ξ∗0 , 0) in C2. Then
the following statements are valid:

1. If G1 = 0 in Wξ∗, then either N− = 0, or γ′ bounds a complex curve in C2,
where γ′ denotes γ with the opposite orientation.

2. If there exist complex constants c11, c12 such that
∂
∂ξ1

(
G1 − P1

)
= (G1 − P1) ∂

∂ξ0
(G1 − P1) in Wξ∗ , (25)

where P1(ξ0, ξ1) = c11ξ0+c12
1+c11ξ1

, then N− ≤ 1. Furthermore, c11, c12 are the same
constants as in Theorem 3.1.

3. If there exist complex constants a1, a2, b1, b2, c1, c2 such that c1 + c2 = æ10,
∂
∂ξ1

((G1 − P1)2 −G2 − P2)

= ((G1 − P1)2 −G2 − P2) ∂
∂ξ0

(G1 − P1) in Wξ∗ ,

P1(ξ0, ξ1) = −a1ξ0+b1
1−a1ξ1 −

a2ξ0+b2
1−a2ξ0 ,

P2(ξ0, ξ1) = −
2∑
j=1

[(ajξ0+bj
1−ajξ1

)2
+

2ajcj
1−ajξ1

]
,

(26)
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then N− ≤ 2. Furthermore, these constants are related to the constants of The-
orem 3.1 by the equations:

a1 + a2 = −c12, b1 + b2 = −c11,

a2
1 + a2

2 = −c23, a1b1 + a2b2 = −1
2
c22,

b2
1 + b2

2 + 2a1c1 + 2a2c2 = −c21, c1 + c2 = æ10.

(27)

Proof. 1. The equality G1 = 0 in Wξ∗ implies that G1 = 0 for all ξ ∈ Ω0×C. In turn,
it implies, according to [4], the moment condition∫

γ

zk11 z
k2
2 dz2 = 0, k1, k2 ≥ 0.

Then, according to [13] and [6], for an appropriate choice of orientation, γ is the
boundary of a complex curve in C2.

2. Set h = G1 − P1 in a neighborhood Wξ∗ of ξ∗. Then h satisfies

∂2

∂ξ20
(G1 − h) = 0 in Wξ∗ ,

∂h
∂ξ1

= h ∂h
∂ξ0

in Wξ∗ .

It follows from Theorem 2.2 that N− ≤ 1. Note also that equation (10) is the restric-
tion of (25) to Wξ∗ ∩ (Ω0 × 0).

3. Consider the following quadratic equation in variable t:

t2 − (G1 − P1)t+ 1
2
((G1 − P1)2 −G2 − P2) = 0. (28)

Suppose that the discriminant is non-zero at ξ∗. Then, without loss of generality, it
is non-zero in Wξ∗ (we can always choose a smaller neighborhood). We denote two
different roots of this equation as h̃1 = h̃1(ξ), h̃2 = h̃2(ξ). Clearly, h̃1 and h̃2 are
holomorphic in Wξ∗ . Furthermore, by the Vi?te formulas we have

h̃1 + h̃2 = ẽ1 := G1 − P1 in Wξ∗ ,

h̃1h̃2 = ẽ2 := 1
2
((G1 − P1)2 −G2 − P2) in Wξ∗ .

Note that by definition ∂P1

∂ξ1
= 1

2
∂P2

∂ξ0
. Note also that by Lemma 3.3.1 of [4] we have

∂G1

∂ξ1
= 1

2
∂G2

∂ξ0
. It leads to the equation

∂ẽ1

∂ξ1

=
1

2

∂

∂ξ0

(ẽ2
1 − 2ẽ2) in Wξ∗ . (29)

Furthermore, equation (26) can be rewritten in the form

∂ẽ2

∂ξ1

= ẽ2
∂ẽ1

∂ξ0

in Wξ∗ . (30)
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Now denote by ĥ1, ĥ2 the shock-wave extensions of h̃1(·, 0) and h̃1(·, 0) to Wξ∗

which exist and are unique by the Cauchy-Kowalevski theorem. Set ê1 = ĥ1 + ĥ2,
ê2 = ĥ1ĥ2. Due to the shock-wave equations for ĥ1 and ĥ2, the functions ê1 and ê2

satisfy
∂ê1

∂ξ1

=
1

2

∂

∂ξ0

(ê2
1 − 2ê2) in Wξ∗ ,

∂ê2

∂ξ1

= ê1
∂ê2

∂ξ0

in Wξ∗ .

Thus, ẽ1, ẽ2 and ê1, ê2 are holomorphic solutions to the same system with the same
restrictions at ξ1 = 0. By the Cauchy-Kowalevski theorem, ẽ1 = ê1 and ẽ2 = ê2. It
follows from the Vi?te formulas that h̃1, h̃2 coincide with ĥ1, ĥ2 (up to order). Hence,
h̃1, h̃2 satisfy the shock-wave equations.

Applying Theorem 2.2, we obtain that N− ≤ 2.
It remains to consider the case when the determinant of equation (28) vanishes

in Wξ∗ . Otherwise, it vanishes on (at most) a dimension one analytic set and in any
neighborhood of ξ∗ there are balls where it does not vanish.

The zero discriminant condition reads

(G1 − P1)2 = 2(G2 − P1) in Wξ∗ .

We set h̃ = 1
2
(G1−P1). Then by definition of P1 and from the discriminant condition

we get
∂
∂ξ20

(G1 − 2h̃) = 0 in Wξ∗ ,

∂h̃
∂ξ1

= h̃ ∂h̃
∂ξ0

in Wξ∗ .

By Theorem 2.2 it implies N− ≤ 2. Note also that if N− = 2, then all intersections of
X with C1

ξ , ξ ∈ Wξ∗ , are double.
Finally, note that equation (11) is the restriction of (26) to the set Wξ∗ ∩ (Ω0 ×

0).

Complement 3.2. The statement of Theorem 3.2 can be generalized to the case
N− ≥ 3 in the spirit of cases N− ≤ 2. Such a generalization will be developed in a
separate paper together with a statement of Theorem 3.1 for N− ≥ 3, indicated in
Complement 3.1.

We pass to the description of the algorithm of reconstruction of a complex curve
X ⊂ CP 2 satisfying the minimality condition (∗) from the known boundary γ = ∂X ⊂
C2.

Let {ξk0}Nk=1, ξk0 ∈ C be an arbitrary grid in C, ξi0 6= ξj0, i 6= j, and ξk0 /∈ π2γ,
k = 1, . . . , N . The complex curve X intersects complex line {z2 = −ξk0} at points
(hs(ξ

k
0 , 0),−ξk0 ), 1 ≤ s ≤ N+(ξk0 , 0). We are going to present the formulas for finding

these points.
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The algorithm takes as input the points {ξk0}Nk=1 and the curve γ (for example, rep-
resented as a finite number of points belonging to γ). On the output of the algorithm
we obtain the set of points (hs(ξ

k
0 , 0),−ξk0 ), 1 ≤ k ≤ N ; 1 ≤ s ≤ N+(ξk0 , 0).

1. No points at infinity

1. Computation of N+. According to formula (4), for every domain Ωl≥0, the
number µl = N+(ξ0, 0), ξ0 ∈ Ωl, is equal to the winding number of the curve π2γ
with respect to a point ξ0 ∈ Ωl:

µl ≡ N+(ξ0, 0) =
1

2πi

∫
γ

dz2

z2 + ξ0

≡ 1

2πi

∫
π2γ

dz

z − ξ0

, ξ0 ∈ Ωl.

2. Computation of power sums. If N− = 0 then, according to Theorem 3.1, for
every point ξk0 ∈ Ωl≥0 we have that Pm(ξk0 , 0) = 0. Using formula (6) we obtain
the following formulas for the power sums of the functions to be determined:

sm(ξk0 ) ≡ hm1 (ξk0 , 0) + · · ·+ hmµl(ξ
k
0 , 0) =

1

2πi

∫
γ

zm1 dz2

z2 + ξk0
, 1 ≤ m ≤ µl.

3. Computation of symmetric functions. For every point ξk0 ∈ Ω≥1, the Newton
identities

kσk(ξ
k
0 ) =

k∑
i=1

(−1)i−1σk−i(ξ
k
0 )si(ξ

k
0 ), 1 ≤ k ≤ N+(ξk0 , 0).

allow to reconstruct the elementary symmetric functions:

σ1(ξk0 ) = h1(ξk0 , 0) + · · ·+ hµl(ξ
k
0 , 0),

· · · = · · ·
σµl(ξ

k
0 ) = h1(ξk0 , 0)× · · · × hµl(ξk0 , 0).

4. Desymmetrisation. For every point ξk0 ∈ Ωl, using Vi?te formulas, one can
find the complex numbers h1(ξk0 , 0), . . . , hµl(ξk0 , 0) (up to order). The points(
hs(ξ

k
0 , 0),−ξk0 ), 1 ≤ s ≤ N+(ξk0 , 0), 1 ≤ k ≤ N , are the required points of the

complex curve X.

2. One or two points at infinity

These cases can be reduced to the case N− = 0 in the following way. Since π2γ ⊂ C is
a compact real curve, there exists such R > 0, that the set Bc

R(0) = {z ∈ C | |z| > R}
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in contained in Ω0. Without loss of generality, one can suppose that |ξk0 | < R for all
k = 1, . . . , N .

Consider an auxiliary complex curve XR = {(z1, z2) ∈ X | |z2| 6 R}. Its boundary
γR consists of two disjoint parts (possibly, multiconnected): the first part is γ and the
second part γ′R is obtained by lifting the circle SR = {z ∈ C | |z| = R} to X via the
projection π2 : X → C.

The complex curve XR does not intersect infinity. Moreover, points of the form(
a,−ξk0

)
, k = 1, . . . , N belong to X if and only if they belong to XR.

Therefore, in order to reconstruct X it is sufficient to reconstruct γ′R and then to
reconstruct XR, using the algorithm for the case when N− = 0. The algorithm can be
formulated as follows:

1. New boundary. Choose a sufficiently large R > 0, so that Bc
R ⊂ Ω0 and all ξk0

belong to BR. In the case of N− = 1, by virtue of formulas (6), we have that

h1(ξ0, 0) =
1

2πi

∫
γ

z1 dz2

z2 + ξ0

− P1(ξ0, 0), |ξ0| = R,

where P1 can be found using Theorem 3.1. This formula allows to recover γ′R
and, as a corollary, γR = γ t γ′R = ∂XR.

In the case of N− = 2 we have two equalities:

h1(ξ0, 0) + h2(ξ0, 0) =
1

2πi

∫
γ

z1 dz2

z2 + ξ0

− P1(ξ0, 0), |ξ0| = R,

h2
1(ξ0, 0) + h2

2(ξ0, 0) =
1

2πi

∫
γ

z2
1 dz2

z2 + ξ0

− P2(ξ0, 0), |ξ0| = R,

where P1 and P2 can be found using Theorem 3.1. Applying Newton identities
and Vi?te formulas, we find h1(ξ0, 0) and h2(ξ0, 0). Thus, we have recovered γ′R
and, as a corollary, γR = γ t γ′R = ∂XR.

2. Reduction. In order to find the complex curve XR with boundary ∂XR = γR we
apply the algorithm of reconstruction for the case of N− = 0.

4 Visualization
To our knowledge, there are, at least, two known algorithms for automatic visualisation
of complex curves. The first one was proposed by Trott [12] and requires the knowledge
of an analytic expression for the curve. The second algorithm was proposed by Nieser-
Poelke-Polthier [11] and requires the knowledge of the branching points and their
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indices for some fixed projection to C. Our algorithm requires the knowledge of the
unordered set of points of intersections of the curve with complex lines C1

ξ .
Let us describe in few words the algorithm of visualisation of complex curves that

we use in our examples. Denote by π1 : C2 → C the projection into the first factor:
π1(z1, z2) = z1. Suppose that X is a complex curve in C2 such that the covering
π1 : X \ {ramification points} → C has multiplicity L. Consider, for simplicity, a
rectangular grid Λ in C:

Λ =
{
zij1 : Re zij1 =

i

N
, Im zij1 =

j

N
, i, j = 0, . . . , N

}
,

where N is a natural number. Suppose now that we are given the set XΛ = π−1
1 (Λ)∩X

and we need to visualize the part of X lying above the rectangle 0 ≤ Re z1 ≤ 1,
0 ≤ Im z1 ≤ 1.

Let us introduce some terminology. We define a path in Λ as a map γ : {1, . . . ,M} →
Λ such that |γ(k+ 1)−γ(k)| = 1

N
for all admissable k, where M is some natural num-

ber.
Let γ : {1, . . . ,M} → Λ be a path in Λ and let i : {1, . . . ,M} → [1,M ] be the

inclusion map. Define the function i∗γ : [1,M ] → C such that i∗γ(k) = γ(k) for
integer k and i∗γ|[k,k+1] is linear for all admissable k. It is clear that i∗γ is a continuous
function and hence it can be lifted to X by the map π1.

We define a path in XΛ as a map Γ: {1, . . . ,M} → XΛ such that γ = π1 ◦ Γ is a
path in Λ and Γ = i∗L(i∗γ), where i∗ is the pullback map with respect to i and L(i∗γ)
is some lift of i∗γ to X by π1, i. e. L(i∗γ) is a continuous map from [1,M ] to X such
that π1 ◦ L(i∗γ) = i∗γ. We also say that Γ is obtained by lifting of γ.

We will call subsets of Λ and XΛ path-connected if every two points of these sets
can be connected by a path in Λ and XΛ, respectively.

Let us describe the practical way to lift paths in Λ to paths in XΛ. Suppose
that N is sufficiently large. Let γ : {1, . . . ,M} → Λ be a path in Λ and let Γ(1) ∈
π−1(γ(1)) ∩X be an arbitrary point. We select Γ(k) ∈ π−1(γ(k)) ∩X in such a way
that

|Γ(k)− Γ(k − 1)| = min
{
|z − Γ(k − 1)| : z ∈ π−1(γ(k)) ∩X

}
, k = 2, . . . ,M.

Then Γ is a path in XΛ obtained by lifting of γ. All possible lifts of γ may be obtained
by varying Γ(1). Note that if γ is closed, i. e. γ(1) = γ(M), Γ need not to be closed.

Finding of ramification points and making branch cuts. The first step in
visualization procedure consists in finding of ramification points of X with respect
to projection π1. Since we have only a finite number of points on X we can find
ramification points only approximately. More precisely, we will localize them in small
circles.
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Without restriction of generality we suppose that all ramification points are pro-
jected by π1 into interior points of Λ. Take any interior point z1 ∈ Λ and select a small
closed path γ : {1, . . . ,M} → Λ around z1 so that there is at most one ramification
point inside the polygon γ(1) . . . γ(M). For example, one can take as γ the following
path:

z1 +
1

N
→ z1 +

1 + i

N
→ z1 +

i

N
→ · · · → z1 +

1− i
N
→ z1 +

1

N
,

where i is the imaginary unit.
Now consider different lifts of γ to XΛ. If at least one lift is not closed, mark z1 as

a possible ramification point (meaning that it is situated near the projection of some
ramification point of X). Now vary z1 and mark all possible ramification points. The
resulting set will consist of several path-connected components each of which localizes
the position of one ramification point of X with respect to π1.

Next, we need to cut the grid Λ with branching points removed into simply con-
nected domains. The natural choice is the shortest cut graph, which can be computed
by the algorithm proposed in [10], which, in turn, generalizes the algorithm for closed
surfaces of [5].

Denote the cut graph by Λc. An important observation is that every closed path
in Λ \ Λc always lifts to a closed path in XΛ since it doesn’t contain π1-projections of
ramification points inside.

Visualization. Now denote Λ\Λc = ∪Ss=1Λs, where Λs are different path-connected
components. Take any zs1 ∈ Λs and zs2 ∈ π−1

1 (zs1) ∩ X. Now take other z1 ∈ Λs and
connect zs1 with z1 by some path γ. Then γ lifts to a path Γ with Γ(1) = (zs1, z

s
2) and

Γ(2) = (z1, z2) for some z2 ∈ π−1
1 (z1) ∩X and z2 doesn’t depend on γ. Varying z1 we

thus obtain the map Σ(zs1, z
s
2) : Λs → XΛ which allows us to visualize the part of X.

Varying zs2 ∈ π−1
1 (zs1) ∩ X (the latter is the finite set, namely, it consists of L

elements) we obtain the other maps Σ(zs1, z
s
2) which allow us to visualize other parts

ofX. Clearly, the set of obtained maps doesn’t depend on the choice of zs1 ∈ Λs. Hence
we can denote the obtained maps by Σl

s, l = 1, . . . , L. It is clear that ∪Ll=1Σl
s(Λs) =

π−1(Λs) ∩X. Now vary s to visualize

∪Ss=1 ∪Ll=1 Σl
s(Λs) = π−1(∪Ss=1Λs) ∩X = XΛ \ π−1(Λc).

The part π−1(Λc)∩XΛ consists of cuts and preimages of possible ramification points.
The cuts can be visualized as the already visualized part of the surface. The only
problem is the visualization of π1-preimages of possible ramification points. But the
latter take a little part of the surface when N is large and one can just forget about
their visualization. On the other hand, in our examples they were visualized using
low-level graphics approach.
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Figure 1: Rieman surfaces of functions f(z) =
√

sin(z), |z| 6 2 (left) and f(z) =√
z4 + 1, |z| 6 2 (right) obtained by the visualization algorithm.

Examples of application of this algorithm are given at Fig. 1 and in Section 5.
The visualization algorithm can be easily generalized to the case of general grids. For
instance, in our examples we have used a modification with periodic grid.

5 Examples
1. No points at infinity. We consider the complex curve given by the equation

X1 =
{

(z1, z2) ∈ C2 : z2 + 1 =
(
z2

1 − exp( z2
4

)
)2
, |z2| ≤ 1.9

}
. (31)

The boundary γ1 = ∂X1 of this curve is the disjoint union of two real curves γr1 and
γg1 , see Fig. 2. We are going to recover X1 from γ1.

First, note that the real curve |z2| = 1.9 in C divides C into two parts Ω0 = {|z2| >
1.9} and Ω1 = {|z2| < 1.9}. We check numerically that G1(ξ) is zero in a neighborhood
Wξ∗ of some ξ∗ = (ξ∗0 , 0), ξ0 ∈ Ω0, and thus N− = 0 by Theorem 3.2.

Next, we compute the value

µ1 = σ0(ξ0) =
1

2πi

∫
γ1

dz2

z2 + ξ0

,

for some ξ0 ∈ Ω1 (it will be the same for any ξ0 ∈ Ω1). It turns out that µ1 = 4
and thus π2 : X1 → Ω1 is a (ramified) covering with 4 sheets. Denote X1 ∩ C1

ξ =
{(hj(ξ),−ξ0)}4

j=1, ξ = (ξ0, 0), |ξ0| < 1.9.
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Figure 2: The given boundary γ1 = γr1 t γ
g
1 (red and green) and the reconstructed

complex curve X1 ⊂ C2. The color indicates Im(z1).

Next, we compute the values of the power sum functions sk:

sk(ξ0) :=
4∑
j=1

hkj (ξ0, 0) =
1

2πi

∫
γ1

zk1dz2

z2 + ξ0

, |ξ0| < 1.9, 1 ≤ k ≤ 4.

Using Newton identities, we determine the values of symmetric functions σk:

σ1 = s1, σ2 = 1
2
(s2

1 − s2),

σ3 = 1
6
(s3

1 − 3s1s2 + 2s3),

σ4 = 1
24

(s4
1 − 6s2

1s2 + 3s2
2 + 8s1s3 − 6s4).

Finally, taking into account Vi?te formulas, we find h1(ξ0, 0), . . . , h4(ξ0, 0) as the roots
of the following polynomial in t:

tN+(ξ0) − σ1(ξ0)tN+(ξ0)−1 + · · ·+ (−1)N+(ξ0)σN+(ξ0,0)(ξ0) = 0.

Reconstructed surface is represented at Fig. 2.

2. One point at infinity. Consider the the complex curve X2 which is the part of
the curve

X̃2 =
{

(w0 : w1 : w2) ∈ CP 2 : w2
1 = w2

2 + w2
0

}
,

bounded by the real curve

γ2 = {(z1(t), z2(t)) ∈ C2 : t ∈ [0, 2π]},

z2(t) = 1.9eit, z1(t) =
√
z2

2(t) + 1, z1(0) > 0,
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intersecting infinity at (0 : 1 : 1). We suppose that the number of points at infinity is
apriori unknown. We are going to reconstruct X2,R = X2 ∩ {z2 < R}, where R = 3,
from γ2.

Note that the curve π2γ2 = {|z2| = 1.9} divides C into two connected components
Ω0 = {z2 > 1.9} and Ω1 = {z2 < 1.9}.

According to the algorithm, the first step is to determine the number of points
at infinity. We choose some ξ∗ = (ξ∗0 , 0) with ξ∗0 ∈ Ω0 and check that in some small
neighborhood Wξ∗ of ξ∗ we have G1 6≡ 0 and thus N− ≥ 1 by Theorem 3.2.

Next, we fix two generic ξ1
0 , ξ2

0 ∈ Ω0 and determine c11, c12 from the linear system

c11
∂G1

∂ξ0
(ξ1

0 , 0) + c12

(
ξ1

0
∂G1

∂ξ0
(ξ1

0 , 0) +G1(ξ1
0 , 0)

)
= G1(ξ1

0 , 0)∂G1

∂ξ0
(ξ1

0 , 0)− ∂G1

∂ξ1
(ξ2

0 , 0),

c11
∂G1

∂ξ0
(ξ2

0 , 0) + c12

(
ξ2

0
∂G1

∂ξ0
(ξ2

0 , 0) +G1(ξ2
0 , 0)

)
= G1(ξ2

0 , 0)∂G1

∂ξ0
(ξ2

0 , 0)− ∂G1

∂ξ1
(ξ2

0 , 0).
(32)

This system is uniquely solvable and gives c11 ≈ 1, c12 ≈ 0.
Next, we check numerically that in the neighborhood Wξ∗ of ξ∗ the following iden-

tity holds:
∂
∂ξ1

(
G1 − P1

)
= (G1 − P1) ∂

∂ξ0
(G1 − P1),

where P1(ξ0, ξ1) = c11ξ0+c12
1+c11ξ1

.
(33)

Theorem 3.2 together with the estimate N− ≥ 1 imply that N− = 1.
Next, according to the algorithm, in order to reduce the problem to the case of no

points at infinity, we need to recover the auxilary curve γ′2,R = X2 ∩ {z2 = R}. Note
that γ′2,R = {(h1(ξ0, 0),−ξ0) : |ξ0| = R}, where h1(ξ0, 0) can be found from the explicit
formula

h1(ξ0, 0) = G1(ξ0, 0)− c11ξ0 − c12, |ξ0| = R.

Next, we set γ2,R = γ2tγ′2,R so that ∂X2,R = γ2,R, X2,R∩{|z2| < R} = X2∩{|z2| < R}
and X2,R does not intersect CP 1

∞. Thus, it remains to recover X2,R from the known
boundary γ2,R using the algorithm for the case of no points at infinity, see the previous
example. The reconstructed curve is depicted at Fig. 3.

3. Two points at infinity. Consider the complex curve X3, which is the part of
the algebraic curve

X̃3 =
{

(w0 : w1 : w3) ∈ CP 2 : w3
1 = (w2 − iw0)(w2 + iw0)(w2 − w0)

}
,

bounded by the real curve

γ3 =
{

(z1(t), z2(t)) : t ∈ [0, 2π]
}
,

z2(t) = 1.9eit, z1(t) = 3
√

(z2(t)− i)(z2(t) + i)(z2(t)− 1), z1(0) > 0.

The curve X3 has two points at infinity, namely, q1 = (0 : 1 : e
2πi
3 ), q2 = (0 : 1 : e−

2πi
3 ).

We suppose that the number of points at infinity is a priori unknown. We are going
to reconstruct X3 from γ3.
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Figure 3: The real curve γ2 (red) and the reconstructed complex curve X2 with one
point at infinity. The color indicates Im(z1).

As in the previous examples, the real curve π2γ2 divides C into two parts Ω0 =
{|z2| > 1.3} and Ω1 = {|z2| < 1.9}.

The first step is to determine the number of points at infinity. Choose a generic
ξ∗ = (ξ∗0 , 0), ξ∗0 ∈ Ω0, and some neighborhood Wξ∗ of ξ∗.

1. We check that G1 6≡ 0 in Wξ∗ so that N− ≥ 1 by Theorem 3.2.

2. We choose two generic ξ1
0 , ξ2

0 ∈ Ω0 and solve (32) for c11, c12. It turns out that
system (32) is uniquely solvable. However, identity (33) does not hold in Wξ∗ .
Using Theorem 3.2, we obtain that N− ≥ 2.

3. We consider (11) as an identity in a neighborhood of ξ∗0 . We find numerically
that

c11 ≈ 0.9974, c12 ≈ −0.3335,
c21 ≈ 1.0133, c22 ≈ −0.6699, c23 ≈ 0.5567.

We check that (26) holds in a neighborhood of Wξ∗ with constants a1, a2, b1,
b2, c1, c2 given by equations (27). If follows from Theorem 3.2 and from the
inequality N− ≥ 2 that N− = 2.

Suppose that we want to recover X3,R = X3 ∩ {|z2| < R}, R = 3. According to
the algorithm, we need to find the auxilary boundary γ′3,R = X3 ∩ {|z2| = R}. Denote
γ′3,R = {(hj(ξ0, 0),−ξ0) : |ξ0| = R, j = 1, 2}. We compute the values of symmetric
functions σ1(ξ0) = h1(ξ0, 0) + h2(ξ0, 0), σ2(ξ0) = h1(ξ0, 0)h2(ξ0, 0) using the explicit
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Figure 4: The real curve γ3 (red) and the reconstructed complex curve X3 with two
points at infinity. The color indicates Im(z1).

formulas

σ1 = s1, σ2 = 1
2
(s2

1 − s2),

s1(ξ0) := h1(ξ0, 0) + h2(ξ0, 0) =
1

2πi

∫
γ

z1dz2

z2 + ξ0

− c11 − c12ξ0, |ξ0| = R,

s2(ξ0) := h2
1(ξ0, 0) + h2

2(ξ0, 0) =
1

2πi

∫
γ

z2
1dz2

z2 + ξ0

− c21 − c22ξ0 − c23ξ
2
0 , |ξ0| = R.

Next, taking into account the Vi?te formulas, we find the values h1(ξ0, 0), h2(ξ0, 0),
|ξ0| = R, as the roots of the following polynomial in t:

t2 − σ1(ξ0)t+ σ2(ξ0) = 0.

Then we put γ3,R = γ3 t γ′3,R and recover X3,R from γ3,R using the algorithm for the
case of no points at infinity. The result of reconstruction is depicted at Fig. 4.
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