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FOREWORD.

It is from Jean-Pierre JOUANOLOQU that I learned what I know about elimination
theory. I attended his courses (Strasbourg, Rabat), read his articles (Idéaux résultants,
Le formalisme du résultant, Résultant anisotrope : compléments, and (partially) Aspects
invariants de 1’élimination), listened to his lectures...

But for me, his first course (Strasbourg, 1982-1983) remains, as well by its content as by
its presentation, the mést important. It was, in my opinion, a fundamental and simple way
to be introduced to the subject : JOUANOLOU explained contributions by HURWITZ,
MACAULAY, PERRON, POISSON (formula), MERTENS, ZARISKI, ... and by himself,

using local cohomology and spectral sequences.

So it is not amazing that, if I am asked to explain elimination a la J OUANOLOU, I
borrow heavily from his course, even though I do it in my own way.
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Before giving examples and the definition (*) of Trégheitsformen (= inertia forms), we
fix some notation that will be used throughout this exposé.

I. NOTATION AND DATA.

Let n, 7, dy,- -, d, be integers > 1. Let k be a commutative ring with 1, fixed as ground
ring in the sequel. For each i € [r] := {1, --,r}, we consider a generic homogeneous
polynomial of degree d;, in n variables Xy, -+, Xy. It is denoted by f; = f; (X1, Xn).
Let I; be the set of all o= (a1, ++,0p) € N® such that the weight |af := g + - + ap of
o is equal to d;. Then f; can be written as

fi=) UiaX® where X%:=X{" - Xpn.

acl;

The coefficients U; o(c € I;) of the polynomial f; are indeterminates over the ground
ring k.

Let us make precise where the polynomials fi, -+, fr live. Put
A=k|Uio|(i,0) € [r] x N* suchthat |of=4d;

(A is the polynomial ring over k the indeterminates of which are the coefficients of the

fi’s)) B

C = A[Xy, -, Xn]

v;y

Hence the polynomials fi, -, f» are in C. The ring A is called the universal coefficient
ring. The number of indeterminates in A is

N n+d1—1 n+dr"1
N = [ dl ] + [ dr ]7
bd—1
since the number of monomials X? of degree d is equal to [n * p ].

* Notice that, if ¢ € [r] is fixed, then, giving special values in k to the indeterminates
Ui o(a € I;) we obtain from f; any homogeneous polynomial g of degree d; belonging
to k[X1, -, Xn]. We say that g is obtained from f; by specialization, and we will write
fi; — g in this case. That explains why f; is called generic.

(*) 1 will first give examples, then the definition!
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Let us summarize the data and the vocabulary :
k = the ground ring,
n = the number of the variables Xy, -+, Xy,

r = the number of the (generic) polynomials fi, -

dq,-+,d, = the degrees of the polynomials,
A = the universal coefficient ring &([U; o],
C = the polynomial ring A[X3,- -+, Xp).

k4

";fr,
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II. EXAMPLES AND DEFINITION,

We first give examples of “Trigheitsformen” in the case r = n (number of polynomials =
y

number of variables).
1. Take dy = ... = d,, = 1, that is, the polynomials fi,..., fn are linear forms. Here

we denote by Uj; the coefficients of f; :

fi=UaX1+...+UinXy.
Consider the determinant D = Det(f1,..., fn) = |Us;|. Multiply the first column in
D by X, and then add to it each j-th column multiplied by X;(2 < j < n). This

gives

fi U ... U

X1D =

fn Un2 Unn

Hence X;D belongs to the ideal (f1,+++,fn) of C. In the same way we have
X’LD € (fl)’ te )fn) for any .

2. Consider the Jacobian of the polynomials f1,- -, fn

Ofi
J:Jac(fla"')fn): Ia)‘};’ .

As before, we multiply the first column in J by X1, we add to it the j — th column
multiplied by X, for all j # 1, so that we obtain

61 81
dlfl -8_XL2 _3_)%;
X, J = ‘
' a'n a'ﬂ
dfn B2 ... -a-)%

(because of the EULER identity). Hence, here again, we have X;J € (fi,-++,fa) C
C. Similarly one sees that X;J € (f1,-- -, fn), for all 4.

Of course, the preceding example is a particular case of the Jacobian. Note that Jis
a homogeneous polynomial in C of degree



5:d1—|—...+dn——n.

The Jacobian J is defined by differentiation of the polynomials fi,---, fn. We are
now going to define an other “Jacobian”, without use of any differentiation. It will be
well-behaved in any characteristic, and it will have the same property, shown above, as J.

3. Bach polynomial f; can be decomposed in a unique way as follows :

(*) fi=) _ Xify , with fij € A[Xy, -, X;]
=1

For example, if n = 3 and d; = 2, we have

VlXiZ +VoX1 Xy + V3 X1 X3+ V4X22 4+ Ve X2 X5 + V6X32
= X; (V1 X1) + Xo(Va X1 + VaXs) + Xa(VaX1 + Vs Xo + Ve Xs3)

(Here we have denoted the coefficients Ui by V, for simplicity).
Let us call J the following determinant

j: jac(fla"').fn) = ]fLJ{(l S Z’j Sn)

Ay
W

The same argument as in 1. and 2. shows that

X;J € (f1, -, fn), foralli.

One uses only the definition (x) of the fi;’s. The degree of the homogeneous
polynomial J is §. We will see later other reasons (besider the characteristic) why J is the
“s00d Jacobian”. This is due to HURWITZ [H]. J

Now it is time to give the definition of a Tragheitsform.

4. DEFINITION A polynomialfp) in C = A[X1,...,Xy] is called Trigheitsform f=
inertia form), with respect to fi,..., fr, if there ezists an integer s 2 0 such that

(**) X"‘.@ € (fi,..., fr) in C, for all o with|a| = s.
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(Here the integers n and r are arbitrary) (*).

Of course all the elements of the ideal (f1, ..., f») are Tragheitsformen. We call them
trivial. Sometimes the word Trigheitsform will be shorted to T.F.

Tn the case 7 = n, D, J and J are examples of Tragheitsformen (1., 2., 3.). It will be
shown in the sequel that if 7 < n, then all T.F. are trivial.

In the definition above, one can ask about the value of the smallest s which satisfies
the property (). This point will be discussed later.

The definition and the first study of Trégheitsformen go back to HURWITZ [H].

5. Link with local cohomology.

Consider the quotient ring

B=C/(f,...,f,) (recall C = A[X1,..., Xz])

and call 7 : C — B the canonical map. Let M be the ideal (Xi,...,X,) in C. In
particular B is a C-module via 7. In the local cohomology theory H},(B), the group
H3,(B) can be defined by the equality

HS,(B) = {b € BIM*.b=0in B for some s2>0}.
Now let 4
¥ T = the set of all T.F. in C(w.r-t.f1,..., fr);

T is a homogeneous ideal of C'.
Since fi,..., fr are homogeneous, the ring B is graded, and H{},(B) is a homogeneous
ideal in B. From the definitions we obtain

T =q"1 H}’\A(B)
and so

T/(fuy- - fr) — Hia(B)-

(*) The symbol,@ is the Arabic letter corresponding to H, written in an old way.
Pronounce ha as in “have” or “haben” (German).
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In other words, modulo trivial Trigheitsformen, 7 and H3,(B) are isomorphic. To
simplify notation we put

B = H3,(B) C B.

Elements of B will also be called Tragheitsformen. So a Tragheitsform in B will be trivial

if, and only if, it is zero.
¢

6. Reduction of the definition. The definition of a T.F. can be simplified as follows :

PROPOSITION. — Let{f) be a polynomial in C = A[X1,..., Xn]. Thenfo) is a Trigheitsform
if and only if there exist 1, s such that Xf@ € (fiy..-, fr).

Proof.— Assume we know that foreach (i, 7), X; is not a zero-divisor in Bx; (localization
of B at X;). Then, in the canonical commutative diagram

B — By,
BXJ' EE—— BXin

b
%

the maps Bx, — Bx,;x;, Bx; — Bx,x; are injective. Now suppose Xpy=01in B for
some (I,s). That isf) = 0 in Bx,. Take any m between 1 and n. The preceding diagram
shows that fp) = 0 in Bx,x,, and hencefo) = 0 in Bx,,. So X! fo) = 0 for some t. Substitute

~ for t an integer large enough, if necessary, and obtain

Xﬁm@ =0 in B, for some ¢ and for all m.

Let ¢ be an integer > nt. Then X ) =0 in B for all a such that la| = q. Hence.@ is a
T.F. N

The assumption made at the beginning is a consequence of the following lemma.
Although easy to see, this lemma will play an important role.

7. LEMMA. Fiz i € [n]. Denote by V; the coefficient of the monomial ij in f;. Then
consider the polynomial subring A1 of A defined by the formula

A=A, Vi
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(In other words Ay = k[all the coeff. of f1,..., frexcept V1,... Vel ).
There is an isomorphism of rings :

BXi > Al[Xl,.. . ,Xn,X,;l].

Proof.— Because of the importance of this lemma in the sequel, we are going to prove
it in detail. We have canpnical maps

Al%AHC:A[Xl,"')Xn]_—*B:C/(.fl)"',f’r‘)

(Notice that A — B is injective). There is an A;-algebra homomorphism

Ai[Xy,...,Xn] —B
X, —X,.

This induces a ring homomorphism

Al[X]_, e ,Xn,X-—l} =2 Bxi.

k3

Let us show that this map has an inverse. Write
dj .
g =f-V; X7 (L<ji<r)
¥ We have an A;-algebra homomorphism

A=AV, .., V] =»AX, . X, XY
V= g;/ X,

This yields an A;[X3,. .., X,]-algebra homomorphism (in the obvious way)
C = A[X]_, e ,Xn] = Al[Xl, e ,Xn,Xi-Ll],
which sends f; to 0(1 < j <r). This gives a ring homomorphism

B — Ai[X1,...,Xn, X; "], which factorizes through By, .

The remainder of the proof is clear.



8. Link with geometry(*)

We still (1) do not “know” how to solve a system of polynomial equations. This is, one
must not forget, the first object of algebraic geometry. Since we have no general formulas
for the solutions of polynomial systems, we could try at least to find explicit conditions
for such solutions exist. This is the subject of elimination theory. So it is really difficult to
imagine how elimation theory could be simply “eliminated” from algebraic geometry (cf.
the introduction in [J1] ).

Let us be more precisé, First we take the complex numbers C as ground field, then we
describe the corresponding situation for an arbitrary ground ring k. We keep the same
notation and data as given in I.

a) Let k¥ = C. We consider all homogeneous polynomials of degrees dy,...,d, in
C[X1,...,Xn). They are obtained from  the  generic  ones
fi = fz-((Um)a;Xl,...,Xn)(lv < i < r) by specialization. So any polynomial,
homogeneous of degree d;, over C, is of the form

fi((uia)a;Xl’- e ,Xn) (| Oél = d;, Ui € C)

Take (via)ia € CV(1 < < 1,]a| = di). We want to know when the homogeneous
polynomials

(*) fl(('Ula)a;Xh cen )Xn)a~ --afr((vra)a;Xlw- . aX'n) € (C[Xl;- . ;Xn]

have a non-trivial common zero (zi,...,2,) € C". By homogeneity we can take
(z1,...,Ts) as a point in the projective space I ~1 over C. Consider the ZARISKI closed

subset

Z = {((uia)i,a;xly s >mn) € (CN X P(g—l | fi((uia)mwl, K )xn) = O; 1< < T}
of CN x P27, and let p : CV X P~ — CN be the first projection. With respect to
the topology induced by C, p is clearly proper; hence p(Z) is a closed subset of CN. The

traditional “main theorem of elimination” [W] says that p(Z) is a ZARISKI closed subset.
That means there are polynomials y

91,195 ECUia |1 i < myfa| =di] = A

so that

(*) This paragraph can be considered as an introduction to the study of Tragheitsformen.
Unlike the other paragraphs, no details are given.



p(Z) = {(uia)i,a € CN [ gl(uia) == gs(uia) = 0}-
One deduces that the polynomials () above have a common root in Fg ~1if, and only if,
their coefficients (Viq)ia(l < i < 1, |a] = d;) constitute a common zero inCN of g1,...,9s.
It happens that these “polynomial conditions” g; are Trigheitsformen w.r.t.fi, ..., fr

(loc.cit.). We will see that they “generate” all Trigheitsformen belonging to A. If r = n
(# polynomials = # variables), then p(Z) can be defined by only one polynomial
g = g(Uia), called “the” resultant of f1,..., fr. All these notions will be made precise later
(see the next part b) and V.).

In a less traditional form, the main theorem of elimination says that “a projective
morphism is proper” [RB]. Since p is, by definition, projective, we see that p(Z) is a closed
subset of CN for the ZARISKI topology.

b) Here the ground ring k is arbitrary, and one must be more careful and more precise.
So we need the “language of schemes” introduced in [EGA]. See also [RB], [YB] (4.

Instead of CV, P2~Y, CN x P2™', Z in a), we have here the following schemes

(respectively)
EYN = Spec(A), A=k[Uin |1 <i<r|al = di]
Pt —PrOJk[Xl, .y Xn)
EBY ><P —PI‘OJ(C) C=A[Xy,...,Xy)
Z=PrOJ(B) B=C/(f1,..-sfr) ©

g . - . . .
¥ where Z is a closed subscheme of P} 1 There is a natural commutative diagram

z C;__.9,P2_1
PIN lp

EYN = Spec(A)

where p,p | Z are, by definition, projective (hence proper) morphisms. The scheme-
closed image of Z in EYY is defined by the ideal [EGAI]

() RB is the red book, YB is the yellow book.
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(**) A= ker(A —I'(Z, OZ))

where I'(Z, Oz) is the global sections of the scheme Z and the ring homomorphism
A — T(Z,0y) is the canonical one. Since Z = Proj(B) is covered by the standard open
subsets D1 (X;)(1 <4 Sﬁ,;n), one deduces

A =ker(A — HB(X?:))’

i=1

with B(x,) = the degree 0 homogeneous part of the Z -graded ring By,. Therefore
the proposition in 6. above shows that A is nothing else but the ideal of Tragheitsformen
belonging to the ring A.

What is the geometrical meaning of the other Trégheitsformen? With the notation
of 5., we have

A=ANH,(B)s

(Hj’\,t (B) is a homogeneous ideal in B ; its component of degree j is noted H3,(B) j).
Thus the relation (#) is a particular case of the general fact

5
%

HS,(B); =ker[B; — I'(Z,02(j))]

This and other relations between the cohomologies HY, and H*(Z,0z(j)) come
from the properties of local cohomology and the computation of the cohomology of
projective bundles. For more details, see [J2] 3.1..

In the following section we construct other examples of Trigheitsformen of degree 0
(i.e. belonging to A) in the case r = n. These are determinants which have been defined by
MACAULAY and which generalize the well-known SYLVESTER determinant.
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III. MACAULAY DETERMINANTS ([MA], [G]).
We assume r =n

1. Recall that § = dy +...+dy, —n. Let ¢ be an integer > §+1, and put E; = {a € N" |
|| = t}. We are going to define a determinant |aqg| (a, B € E.), with entries in A. We
order E, lexicographically in a decreasing way ((t,0,...,0) > (t—1,1,0,...,0).. ).

Let o € Ey. Since |af > § + 1, we can find a minimal integer i(1 < 7, < n) such that
a; > d;. For any 8 € Ey, put anag = the coeff. of X in the polynomlal —'a— fi (Notice that

—))Z{‘%' . f; is homogeneous of degree || = |8| = t, and that ang may be equal to 0). Let us
note

D(t) = detaqg](e, B € E;) € A

ASSERTION. The determinant D(t) is a non-trivial Trigheitsform, homogeneous as
polynomial in the coefficients of each f;.

Proof— We operate on the columns of D(t) as follows :

1) multiply the first column (the n° of which is (t,0,...,0) € Ey) by Xi. ¥
2) multiply each other column n°8 by X P and add the result to the new first column.
3) now the first column has the following form

[fm(a) X« /X,L(lc(;; ]aEEt’

where () is the minimal integer ¢ such that o; > d; for a given o € Ey.

Now, expanding the new determinant with respect to the first colmn we see that
Xl () (fla wfn)'

This shows that D(t) is a T.F. by IL6.. Since D(t) € A, to see that it is a non-trivial T.F.,
it is enough to check D(t) # 0. Let us specialize each f; to X; 4 Then D(t) specializes to
the determinant of the identity matrix (fi(a) - X%/ Xy ’(“> — X for each a € E;), that is
D(t) = 1. So D(t) # 0. ‘

Bach row n°a in D(t) = |agy| contains only the coefficients of the polynomial f;(,) and
zeros. Hence D(t) is homogeneous in the coefficients of f;, for any fixed j (These coefficients
appear effectively in D(t) : consider the row n°a € E; with o; = d; — 1 for all ¢ # 7). The
assertion is proved.

We will write degy, for the degree of a polynomial in the coefficients of f; (as
indeterminates). Let us compute deg f’n( (t )) From the preceding proof, last part, we
have
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degy, (D(t)) = #{a € By |i(e) =5}(1 < j < n)

But i(o) =n if, and only if, 0 <y <di —1,...,0 S ap—t <dp-1-—1.

Consequently

degfn (D(t)) = d1 v s dn._]_

2. SYLVESTER determinant. Taking ¢ = § + 1 in n°l., one checks that the
SYLVESTER, determinant is equal to D(6§ + 1) if n = r = 2. Indeed, in that
case, the rows of D(6 + 1) are defined by the polynomials

Xfi2~1f1,Xf2—2Xzf1, §6's ,X1X512_2f1, XLy,
X4l X2 X, ... JXi X372y, X1 fy-

From 1. it is clear that
degs, D(6+1) =dz , degp, D(6 +1) = dy

3. Here we define other determinants similar to D(t). In 1. we have associated

" to a sequence of integers (dy,...,dn) a determinant D(t), with ¢ > 6 +1 =
dy+...+d,—n+1 (by use of the polynomials fi,..., fr). If we apply a permutation
o € S, to the integers (1,...,n) and we do the same construction with the sequence
(fty. oo  £2) = (f5(1)s - -+ fo(n)), then we obtain a determinant D"f(t) (the integer ¢
does not change!)

By 1., the determinants D° (t) are non-trivial T.F., homogeneous w.r.t. the coefficients

of each fj, and

degy, (D?(t)) =di...dn/ds, ifi=0(n).

( Of course D(t) = D*(t)).

These determinants D° (¢) have been constructed by MACAULAY to give an explicit
formula for the “resultant” of the polynomials fi,..., fn. We will call them MACAULAY
determinants.



Jy

13

IV. THEOREM OF HURWITZ [H].

We first recall some facts about the KOSZUL complex.
1. Let R be a commutative ring with 1 and M an R-module. To any linear form
u: M — R, one associates a complex K, (u; R) of R-modules

M R
l l

.,——>/\§Z+1M—> ANM—...o AN'M — A°M —0
0it1 b =u

where the differentials are defined by the formula

‘97;.;_1(1131 VANIAN iUi_H) =

i+1

Z(—l)s+1u(xs) I AL ATsA LA £U¢+1(331, coy Tip1 € M) (1)

g=1

If M = RP and u(e;) = a;, where {e1,...,ep} is the canonical basis of RP, then

Ko(u; R) is the KOSZUL complex defined by the sequence (a1, ... ,ap), usually denoted
By s « = 1 8} R ‘

Assume R is a graded ring, with degrees in N, and ay,...,a, are homogeneous
elements in R. Then, taking

deg(e;) := deg(a;) (1 <1i<p),

we define a grading on the R-module RP. More generally, the modules A'RP(1 < i <
p) are graded by the formula

deg(ej, A...Nej) =85, +...+8j

where s; = deg(a;). In this case, Ko (a1, .. .,ap; R) is a graded complez and one has

/\iRp:@R[—Sjl—...—‘Sji] (1§j1<...<yi¢§p);

the notation R[g], ¢ € Z, means that the degrees are shifted by g in R R|[q] is the R-module
R, graded as follows

(Rlg)), = Rerq (()¢:= homogeneous part of degree t)-

(*) The symbol & means that ¢, does not appear.
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PROPOSITION [B] (Paragraph 9, n°7) In the graded situation just described, with
deg(a;) > 1(1 <4 < p), one has

(*) H;(Ke(a1,...,ap;R)) =0 forallj>1

if and only if H1 (Ko (a1,...,ap; R)) = 0.

In case of (*), wefsay that the complex Ko (a1,...,ap; R) is acyclic except in degree
0 (}) The following remark will be useful for us.

REMARK. Here the KOSZUL complex is not necessarily graded. Consider the
differential 03 of Ke(as,...,ap; R) :

0, : A2 RP — A'RP = RP

e; \ej— ajej — a;e;

ax

({ei A €j}i<j is a basis for the R-module /\2Rp). Thus 02(e; Aej) = Eyj - | © |, where
ap

E;j is the elementary skew-symmetric matrix with 1 at the (j,%)-place. We deduce that

(by,...,bp) € Im(02) if, and only if, there is a skew-symmetric matrix S (with 0’s on the

diagonal) such that

by ap
With the notation in I. and II., we have the following statement.

2. HURWITZ THEOREM (1°¢ part).

a. ifr <n, thenT = (f1,..., fr).
b. ifr < n, then Hl(K,(fl,...,fr;C')) =),
In other words, (a.) says that, if the number of the generic@olynomials is strictly less

than the number of the variables, then there are only trivial Trégheitsformen ; (b.) says that
if the former number is less or equal to the second one, then the KOSZUL complex defined

by the polynomials f1,..., fr is acyclic except in degree 0 (see Proposition in 1. above).

Proof— To emphasize that the number of variables is n, we denote the assertions a.
and b. by a = a(n) and b = b(n).

() If...— Liy1 — L; — ... is a complex, we say that L, is its term of degree ¢.
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Caser =1 ,

Since fi is not a zero—divisor in C = A[X1,...,X,] (f1 is generic!), we have
Hy (K. (f1;C)) = ker(C =% C) = 0. So (b.) is true. Let us show (a.). Take then n > 1.
If fp) is a T.F., then

X f.,@ = g f1in C, for some s and some g.

Now fi is generic in n variables, with n > 2. This implies that X3 divides g in C.
S0 € (f1), as desired.

General case :

It is enough to show the two implications

(6) a(n) = b(n),
(i) b(n—1) = a(n),

since b(1) is true (n = 1,7 <n=r =11).
The proof of the first implication uses induction on the number of the generic
polynomials f1,..., fr involved.

Proof of (i). Suppose a(n) is true. To prove b(n) we can take r > 2. Solet 2 <r < n,
and let us show that ,

Hl (Kﬁ(fla oo >f1‘; C)) = ker(el)/jm(QZ) =
Consider an element (g1,.-.,9r) € CT such that

(1) gifi+ ...+ g fr =0(e (g1,..,9r) € ker(61), cf. 1.)

LEMMA. Put k:=k[Urq ||
=k[2a|1<z<r—~1]a| d]=4,
C:=A[Xy,..., X, =C" :
Then g, is a Tragheitsform in C with respect to the generic polynomials f1,..., fr—1
(over the ground ring k).

Proof of the Lemma. Denote by B the ring C/(f1,..., fr—1). The relation (1) gives
Grf» = 0 in B. On the other hand, Lemma (7., I1.) shows that

By, = k[certain coeff. of f1, .. .,f,.__l][Xl,...,Xn,Xl'l]-
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Hence f, is not a zero-divisor in By, . We then obtain g, = 0 in Bx,,, and so :

XS

$G.=0 in B, for some integer s >0,

that is X2g, € (f1,..., fr—1) in C = C. The lemma is proven, by Proposition (6., I1.).

Now, in the situation of the lemma above, one has r — 1 generic polynomials in n
variables and 1 < r — 1 < n. Applying a(n) to this case one obtains gr € (fiy.oy fr—1)in
C = C. In other words, 6ne has an equality

(2) gr=X1f1+...+ )\'r,r—lfr—l in C.

Substitute in (1) and get

(3) hifi + ...+ hp—1fro1 =0, with hy = gi + Ar, fr.

By induction on 7, we have Hy (Ko(f1,..., fr-1);C)) = 0. Thus (hs,. .., hr_1) belongs to
the image of the degree 2 differential in the complex Ko (f1, ..., fr-1; C). Using the remark
in 1., one sees that there exists a skew-symmetric matrix [Ay;](1 < 4,5 < —1) over C=C
such that
hy fi
Co =gl
hy—1 fr—1

If we take App = 0, Ny = —Api(1 <4 < 7 — 1), then the matrix § = [Aj](1 £4,5.< r) is
skew-symmetric and it satisfies (after (2), (3))

9 f1
: | =5
gr Ir
Again the remark in 1. shows that (g1,...,9r) € Im(02), and we are done (ker(61) =

Proof of (ii). Assuming b(n — 1) true, let us prove a(n). So we have r < n. It is

sufficient to see

XZ—@E (fl)-")fr) =>"@E (f17"')f'r‘))

for all s > 0 (cf. IL, 6.). We can take s = 1. Start with an equality in C as

(4) Xf@=hif1+ ...+ hefr
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For a polynomial P = P(Xy,...,X,), we note P° = P(X1,...,Xn-1, 0). It follows that

hSfS + ...+ hofe =0in C°:= A[Xq,..., Xn-1].

But f7,...,f° are generic polynomials in n —1 variables X1,...,X,—1. Therefore, by
b(n — 1), there exists a skew-symmetric matrix [Ai;](1 < 4,5 < ), with A;; € C°, such that
hs 5
(5) ' =Rl
hy 2

Put g; = Z;zl Aij fj. Then Z;l gifi = 0, by skew-symmetricity of the matrix [Aij]. Since
92 = h(1 <i<r)by (5) (A does not contain Xy !), one has

hi — g; = anz in C.

Consequently one obtains from (4)

T . T
X 0= Z 9i fi + X Z i fs.
i=1 i=1 ‘
0
That isf) = Yol fs :7@ is a trivial T.F.
The theorem is established.

The following corollary is important for the study of Tréigheitsforﬁrhen belonging to
A in the case 7 = n (cf. Proof of Theorem (2., V.)).

3. COROLLARY. Assume r = n and let {2 be a non-trivial Trdgheitsform with
respect to the polynomials fi,...,fr. Let U be any coefficient U, o of the f;’s. Then, as
polynomial in U,-,@ has degree degU(@) > 1. '

Proof. Let@ be a T.F. such that degU(-,@) = 0 for some U = U; . Write f; as
fi = Usja X® + g;. Consider a relation of the form

X)=hifi+ ...+ hnfninC,

[

and take its image by the map ¢ : C = A[X1,...,Xn] = Cx,..x, defined as k-algebra
homomorphism by

p:C=k[Ujy | 1<) <n,lyl=di]lX1,.., Xn] = Oxyxa
o(Uia) = —gi/ X%,
¢(Ujy) = Ujy i (4,7) # (i, @),

o(X¢) = X, for all t.
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Since in C; .. x,, one has go@@) :@,go(fj) = f;(4 # 1) and @(f;) = 0, it follows

XPR) =Hyfi+...+ Hi1fic1 + Hiprfiqr + .o+ Hofn in Ox, . x,,.

But X; ...X, is not a zero-divisor in C'; whence

XPXPQ) =lifi+...+licificr +ligafirr + .. Flnfoin O
é
for some p € N™. By IL.6. this implies that ) is a T.F. with respect to the polynomials
Fivevos ficty fiets -, fn (take as ground ring k' = k[U;, | |v] = dq]). The assertion (a)
in the theorem 2. above says that in this case (n — 1 polynomials in n variables)p) is a
trivial T.F. : ) € (f1,.- ., fim1, fit1s ... y fn). In particular@ is a trivial T.F. with respect
to fl,...,fn.

In fact the preceding proof gives a more precise result than the corollary :

If r = n and if_@ is a T.F. where some inderminate U; o does not appear, then

'@E (fl""’fi—lafi-i—l;"*’fn)-

4, HURWITZ THEOREM (2"d part).
We have

c. To = (f1,- ., fr)sfors>di+... +dr — 7
d. [Hy(Ko(f1,.. ., fr;C))],=0for s >di +...+dp =7 +1.

A
5

(Recall that (), denotes the homogeneous part of degree s; cf. 1.).

Proof— We look for integral functions

90:<P(d1,~--,dmn) ) ¢:¢(d1,---,dr,’n)

such that
c. Ty = (fl)”‘)fr)s for s > ¢;
d. [Hl(K.)]S =0 fors>yY(K,= Ke(fl, . .,fr;C))_.

To construct candidates for ¢ and 1), one proceeds as in the proof of the 1°¢ part by showing
d(n — 1) = ¢(n) = d(n).

(The integer n in ¢(n) indicates that the number of the variables is , . ..).

1°) Let us begin by the implication c(n) = d(n) : We have

Hl(Ko)s = Zl(Ks)s/Bl(Ko)s-
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Let (91,...,9r) € Z1(K,)s such that its image under the differential 6; be zero :
fig1+...+ frgr =0.

In the graded KOSZUL complex K, (see 1.), (91, ..,9r) = g1€1+...+gre, is homogeneous
of degree s. So g; is homogeneous of degree s — d;.

One wants to prove (g1,...,9,) € Bl»(K.)S if s > 7. We know from the proof of the
1°¢ part in 2. that g, is a T.F. with respect to fi,..., fr—1 (homogeneous of degree s — d,.).

If s —d, > ¢(dy,...,dr—1,n) then, applying c(n), one has
gr=A1fr+...+ /\r,r—lfr—-l, where Ar; € C’s—~d,‘—d,~-
Substituting in Y\ ; fig; = 0, we obtain

Arifr+91) i+ oo+ Orperfr + 9r-1) fre1 =0,
N, . v

deg s—d; degs—d,—1

Hence, if s > 9(dy,...,d-—1,n) we can obtain the result by induction on r = the number
of polynomials (in a similar way as in 2.).

Conclusion : For the implication ¢(n) = d(n) to be true, it is enough that the
functions ¢ and v satisfy

¥(dy,...,dr,n) > min{max(goi +di ) [1<i<rh
(*) with ©; = (,0<d1, ce ,Ji,. . .,dr,’)’b)

A

’lﬁqjZ’Q/)(dl)...,di,...,dr,n).

2°) Consider now the implication d(n — 1) = ¢(n) :
Let H € 7,. We want to show H € (fi,...,fr)s if s > ¢. We can suppose
XnH € (f1,..., fr) (since XL H € (f1,..., fy) for some ¢t > 0). So

XnH=g1fi+...+g-fr forsomeg; € Cs11-4,(1 <i<n).
Putting Q° = Q(X1,...,Xn-1,0) for @ = Q(X1,...,X,) as in 2., we have
91fT + .+ g f7 =0in Copr.
To apply d(n — 1) in this situation (where the number of variables is n — 1), it suffices that

(%) (i, .. deyn) > (dy, ..., dpyn—1) — 1.
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The argument can then be achieved similarly to the corresponding proof in 2.

The following functions satisfy (¥) and (¢¥) :

(P(dl,---,dr,n):dl-l—...—l—d,,.—'r
w(dlw--vdr,n):d1+...+dr—r+1,

They have been given by HURWITZ. Note that they are independent of n.

To finish the progf, let us say that the case r = 1 has to be checked since the
implication ¢(n) = d(n) uses induction on r. Because of the 1°* part of the theorem (2.),
one can assume r > n. So r = 1 implies n = 1 and then c. and d. are immediate.

5. Level of a homogeneous Tragheitsform.

HURWIT?Z theorem allows to determine the ”level” of a homogeneous Tragheitsform.

DEFINITION.. — Let@ be a homogeneous T.F. in C = A[Xq, ..., X,] with respect to
fi,-+., fr. The level of.@ 18 the smallest integer s > 0 such that

X"‘.@ € (fiy..., fr) forala with|a|=s.

So a trivial homogeneous Tragheitsform has a level equal to zero. We saw in II.2.
that when r = n the Jacobian of fi,..., f. is a T.F. of level 1.

Let@ € 7; (= Trégheitsformen of degree t). Take a € N™ with |a| = § 4+ 1 — t(6 =
di+...+d, — 7). Hence Xa7@ € Tsr1.

By HURWITZ theorem (2% part) one has T541 = (f1,. .., fr)st1. Whence

levelg@) <6+1- deg(—,@) (lev = level)

PROPOSITION. Ifr = n and z'f7@ 18 a non-trivial homogeneous Tragheitsform, then

lev () = 6 + 1 ——deg(-,@).

Proof. Let fp)€ T; be a non-trivial T.F. Hence ¢ < 6 (4.).

i) It is sufficient to show the implication

(1) lev(p)) = 1 = deg(p)) = 6.

Indeed put s = lev (). So s > 1 and there exists 8 € N™ such that Bl = s—1 and
X% & (fi,. ., fn)- Tt follows that X%6) is a non-trivial T.F. with lev(X?f)) = 1. Hence
deg(X% ) = 6 by (1), that is, deg(.@) =6+ 1 — s as desired.
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ii) We have to prove (1). Assume lev(ff)) = 1.
Case n = 1 : One has Xh@ = hf; in C = A[X;], with h homogeneous and
fi=UX%. So

deg({p)) = deg(h) + d1 — 1 = deg(h) + 6 > 6.

But we know deg({p)) < 6. Thus deg(fp)) = 6.
Case n > 2 : Suppdse deg({p)) < 6 (We know deg < 6).

We are going to show that.,@ is a trivial T.F., which will contradict the hypothesis.
The argument is similar to the proof of the 1% part of HURWITZ theorem. Fix

pe{l,...,n—1}.
Since lev(.@) =1 we have

(2) Xp@=91f1+...+gnfn
(3) Xn)@:hlfl'i'n-"'hnfn

with g;, h; homogeneous in C.
Whence
lWfi+ ...+l fn =0, with lj = Xngj = Xph,j.

But H; (Ke (f1,- fns C)) =0 (2.b.). So there exists a skew- symmetric matrix [;;]1<s j<n
over C = A[X},...,X,] such that "

I f1

S =Tl |

In fn
In particular one has

Xngn — Xphn =Yn1f1+... +’Yn,n——1fn——1 (’Ynn = 0)-

Substituting 0 for X,, we obtain

Xph% = =Y fT = — 7roz,n~1frc;—1'
So h2 is a T.F. with respect to f7,...,fs_;. These polynomials are generic and
homogeneous in X1,..., X,_1. On the other hand (3) above gives

deg(h;):deg(@)+1—dn<5+1—~dn=d1+...+dn_1—(n—1).
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Since X,he, € (ff,..., fo_1) in A[Xq,..., X ] forall p=1,...,n — 1, we deduce that
the T.F. h with respect to f7,..., fo_; is trivial, by induction on n (since lev(h2) < 1 and
deg(hl) < di+ ...+ dp—1— (n—1)) [The case n = 1 is immediate : if P is a homogeneous
T.F. of level 1 and deg(P) < § = d; — 1, then P is a trivial T.F.]. Therefore one has a
relation

(4) B = At fS F oo A1 fo M A[X, .y Xa].

Now the equality (3) givés

(5) hSfe + ...+ h2fS =0.

-

Using the 1% part of HURWITZ theorem and the relations (3), (4) and (5), one proves
that ) is a trivial T.F. First (4) and (5) imply

UrLfy + ..t Un—1froy =0 A[X, ., Xy

where u; = A\p; fS + hy. But Hy (K,,(ff, o fo 1 A[Xa, ..., Xn—1]) s equal to 0; thus

U1 JT
=Dl ]
Un n—1
for some skew-symmetric matrix [Ai;]1<i j<n—1 over A[Xy,..., Xp_1]. Putting App = 0 and

Ain = —Ani(1 < ¢ < n— 1) we obtain
n
h; = Z/\”ff (]. _<_j S ’I’L)
=1

Now let b = 31 ) Ajifi- Hence (h})° = h3 (A;; does not contain Xn), and so

i=1

h; = R} + Xpp; for some p;inC' = A[Xy,..., Xn].

From (3) one has

n n
Xold = Wi+ Xn ) il
j=1 j=1

By skew-symmetricity of [Aij]i<i,j<n, the sum ) A’ f; is equal to 0. It comes@ =3 > pi 5.
Hence@ is a trivial T.F., and that is the end of the proof of the proposition.
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V. DEFINITION OF THE RESULTANT.
Let us recall that notation and data are those fixed in paragraph I.

1. We saw in IL5. that B = Hg,(B) is the ideal of Trigheitsformen in B. It is
homogeneous, as is also the ideal 7 of Tragheitsformen in C. We denote as usual
by Bs, 7s the homogeneous part of degree s. (The grading here is defined by the
variables X1,..., X, : deg(X;) =1).

We denoted A the ideal 7y of T.F. of degree 0. Since the canonical map

A— B=C/(f1,...,fr)is injective, we have

T A=Ty =8By C A

The ideal A is called the resultant ideal (see I1.8.).

For any 4 € [n], Bx,) stands for the degree 0 homogeneous part of the Z- graded ring
B(x,)- By I1.5-6-7, we have

AJA S C/T =5 B/B

inj.
B/B ini. Bx, ¢— A[X1,..., Xn, X; 7]

(all maps are canonical). In particular, there is an exact sequence

D—*A->A—-—>B(Xi)
X1

X
st B s 22A [_,...,_EJ_
R COMRE s X,
Recall Ay = k [certain coefficients of fy, ..., f.]. Therefore, we have the following assertion :

PRrROPOSITION.. — If the ground ring k is an integral domain, then the three ideals T, B
and A are prime.

2. From now on, unless stated otherwise, we assume that we are in the case where
T =n, i.e
the number of polynomials =the number of variables.

We want to show the following, for an arbitrary ground ring k.

THEOREM.. — The resultant ideal A is principal, and has a generator R = R(f1,..., fn)
such that R(X{:,..., X&) =1.

Let us explain the notation : A is an ideal of the ring

A=k[Uia| (4,a) € [n] xN": |o| =d;].
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So R = R(f1,-..,fn) is a polynomial over k in the indeterminates U; , (= coefficients
of the f!s). Hence _R(Xfl, ..., X&) is the specialization of R(fy,..., f) induced by the
specializations f; +— Xfl, ooy fa o X (see L.).
We will see later that the element R(fi,..., fn) as defined above is not necessarily
unique, but there is one determined in a canonical way.
Several steps are needed to prove the theorem. They will occupy the whole remain of
this section.
3. Assume k is 8 unique factorization domain (U.F.D). Fix any indeterminate U ,
in A and call it U. Then the polynomial ring A = A’[U] is a U.F.D., since
A" =k[U; g | U; g # U]. We are going to work in A under this form.
We know that the MACAULAY determinants are non-trivial Tragheitsformen (III.). So
A # (0). On the other hand, by (IV.3.), every a € A, a # 0, has degy(a) > 1. Therefore we
have an integer

s = inf[degy (a)] > 1(a € A,a # 0).

ASSERTION. There exists a prime element R in A such that degy (R) = s. Any such an
element generates the ideal A.

Proof— Take a € A, a # 0, such that degy; (a) = s. There is a decomposition in a product
of prime factors a = ¢; ... ¢ in A = A’[U]. But A is a prime ideal by the Proposition in 1.
Hence some ¢;, € A. Now degy;(gs,) > 1 by IV.3. and degy(¢i,) < degy(a) = s. Thus, by
definition of s, degy (gs,) = s.

PuttingR. = g;,, let us show that R generates the ideal A C A = A’[U]. Let b € A. Since
A’ has no zero-divisor, we can apply euclidean division and obtain

Ab = Rw + v, withA € 4", v = 0or degy(v) < s.

Thus v = Ab — Rw € A and, if v # 0, degy(v) > 1 (loc.cit.). Here again the definition
of s implies v = 0. One deduces that the prime element R divides A or b. But A € A’
does not contain U while R does; so R divides b. Consequently, R is a generator of A, as

required (*) .

4. The ring k is still assumed to be a U.F.D. So, by 3., A is principal, generated by a
prime element called a resultant of (fy,..., fn)

R=R(f1y.unfn):

This is unique only up to multiplication by a unit in A’ hence in k (Recall that we have

(*) We see in this proof of the assertion above how the hypothesis » = n is fundamental
and how useful is the corollary IV.3.
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Since A = Ker(A — Byx,)) (see 1.), we have an exact sequence

A e A — Bx, ) (-R = multiplication by R).

In fact, if a € A then

(%) A — A — Bx,) exact <= A = (a)-

This shows that, after any polynomial extension of the ring k, the resultant ideal is still
generated by R (A and B(x,) are polynomial rings over k; cf 1.).
More precisely, write

A=Ay, A= As,R=Ry,....

to indicate that the ground ring we are working over is k.

Then one has

Arx = (Rg)in Ag

for all K of the form k[V]. In other words
Ri(f1,-yfn) = Ri(f1,..., fn)in Ax,

up to a unit in k. Of course the polynomials fi,..., f, remain generic by polynomial

extension of k.

5. Since A is a polynomial ring over k, with the coefficients of fi,...,fn, as
indeterminates, R is a polynomial in these coefficients. We denote by degfj (R) its
degree (*) with respect to the coefficients U; g of f;.

(*) R divides D(6 + 1) after IIL.1.; hence R is homogeneous in the U; g/s, with j fixed.
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LEMMA 5.1. We have degy,(R) = dy ...dn/d; for all j € [n].

Proof— Let j € [n] and let ¢ be a permutation in S, such that o(n) = j. We know by
IIL.3. that D?(6+1) € A and that degy, D?(6+1) = d; ...dn/d;. Thus R divides D (5 +1)
and hence degfj (R) < dy...dy/d;. To see the inequality degfj (R) > dy...dn/d;, we will
use a partial multiplicative property of R(fi,..., fn) which is going to be proved in the
following subparagraph. Recall that degy, (R) > 1 for all j (IV.3.).

6. Here we take the ring & in the form
k=K[Ula Ulpllol =d, |8 = d]

where k' is a commutative ring with 1, d} and df are integers > 1 such that
dy + d{ = dy. Consider the generic polynomials over &’

fi=) UlaX*(lo = dy)
'=) UlaX*(la] = df).

LEMMA 6.1. Suppose k" is a U.F.D. Then the following divisibility
R(f]/_af%"')fn)R( {l;f21 .o -,.fn) ' R(f{ é/)fZM",fn)

holds in the ring
KU o, Ul g, Uinyl(lal = di, 18] = df5 5 # 1, 9] = dj)

(We will see later that in fact we have an equality, up to a unit in £’.) Let us make precise
the definition of the resultants above. To simplify notation, put

R/ = R(f]/.)f2>' . ?fTL)?RH = R( ]/_,af27' . 'afn)

Ro = R(fif{, far- -+ fu)-

Then Ry is obtained from R(f1, f2, ..., fn) by the specialization f; —— f1f1;
R’ is defined as R(fi,..., fn) in 4. with the ground ring k'[U} 5 | |8] = d1]; similarly for

R" but with &'[U] , | |a| = dj].
Of course, Ry, R, R” are all determined up to a unit in &’.

Proof of the Lemma.
By specialization, Ry is a Tragheitsform w.r.t. (fif{, f2,..., fa) (*) since R(f1,..., fn)

is w.r.t. (f1,.-+, fn). But (fif1, fa,- s fa) € (f1, fo,-.., fn) and so Ry is a T.F. with
respect to (f1, f2, ..., fn). On the other hand, by 3. R’ generates the ideal

A = A(f1, f2y .- s fn) CK' UL gIUL 05 Ujy | 5 # 1],

(*) Definition of T.F. here is similar to the generic case.
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analogous to A = A(f1, f2,..., fn). Hence R’ divides Ry. In the same way, R” divides Ry.
Now, by 4., we have (up to a unit in k')

R, :Rk’<f{)f2a"'1fn)7 R" :Rk’(f{/7f2)~--7fn)'

Thus R’, R" are distinct prime elements because degy (R') > 1 and degy (R"”) = 0. So
R'R" | Ro.

7. Continuation of the proof of Lemma 5.1.

i) In the case of dy = ... =d, =1, we know (II.1.) that D = det(f1,..., fn) is a T.F.
Thus R | D, and since degy, (D) = 1, we have degy, (R) = 1 (we know that degy,(R) > 1).
So the lemma is true in this case.

ii) In a similar way as Lemma 6.1. we have
(71) R(fl:”‘)f_f;’-'w.fn)R(fl"": ;/)"',fn)'R(fla"wf]/' ]I'/a”')fn)

for all j. Let us specialize each f; to the product of d; generic linear forms
li1,lj2, -+, lja;. This supposes that the ring & contains the coefficients of all the [;,’s
(see 6. for an analogous situation). Put

g =]l <a<dyp.
Therefore the product
[ Bllagss o rlng ) (LS 01 £ bgres 1 £ G S )

divides R(g1,...,9n) (7.1.) Fiz j € [n]; the case i) shows that deg;,  R(l1g,,---,lng,) =1
J
and hence the degree w.r.t. all the coefficients of 1, ..., ljq of R(g1,...,9n)is > dids ... dy.

Let v; o (|| = dj) be the coefficients of the polynomial g; (in the variables X1,..., Xy).
As polynomial in the v, "s R(g1,. .., gn) has degree equal to degy, R(f1,---, fn)

But each w;, is a homogeneous polynomial of degree d; in the coefficients of
li1, L2, - - -5 la, - It follows that degfj R(f1,..-,fn) = di...dn/d; as desired. Lemma 5.1. is,
proven.

8. Case k = Z or Z/pZ, p prime.

i) Let us take £ = Z. We know from 3. that A = Az is generated by one
element R, and that such an element is necessarily prime. Hence two such elements
are equal up to a unit in Z, that is up to a sign. Now, choose a generator
R = R(f1,...,fn) of A and do the specialization f; — Xfi (1 < ¢ < n). This implies
R(fi,.- - fa) — R(X{, ..., X)), D(6+1) — 1 (See ProofinITI.1.). Since R(f1, . .- , fa)
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divides D(6 + 1) (loc.cit.), we obtain R(X{",..., X% ) = +1. Consequently, there exists a
unique generator Rz = Retz(fi,..., fa) of A= Ag such that Retz (X1, ... gy =1
ii) Let p be a prime number and k£ = Z/pZ. The same arguments as in i) show that

the ideal A = Ay is generated by one element R = Rk(fi1,..., fn), unique up to a unit
in k, and that R (X{il, e ,X,‘fn) is a unit in k. Therefore there exists a unique element

Ry = Retg(f1,..., fn) which generates A = Ax and such that Retk(Xfll, ooy X)) =1,

Let Ry be the class mod p in Ay of the resultant Ry defined ini). By definition of a

Tragheitsform, we have Rz € Ax. Moreover Ry # 0 since RetZ(Xfll, o, Xn ") = 1. Hence
Rz = aRy,a € Ay, and by Lemma 5.1. we have degy, (Rz) = degy, (Rk) for all ¢. Thus

a € k. Using the specialization f; — Xj (1 <j <n), one obtains a = 1. So

Retk(f1,. -, fn) = Retz(f1,..., fn)-

9. General case.
From 4.(x) and 8.i)-ii) above, we see that the sequence

(S) 0— Az = Az — (Bgz)(x,) (with ground ring = Z)
"Ry,

is exact and, mod all p, it remains exact since it has then the form

0 — Ax — Agx — (Bk)(x,,) (with ground ring = K = Z/pZ).

Ry
Taking an arbitrary ring k, we deduce that the sequence (S5) ®z k

0= Aj == Ay = (Be)(x)

is exact, with R = the image of Rz in A; by the map induced by the canonical one
Z — k. Indeed, since Az and (Bz)(x,) are free Z—modules (see 1.), the cokernel of the
map Az — (Bz)(x,) is a torsion free Z—module (hence flat) (**).

Therefore, R generates the ideal Ay in Ay by 4.(x) (and, moreover, R is a non-zero
divisor). Now R = R(f1,..., fn) satisfies R(Xfl,...,X,‘f") = 1 in k because R is, by
definition, the image of Rz in Ay (8.i).

(*) Because of the standard notation res for the residue, we prefer the symbol Ret for

the resultant (like Det for determinant).
(**) The statement used (and easy to check) is the following. Let M — N —— P be an

exact sequence of Z—modules, with N and P torsion free. If, modulo every prime, the
sequence is still exact, then Coker (v) is torsion free.
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That is the end of the proof of the theorem stated in section 2.

10. In this section we discuss uniqueness of the element defined in Theorem 2. and
define the resultant.

ASSERTION. If the ground ring k is arbitrary, then the element R(f1,..., f,) as defined

in Theorem 2. is not necessarily unique. If k is reduced, then it is unique.

Proof— In 9. we saw that Ay is generated by an element R, which is a non-zerodivisor
and equal to the image of Rz (8.i). Let R’ = R/(f1,..., fn) be any other generator of Ay
such that : R/(X®,..., X%) = 1. There exist S, T € Ay, satisfying

R =SR,R=TR.
Since R does not divide zero in Ay, one has T'S = 1. In particular, S is a unit in Ag = k[U;a).
ii) If k is reduced, then S € k, and by specialization f; — X Zfi"(l < ¢ < n) one obtains
S =1 from the equality R’ = R.
i)) Now assume that & is not reduced. Let a be a nilpotent element in k, a # 0. Denote

by U some coefficient U, of the f!s which specializes to zero when the polynomials
f1,.- -, fn are specialized to X fl, e ,Xff" (respectively). (We suppose n > 2). Take

Ry = (1+aU)R € Ay

As 1+ aU is a unit in Ag, R; generates the ideal Ax. Moreover
Ri(X%,... X%) = (14+a0)RX{,..., X)) =1.

Since Ry # R, we are done.

DEFINITIONS.
a) The unique element Retz(f1,..., fn) defined in (8.1) is called the resultant of the
generic polynomials fi,..., f, over Z.

b) For an arbitrary ground ring k, we put

Retg(f1,---, fn) = Retz(f1,..., fn)

where the latter is the image of Retz(f1,. .., fn) under the canonical map Az — Ay
(induced by the natural map Z — k). We know that Retg(f1,..., fn) generates the
resultant ideal Ay and has the property Retk(Xfl, .., X)) = 1. It is called the
resultant of the generic polynomials f1, ..., fn overk.

c) If g1,...,9n € k[Xi,...,Xn] are homogeneous of degrees di,...,dn, then
Rety (g1, .-, gn) will stand for the specialization of Rety(f1,...,fn) induced by
the specializations f; — g; (see 1.). Sometimes we will consider a mixed case

Retk(fl, . sen fs,gs—}-l, it ,gn).

defined in a similar way, and called the resultant of f1,..., fs,9s+1,-«»9n-
While proving Theorem 2., some properties of the resultant have been established. We
state them and give examples in the next paragraph.
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VI. FIRST PROPERTIES AND EXAMPLES OF THE RESULTANT.

1. First properties of the resultant.

The resultant Retx(f1,..., f,) has been defined in V.10. All of the following properties
are immediate from its construction in V.

a) Retg(f1,..., fn) generates the resultant ideal Ay and Retk(Xfl, veey Xin) =1,

b) If k = Z then Retg(f1,..., fn) is the unique element in Ay = k[U; 4 | 1 < i <
n, |a| = d;] which has property a).

¢) One has

Retk(fl) . ')fn) = RetZ(f1>- vy fn)>

where @ is the tmage of a € Az by the canonical map Az — Ag. In particular if
k =k'[V], then Reti(f1,..., fn) = Retr (f1, ..., fn)-

d) Retg(f1,...,fn) is not a zero-divisor in Ag.

e) Ifk is an integral domain, then Retg(f1, ..., fn) is irreducible in the polynomial ring
Ag. In particular if k = 7Z, then Retg(f1,..., fn) is geometrically irreducible (by c)).

f) For each i(1 < i < n),Retg(f1,...,fn) s a homogeneous polynomial in the
coefficients U; o of f; the degree of which is equal to dy .. .dy,/d;.

g) Multiplicativity property. Let ¢ € [n] and let f!, fI’ be generic polynomials over k.

Then we have

Rebplfnsess s fits By s Fixass so5 Fiu)
:Retk<f17 . 'in—lyfi/)fi—’rl’ s )fn) Retk(fl? .. "fi—lafillyfi-l-ly v 7fn)-

This equality takes place in the polynomial ring k[E] where E is the set of the coefficients
of the generic polynomials fi,..., fic1, f, fIs firtse ooy Jue

Proof.— a) and c) are stated in V.10., b) in V.8., d) in V.9. Property e) is a consequence
of Proposition in V.1. Property f) is shown for £ a unique factorization domain (Lemma,
5.1. in V), hence it is true for £ = Z. So by c), f) is true for k arbitrary (Recall that
Ay, contains MACAULAY determinants and that these are not zero, III.). To see g) it is
enough, by ¢), to do it for & = Z. Using the divisibility relation V. (7.1.) and property f),
one shows that the equality to establish is true up to a multiplicative element A € Z. Now
the specializations

fim XP G #9), fl o X5 pH o XE (0] = deg(f]), &) = deg(f]))

imply A = 1, and we are done.
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EXAMPLES.
2.a) Let n = 1. So f1 = UXfl, and, since Retg(f1) is homogeneous in U of degree
dy/di =1, we have Retg(f1) = AU(X € k). But Rety(X]) = 1. Hence A = 1, and

Retk(fl) == [,

b) Assumed; =...=d, =1 (i.e. f1,..., fn are linear forms). Then

Retk(fl, ooy fn) = Det(fl, v ,fn).

(Det = determinant).

Proof.— Let us write f; = >0, Ui; X;. Thus

L = Det(fl,. . .,fn) = IUU’(]* < ’L,j < ’I’Z)

After 1.c) it is enough to work with k& = Z. We know that D is a Tragheitsform w.r.t.
Ji,..., fa (I1.1.). Then there exists a € A = Z[U;;] such that (1.a)

D = aRetz(f1,..., fn)-

But degy, (D) = 1 for all i. Therefore a € Z since deg, of Retz(f1, ..., fn) is equal to 1 for
all ¢ (1.f.). We have Det(X1,...,Xn) =1 and Retz(X1,...,Xn) =1,s0a = 1.

c) If no= 2, then (111.2.)

Reti(f1, f2) = D(dy +dy — 1) (= SYLVESTER det.)

Proof— To specify the ground ring k£ we denote a MACAULAY determinant (III.) by
D(t) = Dg(t). From the definition it is clear that Dz(t) = Dg(t) where a is the image of
a € Az defined by the natural map Z — k.

To check the desired relation it is then sufficient to do it the case k = Z. By IIL.1.

one has

Dz(dy +dy — 1) = A Retz(f1, f2)

with A € Az = Z[U14,Usg | |a| = dy,|8] = d2] (1.a.). But Dz(dy + d2 — 1) is the
SYLVESTER determinant of the polynomials fi, f2 (IIL.2.). Thus its degree as polynomial
in the Uy, is do and its degree as polynomial in the Usg is dy. Since Retz(f1, f2) has the
same property (1.f.), A belongs to Z. Now Dgz(dy + d2 — 1) and Retz(f1, f2) specialize to 1
when f; and f; are specialized to X fl,X§i2. Hence A = 1.
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The next example is the first less familiar one.

3. We suppose that f1,---, fn_1 are linear forms (i.e. dy = ... = d,—1 = 1) and denote
by U;; their coefficients

n
fi=> UyX; (1<i<n—1).

=1

Let Ay,...,A, € A=k[U;; |1 <i<n—1,1<j < n]be defined by the formula
Det(f1, ..., fa-1s 3, ViXj) = DiVi+... + AnVhp,
1

where V3, - - -, V,, are new indeterminates. So Ay,..., A, are signed minors of the matrix
Usj
P A

The resultant of the generic polynomials f; = fi(X1,...,Xn)(1 < i < n) is equal to
Tl 5. « = g Bhig
Proof— Assume that one knows that f,(Aq,...,4,) is a T.F. with respect to
fi,- ., fa. Then one proceeds as in the preceding examples :
- The case k = Z is sufficient (1.c.);
- fulAg,. .. ) = ARet(f1,..., fn), with A € A (1.a.);
- looking at the degrees, one has

deg; [fn(A1,...,An)] =1
degy,[fn(A1,. .., An)] = dyp for all i # n,

since degy, (A;) =1 (all i # n, all j);

- but the resultant here has the same corresponding degrees (1.f.), therefore A € Z;

- specialize : f; — X;(i # n), fn — X% ; then A, specializes to 0 if j # n and to 1 if
4 =n. Since f,(0,...,0,1) = 1, one obtains A =1 (1.a.), and we are done.

The proof will be achieved from the next subparagraph.

4. We keep the assumption d; = ... = d,—1 = 1 and the notation made in number 3.

ASSERTION. For allt,j, we have

DXy =g Xy € R Y
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in the ring k[Upq, Xe](1<p<n—-1,1<¢<n,1 <t <n).

Proof— ([J1] 5.4.) Assume 7 < j and take the following matrix

U11 X.,,Ulz Ulj Uln
M = " : " :
Un—-l,l W XiUn—l_,'i Ty Un—-l,j o Un—l,n
0 =X 1 0
T T
col.z col.j

We are going to compute DetM in two different ways. Let us expand with respect to the
last row :

Det M = —X;A; + X;A; (by definition ofAy,..., An).

Now in the matrix M multiply each s** column by X(s # i) and then add it to the
it column ; the result is

T fi
Ulm
M' = Upq :
fn—l
4 e 0 gam oo 0]
il T
col.g col.g

Expanding w.r.t. the last row, we see that Det(M’) belongs to the ideal (f1,..., fn—1)-
This proves our assertion since Det M = DetM’.

COROLLARY. Let g = g(X1,...,Xn) € k[Upq, Xt| be a homogeneous polynomial of
degree d (w.r.t. Xy,...,X,). Then

Xglhgy e g ll) — B[ Xy sy X ) € (frgs o Frmae

Applying this result to f,, we see that Xf"fn (Aq,...,Ay) belongs to (f1,..., fa—1, fn) in
the ring C'; thus f,(Aq,...,A,) is a Tragheitsform (I1.6.) w.r.t. f1,..., fn (This completes
the proof of the statement in 3.).

The corollary above is a particular case of the following simple fact :

LEMMA. Let R be a commutative ring with 1,. and let P1,Q1,...,Pn,@Qn €
R[X1,...,Xy]. Assume I is an ideal of R[ X1, ..., X,] such that

PiQ;— QP €I foral j.
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Then, for every homogeneous polynomial g = g(X1,...,X,) of degree d > 1, we have

Pig(Qr,...,Qn) — Qig(Pr,..., Py) € 1.

Proof of the lemma. It is enough to show the result when ¢ is a monomial
X3 . X% (o + ...+ an = d). Now use the following property of an ideal :
(a—belandd -V e€l)=aad bV €l
(aa’ = bt = (@ — b)a’ + (o’ — V’)b! ). One obtains
[L;(P1Q;)% —[1;(QuF;)™ € I;
that is Pg(Q1,...,Qn) — Q%g(Py,...,P,) € 1.

Our purpose now is to compute the resultant when n = 3 and dy = dy = d3 = 2
(three quadratic forms in three variables). We need before some general construction of

Trégheitsformen.

5. Let @ = (aq,...,an) € N*".Assume that the polynomials f; can be written in the

following form

(%) =S X (1<i<n).

Then denote by J, the determinant

Jo = Det [fij]lgi,an e(C = A[Xl, . ,Xn]

(For example if a = 0 then the good Jacobian J defined in I1.3. is of the form T )

, Xn of degree 6 — |a| (Recall

The polynomial J, s homogeneous in Xi,...
y frn- Indeed :

§=dy+...+d,—n). Moreover it is a Trdgheitsform with respect to f1,...

- multiply the 1°¢ column in J, by X,
- add to the new 1%¢ column each j** column multiplied by X;.x"H, with j # 1;

- the new determinant has now the form

a1+1 .
xetly, =

(by definition (x) of the f;;). Hence X1, € (f1,..., fa), and thus J, is a T.F. (IL.6.).

EXAMPLE : n =3,dy =dy =dg = 2.
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In this case we denote by U, V,, W, the coefficients of f1, fa, f3 respectively. For
example f; is written in the following form :

f1 = Ua0o X7 + Ur10X1 X2 + U101 X1 X3 + Up20 X3z + Up11 X2 X3 + Ugoa X2.

Here § = 3; so if a decomposition () as above exists, & € N® must satisfy |a| < 3 : more
precisely one has a1 < 1,5 < 1,3 < 1. It is easy to see that

(%) exists < a € {(0,0,0,),(1,0,0),(0,1,0),(0,0,1)}

Taking for example a = (1,0, 0), we have

f1 = X3Us00 + X2 (U110 X1 + Uoa0Xa) + X3(U101. X1 + Up11 Xz + Uno2 X3)
f2 = XiVaoo + Xo(Vi10 X1 + Voz0Xa) + X3(Vio1 X1 + Vo11 Xz + Voo X3)
f3 = X3 Waoo + Xo(Wi10X1 + Wo20X2) + X3(Wi01X1 + Wo11 X2 + Woe2 X3).

The associated determinant is

Usoo  UrioX1+ Up0X2  Ui01 X1 + Up11X2 + Ugoe X3
Jioo = | Vaoo  Vi10X1 + Voo Xo Vio1 X1 + Vo11 X2 + Vo2 X3
Waoo Wi10X1 + Wog0X2 Wioi X1 + Wo11 X2 + Wooa X3

Similarly one explicits Jy10, Joo1. They are homogeneous of degree 2.

6. Computation of Ret(fy, fz2, f3)(n = 3,d1, = dy = d3 = 2).

Consider the ordered set
E ={(2,0,0),(1,1,0),(1,0,1),(0,2,0),(0,1,1,),(0,0,2)} C N>.
Let |aagla,ger € A = k[Uq, Va, Wy|a, 8,7 € E] be the following determinant :

a\B 200 110 101 020 011 002

200 : . . : : . - #
110 : : : : : : — Joo1
101 : - : : : : — Joo
020 . : : : . : &= Ify
011 : : : : . : &= Jing
002 : , : . : : — f
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The coefficients ang in each row are those of the corresponding polynomial written
right. Let us show that this determinant |aqg| is a Trigheitsform w.r.t. f1, f2, f3.

The same operations as in II.1. (multiply the 1°* column by X 2. add to it each other
column n° 8 multiplied by X#) show that

X3 laag| € (f1, Joo1, Jo10, f2, J100, f3)

in C = A[X1, X2, X3]. Since Joo1, Jo10, J100 are T.F. (5.), there exists t > 0 such that

Xf ']'Y = (fl)f2;f3) for all e {(0a07 1)) (O) 170)’ (1’010)}

Thus X2 . |ags| € (f1, f2, f3), and hence |aqg| is a T.F. (IL6.).

ASSERTION. The resultant Retg(f1, f2, f3) is equal to the determinant |aqg| defined
above.

Proof.— One can suppose k = Z (VI.1.c.). We just proved that a = |asg| is a T.F.
Hence a = AR for some )\ € A, with R = Ret(f1, f2, f3) (VL.1.a). Now for each i = 1,2,3,
J, is homogeneous of degree 1 w.r.t. the coefficients of f; (4 = (0,0,1), (0,150, (1,0,0))
(see explicitation of Jigo in 5.). Therefore the coefficients of f; appear in exactly four rows
of the determinant |ang|. One deduces that degy;(a) = 4. But degy;(R) = 4 by VL.1.f);
whence \ € Z. If each f; is specialized to X j?, then we have the specializations

Joo1 — X1 X2, Jo1o — X1X3, Jioo —> X2X3 (cf5.)

This shows that the matrix [aep] specializes to the identity matrix. Because
Ret(X?, X2, X2) = 1, one obtains X = 1, as desired.

REMARK. The construction of the determinant |ang| in 6. is a particular case of a
more general process. Let d be an integer such that

0<d<é=di1+...+dp—m.

Consider Eq = {a € N* | |a| = d} (ordered lexicographically). Assume that the following
property holds :

ifae Egjand oy < d; foralli € {1,...,n},
(P) then f1,..., fn can be decomposed in the form
fi= 251 Xjﬁj+1fij(1 <i<n), withf=(di—a1—1,...,ds —an —1).

In this case put Jg = Det[fi;]li<i j<n as in 5. Let us construct a determinant |asp|a,seE,
which is a T.F. Fix a € Ey.
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i) If there exists ¢ such that a; > d;, then denote by ¢(o) the minimal integer > 1
having this property, and put
aqp = the coefficient of XA in ;{—)3{-1—(%—)- + fi(a), for all B € Eg.
i(a)
ii) If not, put
aqp = the coefficient of X8 in Jywithy=(di—o1—1,...,dp — 0 — 1).
Then one obtains a determinant |aqgla,ser, Which is a T.F. belonging to A, in the
same way as in 6.
In the case n = 3,d; = ds = d3 = 2 (5.6.), the integer d = 2(< § = 3) is the
smallest one such that the property (P) holds. If d = 3, (P) is again true and one finds a
determinant |aqg|(a, B € E3) which has 10 rows defined by the polynomials

X1f1, Xof1, X3 f1, X1f2, Xafa, X3fa, X113, X2 f3, X3 f3, Jooo-

This determinant is still equal to Ret(fi, fa, f3), the proof being the same as in 6.

Finally let us note that modulo (fi, ..., fn) the decomposition of f; stated in (P) is
unique. Hence the determinant |aqg|(c, 8 € Ey) is uniquely defined since it belongs to A.
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VII. FURTHER PROPERTIES OF THE RESULTANT.

In the preceding chapter we saw some properties of the resultant coming directly from its
construction. Now we are going to study other properties of the resultant which generalize

those of the determinant.

Recall that Reti(f1,..., fn) is the resultant of the generic polynomials fi,..., f, over &
(homogeneous of degrees dy, ..., d, respectively). It lives in the ring

A=Ay =k[Uia|1<i<nla| =di,

where the U; o (|a| = d;) are the coefficients of f;. If g1, . . ., gn are homogeneous polynomials
in k[X1,...,Xn], then the resultant Rety(g1,...,gn) (V.10.) will satisfy the same formulas

as Rety(f1,..., fn), by specialization.
1. Let p be a permutation of 1,2,...,n. Then

Rety, (fp(1)7 A 7fp(n)) = e(p)sRetk(fly veey fn)

where €(p) is the signature of p and s =dy ... dy.

Proof.— It suffices to take k = Z (VI.1.c). The resultant ideals A = A(f1,..., fn) and
At == A(fp(l), e ,fp(n)) are equal in the ring Az since (f1,..., fn) = (fp<1), . ,fp(n)) in
C = Ag[X1,...,Xy,] (by definition of Trigheitsformen, IL.4.). Hence VI.1.a)-e) show that

Ret(fo1), - o o)) = €Ret(f1,..., fn), e= %1
Specializing f; to Xf" we have

d do(n
e = Ret(X 0., X,0;)) (VLla)

= Ret (Xp(l), s b ,Xp(n))s (VI.1.g. : multiplicativity).

But l; = [;(X1,...,Xn) = X, (1 <4 < n) are linear polynomials, and we know (by
specialization) from VI.2.b) that Ret(l1,...,l,) = Det(l1,...,ln). So Ret(ly,...,In) = €(p)
(determinant of the permutation p), as desired.

2. Assume k = K'[V] (k' commutative ring with 1, V' indeterminate). Then for each i

we have

Retp( fi,.0n s Viisnes s ) = Vo Bely( f1y5005fn)

with s = dy .. .dp/d;.
This follows from the property (1.f) in VI.
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Note here that Retx(f1,..., fn) = Retr (f1,..., fn) (by VI.c).
3. Let us fix some i € [n]. For every j # i such that d; = d;, we suppose given an

indeterminate V; and that

k=K[V;|j#i:d;=d]

We have
Retk(fl,...,fi’,... ,fn) = Retk(fl,... ,fi,...,fn)

where fl = fi+ Y Vifj.

J#i
dj=d’i

Proof.— To simplify the notation, we take 1 = n. Since (f1,..., fn-1, /1) = (f1,-- -, fn)
as ideals in Agx[X1,...,Xn], and since R’ = Retg(f1,..., fn-1, f5,) is a T.F. with respect to
fi,.++y frn—1, fn!, we have (VIL.1.a)

R’ = AR for some )\ € Ay,

with R = Retg(f1,...,fn). Denote by W, (|| = dy) the coefficients of f;, as polynomial in
Xl,...,Xn. So

Wy = Uny + Z ViUj

J#n
and hence the coefficients of f1,..., fo—1, f}, are algebraically independants over k. This
means that f1,..., fn—1, f}, are generic over k; thus (loc.cit.)

R = pR' for some p € Ag.

As usual, by (VI.1.c) we can assume k' = Z. Therefore Ay = 1; in particular A € Z. Now
the specialization V; —— 0 implies A = 1, and we are done.

4. Divisibility property (MERTENS [ME])(*)

Let K be a commutative ring with 1, and let g1,...,9n,h1,...,hn be homogeneous
polynomials of deg > 1 in K[X;,...,X,] such that (h1,...,hn) C (g1,-..,9n). Then
Retx(g1,...,9n) divides Retg (hi,...,h,) in K.

Proof.— By hypothesis, there exist h;; € K[Xq,...,Xy] such that

. n .
(1) hi=) hijg; (1<i<n),
§=1

(*) This is a particular case of a theorem by MERTENS.



40

with h;; homogeneous. Assume that gi,...,gn are generic over K with coefficients V; ,
for g;, and that the coefficients of all the h;j;, let us say W;; g, are indeterminates over K
distinct from the V4. So (1) takes place now in the ring

L :K[Wij,ﬂyvs,a | i = ’i,j,S = TL,,B,O(]
= M[Vs-,a , 1<s<m, !al = deg(QS)]

Hence by specialization, it is enough to see that
(2) Retyr(g1,y---,9n) | Retar(he, ..., hy) in L

(see Definitions in V.10 and the property VI.l.c). Now there exists ¢ > 0 such that
XtRetpr(h1y ... hn) € (h1,...,hn) (by specialization from the generic case). Thus
XtRetpr(hiy ... hn) € (91,---,9n), and hence Retps(hy,...,hy,) is a T.F. with respect
to g1,-...,9n, which are generic over M.

It follows that (2) is true (VI.1.a).

5.a) Invariant property.
We suppose the ground ring & of the following form

k=K[Vij|1<i,j<n).

Recall Ay = k[Uio | 1 <4 < n,|a| = d;], and consider in Cy = Ax[X1,..., Xy the linear
polynomials

L=l sl) i = Vi Xi+ ..o+ ViaXa.
For a polynomial g = g(Xjy,...,Xy), put
gad=glly, .. ln)-
Then we have the formula

Retg(fy 0,04 fis 0] = Det(liy vy ln )  RetglFiy- -y Jiu)

with s :dl...dn.
Proof.— As usual the case ¥’ = Z is sufficient. On the other hand we know that (VI.1.c)

B i= Retp(fris+5 5 Jn) = Rl frge o5 Fru) € Aggs

Since R is a T.F. with respect to fi, ..., fn, there exists ¢ > 1 such that

XiRe€ (f1,..., ) in the ring Ag[X1,..., Xn]
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for all 4. Apply the following Ay~ algebra homomorphism

Cr = Ak/[Xl, e s ,Xn} — Cf = Ak[Xl, P ,Xn]

" and obtain the relations

hi=URE(fy0l,...,fno0l)inC(l <i<n).

The divisibility property (4.) shows then that

Rety(fi o ly..., fo o 1) divides Retg(hi,...,hy).

One has (2., VI.1.g)

Rety(h1, ..., hn) = RPRetg(ly,...,1,)? for some p, g,

Ret(ly,...,ln) = Det(ly,...,l,) = D. Since k' = Z, the elements R and D are prime in
Ay (not associated : D contains V;; while R does not). We deduce

Rety(fiol,..., faol) =eD¥RY

with € = +1,u,v € N. To determine ¢, u, v, we specialize as follows :

fim UiXE | 1l Vi X,

(U; = U = coefficient of Xf" in f;). It comes then

Ret(U VR XH, ... U Vi X3 =
e(Vit... Von) “Ret(U X3, ..., Up X2)°

Using homogeneity and multiplicativity as above, one obtains

n

H(Ui‘/i;li)dl...dn/di _ 5(‘/11 . Vnn)u(H Uidl...dn/di)v.

=1 i=1

Sog=1, 01 axally, = 1

b) Composition formula (FAA DE BRUNO, MERTENS) [F], [ME].
In fact the formula established in a) is a particular case of the following. Consider
an integer d > 1 and polynomials
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gi= Y WiaX* (1<i<n),
|a|=d

and assume k = k'[Wia | 1 <1 < n,|a| = d] (so that g1,..., g, are generic over &'). Put
9={(91,---,9s) and

fiog:fi(gla'-'agn)'

Then one has

Retg(fi 0 9,...,fnog) = Ret(g1,...,9n)° Retx(f1,..., fa)

withs =d;...d, andt =d* L.

Proof : quite similar to that of a). One has only to consider Ret(g1,...,g,) instead of
Ret(l1,...,ln) = Det(ly,...,1l,) and, at the end, to specialize g; in the following form :

gi — W'z-X,gl, where W; = coefficient of X,fl in gz

6. Weight property. Let m be a fixed integer in {1,...,n}. To each coefficient U;,, of
 fi we attach a weight

wg(Uz ) = am(a = (al,...,an), Ia[ = dz)

Then the resultant Rety(f1,...,fn) € Ar = k[Uia | 1 <1 < n,|a| = d;] is isobaric with
respect to wg and has a weight equal to dy . .. d,.

Proof.— We can assume that k£ = k’[V]. For simplification, we take m = n.

The endomorphism Ay = k[U;s] — Ay :
U — Vo Usy,

induces another one ¢ : Cy — Cj (where Cj is considered as a k[Xj, ..., X,]-algebra).
We have to prove that

Retk(‘ﬂ(fl), oo 790(]071)) = VSRetk(fh oi e o 7f’n)

with s =dq...d,. But

o(fi) = filly,. .., ) withl; = 4;(Xy,. .., X)) = Xi(i #n)
by = (X1, ., Xn) = VX
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So the result follows from the invariant property, by specialization, since Det(l1,...,l,) =
V. '

7. Covariant property.
Let us assume d1 = ... =dp =d and k = K'[Vij | 1 < 4,5 < n]. Then the following
formula holds :

Retk(ZVUfj,. ZVanJ Det[ ])SRetk(fl,...,fn),
1

where s = d™ L.

Proof.— It suffices to prove the formula for &' = Z. Let D = Det[Vj;]i<i j<n, and
gi = .7 Vi; f;. In the ring Ax[D~'] we have an equality of ideals

(gl)”'agn) :(fl)"')fn)'

Applying the divisibility property (4.), we see that there exists a unit A in Ax[D~'] such
that

Ret(g1,---,9n) = ARet(f1,..., fn) inAg [D“l}

(we are over Z, Ret(f1,..., fn) is irreducible ... ¢f. VI.1). Now D is irreducible since D is
the resultant of linear generlc forms over Z (Example 2.b) in VI). Hence A = +D?, for some
t > 0. Specialize : f; — X , Vij = 0(¢ # 7). This implies (2.)

n—1
(Viz. . Van)? = £(Viz.. . Van)',

and we are domne.

8. LAPLACE formula.
Assume n > 2 and take m € {1,...,n — 2}. Put

gi = fi(X1,.., Xm,0,...,0)for1 <i < m,
gi = fi(0,...,0, Xmq1,..., Xp) form+1<is<n.

Then the following formula holds :

Ret(fh o ')fmagm—i-la ce )gn) = R@tk(gl, e ,gm)sRetk(gmH, cee )gn)t

'LU'Z;thS:dm+1...dn,t:d1...dm.
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(In the 1% member gm41,...,9n are considered as polynomials in Xi,..., X, while
in the 2"%gq,...,gm are considered as polynomials in Xi,..., X, and gm41,...,9n in
b R R, 4 B

This formula generalizes the LAPLACE formula for the determinants.

Proof.— The case k = Z is enough. Let us put

Ry = Ret(g1,...,9m), R2 = Ret(gm41,---19n)-

By definition g1,...,gm are generic in the variables Xi,..., X, and gmy1,...,9, are
genric in Xpm41, ..., Xn. There exists an integer ¢ > 1 such that

hi = X1Ry € (gm+1,.--,9n) foralli=m+1,...,n

(by definition of a T.F., IL.4.). Thus we have an inclusion of ideals in Az =
Z[ coeff. of f1,..., fn] '

(fl)“')fm)hm+l)"‘)hn) C (fl"")fm)gm+1"")gn)'

The divisibility property (4.) says to us that

Rebl Fus o s+ 5 Fors G155« 3 G,) dividies
Ret(fl, o 34 me>hm+l) . ')h’n)'

But one has (homogeneity and multiplicativity)

Ret(fl, e ,fm,hm+1, 5o s ,hn) = R;‘Ret(fl, S ,fm,Xm+1,. % ,Xn)v

for some integers u,v. Assume for a while that we have shown
Ret(fl, oy fm,Xm—I-l; e ,Xn) = Rl.

In Az (factorial ring) R; and R, are non-associated prime elements (since they don’t
contain the same indeterminates). So we have

Rt Fiis 000 s Jomg Gty w0 1100s) :ER‘lle,e::tl,a,bEN.

Taking the degree of both sides w.r.t. the coefficients of f;, we obtain (VI.1.f)

dg...dn:adz...dm if'izl,
dl...dn_lzbdm+1...dn_1 s == ¥
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Thus @ = dmt1-.-dn and b =d; ... dp. Now the usual specialization f; — Xf‘(l < hEn),
implies € = 1.

It remains to check the equality assumed true above. By induction, it suffices to prove
the following lemma : '

9. LEMMA. Putting ¢° = g(X1,...,Xn-1,0) for a polynomial g = 9(X1,...,X,), we

have

Rete(fi, ..., fae1, Xn) = Rete(f7, -+ fa-1)

inthering L =k[Uin | 1 <i<n—1,|a| =di(n > 2).
Proof.— It suffices to see it with k = Z (VL.1.c). Let us put

R= Retk(fly o 1fn—1)Xn)
R® = Retw(f2,..., f2_y).

There exists t > 0 such that

X{RE (f11'-';fn—17Xn) C L[le--an]?

since R is a T.F. with respect to fi,..., fa—1, Xn (by specialization frn — X, in the case
dn = 1). Substitute 0 for X, and obtain

XfR € (ff,..., Ti—l) in L[Xl,...,Xn_l]

(n is assumed > 2). But f7, ..., fo_, are generic homogeneous polynomials in X1, ..., Xn—1
over k. It follows then that

R = \R°,for some A € L

by 1.6 and VI.1.a). Using VL1.f), we see that, for each i € {1,...,n—1}, R and R°
have the same degree w.r.t. the coefficients of f;. Hence A € k, and the specialization
fi — X;lj (1 <j<n—1)shows that A = 1. This completes the proof of the lemma, and
hence the LAPLACE formula is established.

We say that Ret(fy,. .., fo_q) is the “resultant of f1,..., fn—1 at infinity” (n > 2). This
definition is justified by the following. Assume that & is an algebraically closed field and
that g1,...,gn-1 € k[X1, ..., Xy] are specializations of fi,..., fn—1. The preceding lemma
shows that

Ret(g1y .-y 9n-1,Xn) = Ret(g‘l’, S ,gg_l).
A common zero z = (z1,...,%n) € P,:L"l of the equations g1 = 0,...,9, = 0 (with

gn = Xpn) is necessarily at infinity in P ~1 Therefore the polynomials g1, ..., gn—1 have a
common zero at infinity in PP if and only if Ret(g5, .- .,gn—1) = 0 (see I1.8.).
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NOTA BENE

Pour des raisons de santé (de Pauteur), et des problemes de frappe (du manuscrit),
le texte présent n’a pu voir le jour plus tot. Cependant, la version manuscrite a connu
une diffusion certaine, dés Pautomne 1992. Je voudrais remercier vivement Madame Pilar

MEYER qui vient d’en assurer I'excellent traitement (de texte s

Strasbourg, le 3 juin 1997
Abd’allah AL AMRANI.



