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The quenched limiting distributions of a
charged-polymer model in one and two dimensions

Nadine Guillotin-Plantard∗, Renato S. Dos Santos∗

Université Lyon 1

Summary. The limit distributions of the charged-polymer Hamiltonian of
Kantor and Kardar [Bernoulli case] and Derrida, Griffiths and Higgs [Gaussian
case] are considered. Two sources of randomness enter in the definition: a
random field q = (qi)i≥1 of i.i.d. random variables, which is called the random
charges, and a random walk S = (Sn)n∈N evolving in Z

d, independent of the
charges. The energy or Hamiltonian K = (Kn)n≥2 is then defined as

Kn :=
∑

1≤i<j≤n

qiqj1Si=Sj
.

The law of K under the joint law of q and S is called “annealed”, and the
conditional law given q is called “quenched”. Recently, strong approximations
under the annealed law were proved for K. In this paper we consider the limit
distributions of K under the quenched law for d = 1 and 2.

Keywords: Random walk, polymer model, self-intersection local time, limit
theorems, law of the iterated logarithm, martingale.
2011 Mathematics Subject Classification: 60G50, 60K35, 60F05.

1. Introduction

Let d ≥ 1 and q = (qi)i≥1 be a collection of i.i.d. real random variables, hereafter referred to as
charges, and S = (Sn)n≥0 be a random walk in Z

d starting at 0, i.e., S0 = 0 and (Sn − Sn−1)n≥1

is a sequence of i.i.d. Z
d-valued random variables, independent of q. We are interested in the

limit distributions of the sequence K := (Kn)n≥1 defined by setting K1 := 0 and, for n ≥ 2,

Kn :=
∑

1≤i<j≤n

qiqj1{Si=Sj}. (1)

In the physics literature this sum is known as the Hamiltonian of the so-called charged polymer
model ; see Kantor and Kardar [19] in the case of Bernoulli random charges and Derrida, Griffiths
and Higgs [11] in the Gaussian case. This model has been largely studied by physicists since it is
believed that a protein molecule looks like a random walk with random charges attached at the
vertices of the walk; these charges are interacting through local interactions mimicking chemical
reactions [23].

Results were first established under the annealed measure, that is when one averages at the
same time over the charges and the random walk. Chen [7], Chen and Khoshnevisan [8] proved
that the one-dimensional limiting distributions are closely related to the model of Random walk
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in random scenery. Hu and Khoshnevisan [18] then established that in dimension one the limit
process of the (correctly renormalized) Hamiltonian Kn is strongly approximated by a Brownian
motion, time-changed by the self-intersection local time process of an independent Brownian
motion. Especially, it differs from the so-called Kesten and Spitzer’s process [20] obtained as the
continuous limit process of the one-dimensional random walk in random scenery.

To our knowledge distributional limit theorems for quenched charges (that is, conditionally
given the charges) are not known. Let us note that in the physicists’ usual setting the charges
are usually quenched: a typical realization of the charges is fixed, and the average is over the walk.
In the case of dimension one, we determine the quenched weak limits of Kn by applying Strassen
[25]’s functional law of the iterated logarithm. As a consequence, conditioned on the random
charges, the Hamiltonian Kn does not converge in law. In contrast with the one-dimensional
setting, in the case of a planar random walk with a finite non-singular covariance matrix and
charges with a moment of order strictly greater than two, we are able to prove a quenched central
limit theorem with the unusual

√
n log n-scaling and Gaussian law in the limit. Especially, our

assumptions on the charges’ moments are slightly better than the ones in [8, 18]; an alternative
proof of the annealed functional central limit theorem is then given in the appendix.

2. Case of the dimension one

2.1. Results. In this section we study the case of the dimension one, S = (Sk, k ≥ 0) is the
simple one-dimensional random walk. Moreover we assume that

E(q0) = 0, E(q20) = 1 and E(|q0|6) < ∞.

We prove that under these assumptions, there is no quenched distributional limit theorem for K.
In the sequel, for 0 < b ≤ ∞, we will denote by AC([0, b] → R) the set of absolutely continuous
functions defined on the interval [0, b] with values in R. Recall that if f ∈ AC([0, b] → R), then

the derivative of f (denoted by ḟ) exists almost everywhere and is Lebesgue integrable on [0, b].
Define

K∗ :=
{
f ∈ AC(R+ → R) : f(0) = 0,

∫ ∞

0
(ḟ(x))2dx ≤ 1

}
. (2)

Theorem 1. For P-a.e. q, under the quenched probability P (. | q), the process

K̃n :=
Kn

(n3/2 log log n)1/2
, n > ee,

does not converge in law. More precisely, for P-a.e. q, under the quenched probability P (. | q),
the limit points of the law of K̃n, as n → ∞, under the topology of weak convergence of measures,
are equal to the set of the laws of random variables in ΘB, with

ΘB :=
{
f(V1) : f ∈ K∗

}
, (3)

where V1 denotes the self-intersection local time at time 1 of a one-dimensional Brownian motion
B starting from 0.

The set ΘB is closed for the topology of weak convergence of measures, and is a compact subset
of L2((Bt)t∈[0,1]).

Instead of Theorem 1, we shall prove that there is no quenched limit theorem for the continuous
analogue of K introduced by Hu and Khoshnevisan [18] and deduce Theorem 1 by using a
strong approximation. Let us define this continuous analogue: Assume that B := (B(t))t≥0,
W := (W (t))t≥0 are two real Brownian motions starting from 0, defined on the same probability
space and independent of each other. We denote by PB, PW the law of these processes. We will
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also denote by (Lt(x))t≥0,x∈R a continuous version with compact support of the local time of the
process B, and (Vt)t≥0 its self-intersection local time up to time t, that is

Vt :=

∫

R

Lt(x)
2 dx.

We define the continuous version of the sequence Kn as

Zt := W (Vt), t ≥ 0.

In dimension one, under the annealed measure, Hu and Khoshnevisan [18] proved that the process

(n−3/4K([nt]))t≥0 weakly converges in the space of continuous functions to the continuous process

Z = (2−1/2Zt)t≥0. They gave a stronger version of this result more precisely, they proved that
there is a coupling of q, S, B and W such that (q,W ) is independent of (S,B) and for any
ε ∈ (0, 1/24), almost surely,

Kn = 2−1/2Zn + o(n
3
4
−ε), n → +∞. (4)

Theorem 1 will follow from this strong approximation and the following result.

Theorem 2. PW -almost surely, under the quenched probability P(·|W ), the limit points of the
law of

Z̃t :=
Zt

(2t3/2 log log t)1/2
, t → ∞,

under the topology of weak convergence of measures, are equal to the set of the laws of random
variables in ΘB defined in Theorem 1. Consequently, under P(·|W ), as t → ∞, Z̃t does not
converge in law.

To prove Theorem 2, we shall apply Strassen [25]’s functional law of the iterated logarithm
applied to the Brownian motion W .

2.2. Proofs. For a one-dimensional Brownian motion (W (t), t ≥ 0) starting from 0, let us define
for any λ > ee,

Wλ(t) :=
W (λt)

(2λ log log λ)1/2
, t ≥ 0.

Lemma 3. (i) Almost surely, for any r > 0 rational numbers, (Wλ(t), 0 ≤ t ≤ r) is relatively
compact in the uniform topology and the set of its limit points is K0,r, with

K0,r :=
{
f ∈ AC([0, r] → R) : f(0) = 0,

∫ r

0
(ḟ(x))2dx ≤ 1

}
.

(ii) There exists some finite random variable AW only depending on (W (x), x ≥ 0) such that
for all λ ≥ e36,

sup
t>0

|Wλ(t)|√
|t| log log(|t|+ 1

|t| + 36)
=: AW < ∞.

The proof of this lemma can be found in [16].

Let us define for all λ > ee and n ≥ 1,

Hλ := Wλ(V1), H
(n)
λ := Wλ(V1)1{V1≤n},
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Lemma 4. There exist some positive constants c1, c2 such that for any λ > e36 and n ≥ 1, we
have

EB

∣∣∣Hλ −H
(n)
λ

∣∣∣ ≤ c1 e
−c2n2 AW , (5)

EB

∣∣∣f(V1)
∣∣∣1{V1>n} ≤ c1 e

−c2n2
, (6)

for any function f ∈ K∗.

Proof: By Lemma 3 (ii), EB

[
(Wλ(V1))

2
]
≤ A2

W EB

[
|V1| log log(|V1|+ 1

|V1|
+ 36)

]
≤ c1A2

W , since

V1 has finite moments of any order. Then by Cauchy-Schwarz’ inequality, we have that

EB

∣∣∣Hλ −H
(n)
λ

∣∣∣ = EB

[
Wλ(V1)1(V1>n)

]

≤
√

EB

[
Wλ(V1)2

]√
PB

(
V1 > n

)

≤ c1 AW e−c2n2
,

by the fact that: PB

(
V1 > x

)
≤ c1e

−c2x2
for any x > 0 (see Corollary 5.6 in [21]). Then we get

(5).

For the other part of the lemma, let f ∈ K∗, observe that |f(x)| ≤
√∣∣∣x

∫ x
0 (ḟ(y))

2dy
∣∣∣ ≤

√
|x|

for all x ∈ R+. Then by Cauchy-Schwarz’ inequality, we have that

EB

[
|f(V1)|1(V1>n)

]
≤

√
EB

[
f(V1)2

]√
PB

(
V1 > n

)

≤
√

EB

[
V1

]√
PB

(
V1 > n

)

≤ c1 e
−c2n2

.

Then (6) follows.

Lemma 5. PW -almost surely,

dL1(B)(Hλ,ΘB) → 0, as λ → ∞,

where ΘB is defined in (3). Moreover, PW -almost surely, for any ζ ∈ ΘB,

lim inf
λ→∞

dL1(B)(Hλ, ζ) = 0.

Proof: Let ε > 0. Choose a large n = n(ε) such that c1e
−c2n2 ≤ ε, where c1, c2 are the constants

defined in Lemma 4. By Lemma 3 (i), for all large λ ≥ λ0(W, ε, n), there exists some function
g = gλ,W,ε,n ∈ K0,n such that supx∈[0,n] |Wλ(x)− g(x)| ≤ ε. We get that

EB

∣∣∣H(n)
λ − g(V1)1{V1≤n}

∣∣∣ ≤ ε.

We extend g to R+ by letting g(x) = g(n) if x ≥ n, then g ∈ K∗. By the triangular inequality,
(5) and (6),

EB

∣∣∣Hλ − g(V1)
∣∣∣ ≤ (2 +AW )ε.

It follows that dL1(B)(Hλ,ΘB) ≤ (2 + AW )ε. Hence PW -a.s., lim supλ→∞ dL1(B)(Hλ,ΘB) ≤
(2 +AW )ε, showing the first part in the lemma.
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For the other part of the Lemma, let h ∈ K∗ such that ζ = h(V1). For any ε > 0, we may use

(6) and choose an integer n = n(ε) such that c1e
−c2n2 ≤ ε and

dL1(B)(ζ, ζn) ≤ ε,

where ζn := h(V1)1{V1≤n}. Applying Lemma 3 (i) to the restriction of h on [0, n], we may find a
sequence λj = λj(ε,W, n) → ∞ such that sup|x|≤n |Wλj

(x)− h(x)| ≤ ε, then

dL1(B)(H
(n)
λj

, ζn) ≤ ε.

By (5) and the choice of n, dL1(B)(H
(n)
λj

,Hλj
) ≤ εAW for all large λj , it follows from the

triangular inequality that
dL1(B)(ζ,Hλj

) ≤ (2 +AW )ε,

implying that PW -a.s., lim infλ→∞ dL1(B)(Hλ, ζ) ≤ (2 +AW )ε → 0 as ε → 0. �

We now are ready to give the proof of Theorems 2 and 1.

Proof of Theorem 2. Remark that PW -a.s.,

W (Vt)
(d)
= W (V1t

3/2) (7)

from the scaling property of the self-intersection local time of the Brownian motion B. The first
part of Theorem 2 directly follows from Lemma 5.

Proof of Theorem 1. We use the strong approximation of [18] : there exists on a suitably
enlarged probability space, a coupling of q, S, B and W such that (q,W ) is independent of (S,B)
and for any ε ∈ (0, 1/24), almost surely,

Kn = 2−1/2Zn + o(n
3
4
−ε), n → +∞.

From the independence of (q,W ) and (S,B), we deduce that for P-a.e. (q,W ), under the

quenched probability P(.|q,W ), the limit points of the laws of K̃n and Z̃n are the same ones.
Now, by adapting the proof of Theorem 2, we have that for P-a.e. (q,W ), under the quenched

probability P(.|q,W ), the limit points of the laws of Z̃n, as n → ∞, under the topology of weak
convergence of measures, are equal to the set of the laws of random variables in ΘB . It gives
that for P-a.e. (q,W ), under the quenched probability P(.|q,W ), the limit points of the laws of

K̃n, as n → ∞, under the topology of weak convergence of measures, are equal to the set of the
laws of random variables in ΘB and Theorem 1 follows.

Let (ζn)n be a sequence of random variables in ΘB, each ζn being associated to a function
fn ∈ K∗. The sequence of the (almost everywhere) derivatives of fn is then a bounded sequence
in the Hilbert space L2(R+), so we can extract a subsequence which weakly converges to a
limit whose integral is in K∗. Using the definition of the weak convergence and the fact that
ζn =

∫
R+

1[0,V1](y)ḟn(y) dy, (ζn)n converges almost surely. Since the sequence (ζn)n is bounded

in Lp(B) for any p ≥ 1, the convergence also holds in L2(B), and compactness follows. �

3. Case of dimension two

3.1. Assumptions and results. We will make the following two assumptions on the random
walk and on the random scenery:

(A1). The random walk increment S1 takes its values in Z
2 and has a centered law with a finite

and non-singular covariance matrix Σ. We further suppose that the random walk is aperiodic
in the sense of Spitzer [24], which amounts to requiring that ϕ(u) = 1 if and only if u ∈ 2πZ2,
where ϕ is the characteristic function of S1.
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(A2). E[q1] = 0, E[q21] = 1 and E[|q1|γ ] < ∞ for some γ > 2.

Our aim is to prove the following quenched central limit theorem.

Theorem 3.1. Under assumptions (A1) and (A2), for P-a.e. q, for all x ∈ R,

lim
n→∞

P

(
Kn ≥ x

√
n log n

∣∣∣ q
)
=

1√
2πσ

∫ ∞

x
e−u2/2σ2

du, (8)

where σ2 = (2π
√
detΣ)−1.

Remark: The conclusion of this theorem still holds if, alternatively, the (A1) assumption is
replaced by the following one:

(A1’). The sequence S = (Sn)n≥0 is an aperiodic random walk in Z starting from 0 such that

the sequence
(
Sn

n

)
n

converges in distribution to a random variable with characteristic function

given by t 7→ exp(−a|t|) with a > 0, in that case σ2 is given by (2πa)−1.

Indeed, the proof of Theorem 3.1 depends on S through properties of the self-intersection local
time and of the intersection local time of the random walk S which are known to be the same
under assumptions (A1) or (A1’).

An ingredient in the proof of Theorem 3.1 is the following functional central limit theorem
under P(·|S), which is of independent interest. Indeed, it implies the same result under the
annealed law, improving the previously known assumptions for such a theorem to hold (see [18]).

Let

s2n :=

{
n log n if d = 2,
n if d ≥ 3,

(9)

and

σ2 :=

{
(2π

√
detΣ)−1 if d = 2,

1
2

(∑∞
j=1 j

2χ2(1− χ)j−1 − 1
)

if d ≥ 3,
(10)

where χ := P (Sn 6= 0 ∀ n ≥ 1).

Theorem 3.2. Under conditions (A1)–(A2) or (A1’)–(A2), for a.e. realization of S, the process

B
(n)
t := s−1

n K⌊nt⌋, 0 ≤ t ≤ 1, (11)

converges weakly under P(·|S) in the Skorohod topology as n → ∞ to a Brownian motion with
variance σ2.

The proof of Theorem 3.2 is an application of the martingale CLT, and is given in Appendix A.

For the proof of Theorem 3.1, we proceed as follows. Define the subsequence

τn := ⌈expnα⌉, 1

2
∨ 2

γ
< α < 1. (12)

The following two propositions directly imply Theorem 3.1. Both assume (A1)–(A2).

Proposition 6. For P-a.e. q, for all x ∈ R,

lim
n→∞

P

(
Kτn ≥ x

√
τn log τn

∣∣∣ q
)
=

1√
2πσ

∫ ∞

x
e−u2/2σ2

du. (13)

Proposition 7. Define i(n) ∈ N by τi(n) ≤ n < τi(n)+1. Then, for P-a.e. q, the difference

Kn√
n log n

−
Kτi(n)√

τi(n) log τi(n)
(14)

converges in probability to 0 as n → ∞ under P(·|q).
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Propositions 6 and 7 are proved in Sections 3.3 and 3.4, respectively.

3.2. Two-dimensional random walks. We gather here some useful facts concerning the local
times of two-dimensional random walks. In the following we always assume (A1). Analogous
results hold under the alternative assumption (A1’).

3.2.1. Maximum local times. Let Nn(x) :=
∑n

i=1 1{Si=x} be the local times of the random walk
S up to time n and

N∗
n := sup

x∈Z2

Nn(x) (15)

be the maximum among them.

Lemma 8. (i) For all k ∈ N, there exists a K := K(k) > 0 such that

E

[
(N∗

n)
k
]
≤ K(log n)2k ∀ n ≥ 2. (16)

(ii) There exists a K > 0 such that

P
(
N∗

n > K(log n)2
)
≤ n−2 ∀ n ≥ 1. (17)

Proof. The two statements follow from Lemma 18, (b) in [13]. �

3.2.2. Self-intersection local times. For p ≥ 1, the p-fold self-intersection local time I
[p]
n of S up

to time n is defined by

I [p]n :=
∑

x∈Z2

Np
n(x) =

∑

1≤i1,...,ip≤n

1{Si1
=···=Sip}

. (18)

When p = 2 we will omit the superscript and write In.

Lemma 9. For all p ≥ 2 and k ∈ N, there exists a K > 0 such that

E

[
(I [p]n )k

]
≤ Knk(log n)k(p−1) ∀ n ≥ 2. (19)

Proof. The statement can be found in [14] (Proposition 2.3). �

We will also need the following lemma about the self-intersection local times of higher-
dimensional random walks.

Lemma 10. Let S̃ be a random walk with a finite, non-singular covariance matrix in dimension

d ≥ 3, and let Ĩ
[p]
n denote its p-fold self-intersection local time up to time n. Then, for all p ≥ 2

and k ∈ N, there exists a K > 0 such that

E

[
(Ĩ [p]n )k

]
≤ Knk ∀ n ≥ 2. (20)

Proof. We can follow the proof of item (i) of Proposition 2.3 in [14], using the fact that, for all

k ∈ N, supn E
[
Ñn(0)

k
]
= E

[
Ñ∞(0)k

]
< ∞ since Ñ∞(0) :=

∑∞
n=1 1{S̃n=0} follows a geometric

law with parameter P(S̃n 6= 0 ∀ n ≥ 1) > 0. �

3.3. Proof of Proposition 6.
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3.3.1. Truncation. Fix β ∈ (0, 1/4). For n ≥ 1, set bn := nβ, define q(n) ∈ R
N∗

by

q
(n)
i := qi1{|qi|≤bn} − E

[
qi1{|qi|≤bn}

]
, i ≥ 1, (21)

and K(n) by

K
(n)
k :=

∑

1≤i<j≤k

q
(n)
i q

(n)
j 1{Si=Sj}, k ≥ 2. (22)

The following proposition shows that, in order to prove Proposition 6 for Kn, it is enough to

prove the same statement for K
(n)
n .

Proposition 11. (Comparison between K and K(n))

lim
n→∞

sup
2≤k≤τn

∣∣∣Kk −K
(τn)
k

∣∣∣
√
τn log τn

= 0 P-a.s. (23)

Proof. Let

q
(n)>
i := qi1{|qi|>bn} − E

[
qi1{|qi|>bn}

]
(24)

and note that, since q1 is centered,

qiqj − q
(n)
i q

(n)
j = − q

(n)>
i q

(n)>
j + qiq

(n)>
j + q

(n)>
i qj. (25)

Write

Kk −K
(n)
k = − E(n,1)

k + E(n,2)
k + E(n,3)

k (26)

where

E(n,1)
k :=

∑

1≤i<j≤k

q
(n)>
i q

(n)>
j 1{Si=Sj} (27)

and E(n,2)
k , E(n,2)

k are defined analogously from the corresponding terms in (25). Let us focus

for the moment on E(n,1)
k . Note that it is a martingale under P. Therefore, by Doob’s maximal

inequality,

E

[
sup

2≤k≤n
|E(n,1)

k |2
]
≤ E

[
|E(n,1)

n |2
]
≤ E

[
|q(n)>1 |2

]2
E [In] . (28)

Since

E

[
|q(n)>1 |2

]
≤ 2E

[
|q1|21{|q1|>bn}

]
≤ C

bγ−2
n

, (29)

by (27)–(29) and Lemma 9(i) we get

E

[
sup

2≤k≤n

|E(n,1)
k |2

n log n

]
≤ C

n2β(γ−2)
(30)

which is summable along τn since γ > 2. Analogously, we can show a similar inequality for E(n,2)

and E(n,3) with the bound Cn−β(γ−2) instead, which is also summable along τn. The proof is
concluded by applying the Borel-Cantelli lemma. �
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3.3.2. Decomposition of quenched moments. From now on, we will work with the truncated and

recentered version K(n) of the energy. Since the q
(n)
i are bounded, the quenched moments

m(p)
n :=

∑

1≤i1<j1≤n

· · ·
∑

1≤ip<jp≤n

p∏

ℓ=1

q
(n)
iℓ

q
(n)
jℓ

P

(
p⋂

ℓ=1

{Siℓ = Sjℓ}
)

(31)

are all well defined and satisfy

m(p)
n = E

[
(K(n)

n )p
∣∣∣ q
]

P-a.s. (32)

We aim to prove that the m
(p)
n when properly normalized converge a.s. along τn to the corre-

sponding moments of a Gaussian random variable. In order to do that, we will first show how
they can be decomposed into sums of terms that are easier to control.

In the following we will use the notation i = (i1, . . . , ip), j = (j1, . . . , jp), and we will write
i < j to mean that iℓ < jℓ for all ℓ = 1, . . . , p.

For fixed J ∈ {2, . . . , 2p}, L = (L1, . . . , LJ) ∈ (N∗)J such that L1 + · · · + LJ = 2p, and
a = (a1, . . . , aJ) ∈ N

J such that a1 < · · · < aJ , we will say that a pair i < j is compatible with
J , L and a if the following hold:

(i) {i1, j1, . . . , ip, jp} = {a1, . . . , aJ};
(ii) #{ℓ : iℓ = ak}+#{ℓ : jℓ = ak} = Lk, k = 1, . . . , J.

(33)

With this definition, we can see that m
(p)
n may be written as follows:

m(p)
n =

2p∑

J=2

∑

L∈(N∗)J

L1+···+LJ=2p

∑

1≤a1<···<aJ≤n

J∏

ℓ=1

(
q(n)aℓ

)Lℓ ∑

i<j

compat. with J,L,a

P

(
p⋂

ℓ=1

{Siℓ = Sjℓ}
)
. (34)

Next, given i < j compatible with J , L and a, we define on the set {1, . . . , J} a graph structure
depending on i and j as follows. For u 6= v ∈ {1, . . . , J}, declare the edge {u, v} present if there
exist ℓ, k ∈ {1, . . . , p} (possibly equal) such that:

(i) {au, av} ⊂ {iℓ, jℓ} ∪ {ik, jk};
(ii) {iℓ, jℓ} ∩ {ik, jk} 6= ∅. (35)

Let Pij be the partition of {1, . . . , J} into the connected components of the graph thus con-
structed. Note that, if P ∈ Pij, then |P | ≥ 2. For an arbitrary partition P of {1, . . . , J}, we say
that i < j is compatible with P if Pij = P.

We will now show that a consequence of the previous definitions is that
p⋂

ℓ=1

{Siℓ = Sjℓ} =
⋂

P∈Pij

⋃

x∈Z2

⋂

u∈P

{Sau = x}

=
⋂

P∈Pij

⋂

u,v∈P

{Sau = Sav}. (36)

To see this, first note, setting a(P ) := {au : u ∈ P}, that
p⋂

ℓ=1

{Siℓ = Sjℓ} =
⋂

P∈Pij

⋂

ℓ : iℓ∈a(P )

{Siℓ = Sjℓ}. (37)

Now, if ik 6= ik′ ∈ a(P ) and Sik = x, we claim that, on the event EP := ∩ℓ : iℓ∈a(P ){Siℓ = Sjℓ},
Sik′ = x as well. Indeed, letting v, v′ such that av = ik, av′ = ik′ , we have that v, v′ ∈ P and so
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there exist v = v0, v1, . . . , vq = v′ such that vℓ ∈ P and {vℓ−1, vℓ} is an edge for each ℓ = 1, . . . , q.
Using (35) and the definition of the graph structure, we can see that, on EP ∩ {Sav0

= x},
Sv1 = x as well. Proceeding analogously by induction, we conclude the claim. The equality (36)
then follows by noting that ∪ℓ : iℓ∈a(P ){iℓ, jℓ} = a(P ).

In addition, the numbers

F (J,L,P, a) := #{i < j compatible with J,L, a and P} (38)

do not depend on a. This can be seen by considering, for a 6= a′, the bijection between {i <
j compat. w/ J,L,P, a} and {i′ < j′ compat. w/ J,L,P, a′} given by i′ℓ = a′u if and only if
iℓ = au, and analogously for j′.

Thus we see that we may decompose m
(p)
n in the following manner:

m(p)
n =

2p∑

J=2

∑

P partition of {1,...,J}

s.t. |P |≥2 ∀ P∈P

∑

L∈(N∗)J

L1+···+LJ=2p

F (J,L,P) m(p)
n (J,L,P) (39)

where F (J,L,P) := F (J,L,P, a) as in (38) with any a, and

m(p)
n (J,L,P) :=

∑

1≤a1<···<aJ≤n

J∏

ℓ=1

(
q(n)aℓ

)Lℓ

P


 ⋂

P∈P

⋂

u,v∈P

{Sau = Sav}


 . (40)

Next, using the identity ∏

ℓ∈I

(cℓ + dℓ) =
∑

A⊂I

∏

ℓ∈A

cℓ
∏

ℓ/∈A

dℓ, (41)

we see that we may further decompose m
(p)
n (J,L,P) as

m(p)
n (J,L,P) =

∑

A⊂{1,...,J}

m(p)
n (J,L,P, A), (42)

where m
(p)
n (J,L,P, A) :=

∑

1≤a1<···<aJ≤n

∏

ℓ∈A

E

[
(q(n)aℓ

)Lℓ

]∏

ℓ/∈A

{
(q(n)aℓ

)Lℓ − E

[
(q(n)aℓ

)Lℓ

]}
P


⋂

P∈P

⋂

u,v∈P

{Sau = Sav}


 . (43)

For fixed J and L, let

A := {ℓ ∈ {1, . . . , J} : Lℓ > 1}. (44)

Since m
(p)
n (J,L,P, A) = 0 if A ∩ Ac 6= ∅ and m

(p)
n (J,L,P, {1, . . . , J}) = E

[
m

(p)
n (J,L,P)

]
,

m(p)
n (J,L,P) − E

[
m(p)

n (J,L,P)
]
=

∑

A⊂A : Ac 6=∅

m(p)
n (J,L,P, A). (45)

Moreover, when Ac 6= ∅ we may write

m(p)
n (J,L,P, A) =

∑

aℓ : ℓ/∈A

∏

ℓ/∈A

{
(q(n)aℓ

)Lℓ − E

[
(q(n)aℓ

)Lℓ

]}
Wn

(
(aℓ)ℓ/∈A, L,P, A

)
, (46)

where Wn

(
(aℓ)ℓ/∈A, L,P, A

)
:=

∑

aℓ : ℓ∈A

∏

ℓ∈A

E

[
(q(n)aℓ

)Lℓ

]
P



⋂

P∈P

⋂

u,v∈P

{Sau = Sav}


1{1≤a1<···<aJ≤n}. (47)
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Finally, using the i.i.d. structure of q and the fact that we are taking ordered sums, we may write
∥∥∥m(p)

n (J,L,P, A)
∥∥∥
2

2
=
∏

ℓ/∈A

∥∥∥(q(n)1 )Lℓ − E

[
(q

(n)
1 )Lℓ

]∥∥∥
2

2

∑

aℓ : ℓ/∈A

W2
n

(
(aℓ)ℓ/∈A, L,P, A

)
. (48)

3.3.3. Analysis of the terms. We begin with the terms in which Ac = ∅, i.e., the ones correspond-

ing to E[m
(p)
n (J,L,P)].

Proposition 12. For all p ∈ N
∗, there exists a constant K ∈ (0,∞) such that

E

[
m(p)

n (J,L,P)
]
≤ K(n log n)p/2 ∀ n ≥ 2. (49)

Proof. Integrating (40) we get

E

[
m(p)

n (J,L,P)
]
=

J∏

ℓ=1

E

[(
q(n)aℓ

)Lℓ

] ∑

1≤a1<···<aJ≤n

P


 ⋂

P∈P

⋂

u,v∈P

{Sau = Sav}


 . (50)

We may suppose that Lℓ ≥ 2 for all 1 ≤ ℓ ≤ J since otherwise E

[
m

(p)
n (J,L,P)

]
= 0. In

particular, J ≤ p. Estimating

E

[
|q(n)1 |Lℓ

]
≤ 2LℓE

[
|q11{|q1|≤bn}|Lℓ

]
≤ 2LℓE

[
|q11{|q1|≤bn}|Lℓ−2q21

]
≤ 2LℓbLℓ−2

n , (51)

we see that the first term with the product in (50) is at most Cb
2(p−J)
n . On the other hand, the

second term is smaller than

∑

1≤a1,...,aJ≤n

E


∏

P∈P

∑

x∈Z2

∏

u∈P

1{Sau=x}


 = E


∏

P∈P

∑

x∈Z2

N |P |
n (x)




= E

[
∏

P∈P

I [|P |]
n

]
≤ Cn|P|(log n)J−|P| (52)

where we used Hölder’s inequality and Lemma 9(i).

Combining (50)–(52) we obtain

E

[
m(p)

n (J,L,P)
]
≤ Cb2(p−J)

n n|P|(log n)J−|P|. (53)

We now split into different cases. Note that |P| ≤ ⌊p/2⌋. If J = p and |P| = p/2, then (49)

holds by (53). If J = p and |P| < p/2, then (53) divided by (n log n)
p
2 goes to zero as n → ∞.

Lastly, if J < p, then

E

[
m

(p)
n (J,L,P)

]

(n log n)
p
2

≤ Cn− p−J
2

(1−4β)(log n)
p
2 (54)

which goes to zero as n → ∞ since β < 1/4. �

The rest of the analysis consists in showing that all other terms with Ac 6= ∅ converge to zero
a.s. along τn when normalized.

Proposition 13. For any fixed choice of p, J, L,P, if Ac 6= ∅ then

lim
n→∞

m
(p)
τn (J,L,P, A)

(τn log τn)p/2
= 0 P-a.s. (55)
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Proof. We may suppose that A ⊂ A. Recall that the variance of m
(p)
n (J,L,P, A) is given by

(48). Ignoring the <’s in the indicator function in (47), we may estimate
∥∥∥m(p)

n (J,L,P, A)
∥∥∥
2

2
≤
∏

ℓ/∈A

∥∥∥(q(n)1 )Lℓ − E

[
(q

(n)
1 )Lℓ

]∥∥∥
2

2

∏

ℓ∈A

E

[
(q

(n)
1 )Lℓ

]2
Bn(J,L,P, A) (56)

where

Bn(J,L,P, A) :=
∑

1≤aℓ≤n : ℓ/∈A





∑

1≤aℓ≤n : ℓ∈A

E


∏

P∈P

∑

x∈Z2

∏

u∈P

{Sau = x}







2

=
∑

1≤aℓ≤n : ℓ/∈A

E


∏

P∈P

∑

x∈Z2

N |P∩A|
n (x)

∏

u∈P∩Ac

1{Sau=x}



2

. (57)

We proceed to bound Bn(J,L,P, A). Denoting by N̂n(x) the local times of an independent copy

Ŝ of S, and by Ñn(x, y) the local times of the 4-dimensional random walk S̃n = (Sn, Ŝn), we can
rewrite (57) as

∑

1≤aℓ≤n : ℓ/∈A

E
⊗2



∏

P∈P

∑

x,y∈Z2

(
Nn(x)N̂n(y)

)|P∩A| ∏

u∈P∩Ac

1{Sau=x,Ŝau=y}




= E⊗2


∏

P∈P

∑

x,y∈Z2

(
Nn(x)N̂n(y)

)|P∩A|
Ñ |P∩Ac|

n (x, y)




= E⊗2


∏

P⊂A

I [|P |]
n Î [|P |]

n

∏

P⊂Ac

Ĩ [|P |]
n

∏

P : ∅6=P∩A 6=P

∑

x,y∈Z2

(
Nn(x)N̂n(y)

)|P∩A|
Ñ |P∩Ac|

n (x, y)




≤ E⊗2


∏

P⊂A

I [|P |]
n Î [|P |]

n

∏

P⊂Ac

Ĩ [|P |]
n

∏

P : ∅6=P∩A 6=P

(N∗
nN̂

∗
n)

|P∩A|Ĩ [|P∩Ac|]
n


 . (58)

where Î
[k]
n , Ĩ

[k]
n are the analogues of I

[k]
n for the corresponding random walks, and N̂∗

n = supx N̂n(x).
Using Hölder’s inequality, Lemmas 8(i), 9(i) and 10, and the fact that P is a partition, we see
that (58) is at most

Cn|P|+|{P : P⊂A}| (log n)2(|A|+
∑

P : ∅6=P∩A6=P |P∩A|−|{P : P⊂A}|) . (59)

Now we note that |P| ≤ ⌊J/2⌋, |{P : P ∩A 6= ∅}| ≤ ⌊|A|/2⌋ and 2|A|+ |Ac| ≤ 2p. Therefore,

t := p− |P| − |{P : P ⊂ A}| ≥ 0 (60)

and there is equality if and only if

(1) |A| and |Ac| are even;
(2) Lℓ = 2 ∀ ℓ ∈ A and Lℓ = 1 ∀ ℓ ∈ Ac;
(3) |P | = 2 ∀ P ∈ P;
(4) for any P ∈ P, either P ⊂ A or P ⊂ Ac.

Thus by (57)–(59)

Bn(J,L,P, A)

(n log n)p
≤
{

C(log n)−
|Ac|
2 if t = 0,

Cn−t(log n)3p if t > 0.
(61)
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We will consider three cases separately:

Case 1: t ≥ 1;
Case 2: t = 0 and |Ac| ≥ 4;
Case 3: t = 0 and |Ac| = 2.

For each of these cases we will show that, for every ǫ > 0,

∞∑

n=1

P

(
|m(p)

τn (J,L,P, A)| > ǫ
√
τn log τn

)
< ∞. (62)

This will be done via Markov’s inequality together with (56) and (61). In the third case, the
variance estimate (56) is not good enough, but we will get a better bound estimating a higher
moment.

Case 1: (t ≥ 1) For ℓ ∈ A, we have

E

[
(q

(n)
1 )Lℓ

]2
≤ 22Lℓb2(Lℓ−2)

n (63)

as in (51) and, for ℓ /∈ A, we can estimate in a similar fashion
∥∥∥(q(n)1 )Lℓ − E

[
(q

(n)
1 )Lℓ

]∥∥∥
2

2
≤ 22LℓE

[(
q11{|q1|≤bn}

)2Lℓ

]

≤ 22LℓE

[(
q11{|q1|≤bn}

)2(Lℓ−1)
q21

]

≤ 22Lℓb2(Lℓ−1)
n . (64)

Using (56), (61) and |P |+ |{P : P ⊂ A}| ≤ |A|+ |Ac|/2, we get
∥∥∥m(p)

n (J,L,P, A)
∥∥∥
2

2

(n log n)p
≤ Cb4(p−|A|−|Ac|/2)

n n−t(log n)3p ≤ C

(
b4n
n

)t

(log n)3p

= Cn−t(1−4β)(log n)3p (65)

which is summable along τn since β < 1/4.

Case 2: (t = 0, |Ac| ≥ 4) As mentioned above, in this case Lℓ = 2 for ℓ ∈ A and Lℓ = 1 for

ℓ /∈ A. Using E[|q(n)1 |2] ≤ E
[
|q1|2

]
= 1, we get from (56) and (61) that

∥∥∥m(p)
n (j, l, A)

∥∥∥
2

2

(n log n)p
≤ C(log n)−2 (66)

which is summable along τn since α > 1/2.

Case 3: (t = 0, |Ac| = 2) In this case, (56) is not enough to prove (62). However, since
|Ac| = 2 and t = 0, these terms are of the form

m(p)
n (J,L,P, A) =

∑

ak1 , ak2

q(n)ak1
q(n)ak2

Wn(ak1 , ak2) (67)

where

Wn(ak1 , ak2) = E

[
(q

(n)
1 )2

](J−2) ∑

aℓ : ℓ 6=k1,k2

E



∏

P∈P

∑

x∈Z2

∏

u∈P

1{Sau=x}


1{a1<···<aJ} (68)
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and {k1, k2} ∈ P. Rewrite

m(p)
n (J,L,P, A) =

∑

1≤i<j≤n

q
(n)
i q

(n)
j Wn(i, j) =

n∑

j=2

q
(n)
j

j−1∑

i=1

q
(n)
i Wn(i, j). (69)

Since

k 7→
k∑

j=2

q
(n)
j

j−1∑

i=1

q
(n)
i Wn(i, j) and k 7→

k∑

i=1

q
(n)
i Wn(i, j) (70)

are centered martingales, by Burkholder’s inequality applied twice we have

∥∥∥m(p)
n (J,L,P, A)

∥∥∥
2

γ
≤ C

n∑

j=2

∥∥∥∥∥q
(n)
j

j−1∑

i=1

q
(n)
i Wn(i, j)

∥∥∥∥∥

2

γ

= C E

[
|q(n)1 |γ

] 2
γ

n∑

j=2

∥∥∥∥∥

j−1∑

i=1

q
(n)
i Wn(i, j)

∥∥∥∥∥

2

γ

≤ C
∑

1≤i<j≤n

W2
n(i, j). (71)

Since, by (61), ∑

1≤i<j≤n

W2
n(i, j) ≤ Bn(J,L,P, A) ≤ Cnp(log n)p−1, (72)

combining (71)–(72) we get
∥∥∥m(p)

n (J,L,P, A)
∥∥∥
γ

γ

(n log n)p
≤ C(log n)−

γ
2 (73)

which is summable along τn since α > 2/γ. �

3.3.4. Conclusion. From the results of Section 3.3.3 we obtain the following two propositions.
Together with Proposition 11, they will allow us to finish the proof of Proposition 6.

Proposition 14. (Convergence of annealed moments)

For every p ∈ N
∗,

lim
n→∞

E

[
m

(p)
n

]

(n log n)p/2
=

1√
2πσ

∫
xpe−x2/2σ2

dx. (74)

Proof. First we note that, because of the annealed CLT for Kn (see Appendix A) and Proposi-

tion 11, K
(n)
n satisfies a CLT with variance σ2 under P. Integrating (39) and applying Proposi-

tion 12, we see that, for all p ≥ 1,

sup
n≥2

E

[
m

(p)
n

]

(n log n)p/2
< ∞, (75)

hence (K
(n)
n )p/(n log n)p/2 is uniformly integrable for all p ≥ 1. �

Proposition 15. (Convergence of quenched moments)

For every p ∈ N
∗,

lim
n→∞

m
(p)
τn − E

[
m

(p)
τn

]

(τn log τn)p/2
= 0 P-a.s. (76)
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Proof. Combining (39) and (45), we see that m
(p)
n − E

[
m

(p)
n

]
is a sum of terms m

(p)
n (J,L,P, A)

with A ⊂ A, Ac 6= ∅, so the result follows from Proposition 13. �

Proof of Proposition 6. The conclusion is now straightforward: Propositions 14–15 give us (13)

with K
(n)
n in place of Kn by the method of moments, and this is passed to Kn by Proposition 11.

�

3.4. Proof of Proposition 7. Before we start, we note some properties of the subsequence τn
that will be used in the sequel: there exist positive constants K1, K2 such that

(p1) limn→∞ τn+1/τn = 1;
(p2) K1 exp (n

α/2) ≤ τn+1 − τn ≤ K2τn/n
1−α ∀ n ∈ N

∗;
(p3) τn ≤ K2 exp (n

α) ∀ n ∈ N
∗.

(77)

Proof. For integers b ≥ a ≥ 2, let

Ka,b := Kb −Ka. (78)

Once we show that

lim
n→∞

sup
τn≤k≤τn+1

|Kτn,k|√
τn log τn

= 0 P-a.s., (79)

Proposition 7 will follow by noting that

∣∣∣∣∣
Kn√
n log n

−
Kτi(n)√

τi(n) log τi(n)

∣∣∣∣∣ ≤
|Kn −Kτi(n)

|
√
n log n

+
|Kτi(n)

|
√

τi(n) log τi(n)


1−

√
τi(n) log τi(n)

n log n


 . (80)

Then, by (79) and since limn→∞ n−1τi(n) = 1, the first term in the r.h.s. of (80) converges
a.s. to 0. Moreover, the second term converges for P-a.e. q in P(·|q)-probability to 0 since, by
Proposition 6, Kτn/

√
τn log τn is a.s. tight under P(·|q). Therefore, we only need to show (79).

By Proposition 11, it is enough to prove (79) for the sequence q
(τn+1)
i , i ≥ 1, i.e.

lim
n→∞

sup
τn≤k≤τn+1

|K(τn+1)
τn,k

|
√
τn log τn

= 0 P-a.s. (81)

To this end, we will make use of a maximal inequality for demimartingales due to Newman and
Wright [22], as well as Bernstein’s inequality.

The sequence (K
(n)
a,k )k≥a is a zero-mean martingale under both P and P(·|S) with respect to

the filtration σ((qi)i≤k, S). Indeed,

K
(n)
a,k+1 −K

(n)
a,k = K

(n)
k+1 −K

(n)
k = q

(n)
k+1

k∑

i=1

q
(n)
i 1{Si=Sk+1}
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and the r.v.’s q
(n)
i , i ≥ 1 are independent and centered. Therefore,

E

[(
K

(n)
a,b

)2 ∣∣∣∣ S
]
=

b∑

k=a+1

E



(
q
(n)
k

k−1∑

i=1

q
(n)
i 1{Si=Sk}

)2
∣∣∣∣∣∣
S




≤ C

b∑

k=a+1

k−1∑

i=1

1{Si=Sk} = C

b∑

k=a+1

Nk−1(Sk)

≤ C
∑

x∈Z2

Nb(x)Na,b(x) ≤ C
√
Ib
√

Ia,b (82)

where Na,b(x) :=
∑b

k=a+1 1{Sk=x}, Ia,b :=
∑

x∈Z2 N2
a,b(x) and for the last step we used the

Cauchy-Schwarz inequality. Integrating (82) and using Hölder’s inequality we get

E

[(
K

(n)
a,b

)2]
≤ CE

[√
Ib
√

Ia,b

]
≤ C

√
E [Ib]E [Ia,b]

≤ C
√
b log b

√
(b− a) log(b− a) ≤ Cb log b, (83)

where for the third inequality we used Lemma 9(i) and that Ia,b has the same law as Ib−a.

Since K
(n)
a,k is in particular a demimartingale under P, by Corollary 6 in [22] we get

P

(
sup

τn≤k≤τn+1

|K(τn+1)
τn,k

| ≥ 2ε
√

τn log τn

)

≤

√√√√√2E

[(
K

(τn+1)
τn,τn+1

)2]

ε2τn log τn

√
P

(
|K(τn+1)

τn,τn+1 | ≥
√

τn log τn

)

≤ C

√
P

(
|K(τn+1)

τn,τn+1 | ≥
√

τn log τn

)
(84)

by (83) and the properties of τn.

Now note that K
(n)
a,b can be rewritten as

∑

x∈Z2

(
Λb(x)− Λa(x)

)

where

Λk(x) =
∑

i<j∈Lk(x)

q
(n)
i q

(n)
j , Lk(x) := {1 ≤ i ≤ k : Si = x}.

Given the random walk S, the random variables Λb(x)−Λa(x), x ∈ Z
2 are independent, centered

and uniformly bounded by (bnN
∗
b )

2. Furthermore, by (82),
∑

x∈Z2

E[(Λb(x)− Λa(x))
2|S] ≤ C(

√
Ia,b
√

Ib). (85)

Thus we may use Bernstein’s inequality under P(·|S) to estimate the probability in the right
hand side of (84), obtaining that, for all u > 0,

P

(
|K(n)

a,b | ≥ u
∣∣∣ S
)
≤ exp

(
−1

2

u2√
Ia,bIb + u(bnN∗

b )
2

)
.
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Integrating with respect to the random walk, we get, for every ε > 0,

P

(
|K(τn+1)

τn,τn+1
| ≥ ε

√
τn log τn

)
≤ E

[
exp

(
−C

τn log τn√
Iτn,τn+1Iτn +

√
τn log τn(bτn+1N

∗
τn+1

)2

)]
. (86)

Recall that, by Lemma 8(ii), there exists C > 0 such that

P
(
N∗

k > C(log k)2
)
≤ k−2 ∀ k ≥ 1. (87)

Now fix 0 < δ < 1
2 (α

−1 − 1) and an integer θ > 2/(αδ). By Markov’s inequality and
Lemma 9(i), we have

P
(
Ik > k(log k)1+δ

)
≤ E

[
Iθk
]

kθ(log k)(1+δ)θ
≤ C

(log k)θδ
∀ k ≥ 2. (88)

By (86)–(88), the subadditivity of
√· and the fact that e−2x/(y+z) ≤ e−x/y + e−x/z for any

x, y, z > 0, we see that (84) is at most

C1(τn+1)
−1 + C2(log(τn+1 − τn))

− θδ
2 + C3(log τn)

− θδ
2 + e−C4dn/en + e−C4dn/fn , (89)

where C1–C4 are positive constants and

dn := τn log τn,

en :=
√

τn(τn+1 − τn)[log(τn+1 − τn) log(τn)]
(1+δ)/2,

fn :=
√

τn log τn(τn+1)
2β(log τn+1)

4. (90)

Using the properties of τn, we see that the first term of (89) is summable; by our choice of θ, so
are the second and the third. Furthermore,

dn/en ≥ Cn
1−α
2 /(log τn)

δ ≥ Cn
1−α(1+2δ)

2 , (91)

and so the fourth term is summable by our choice of δ. As for the last term, note that

dn/fn ≥ C(τn)
1
2
(1−4β)(log τn)

−7/2 (92)

so the fifth term is summable since β < 4. Thus, by the Borel-Cantelli lemma, (79) holds. �

Appendix A. Functional CLT under the conditional law given S

In this appendix we prove Theorem 3.2.

Proof. We will apply the martingale functional CLT in the Lindeberg-Feller formulation as in

e.g. [12], Theorem 7.3 on page 411. We will tacitly use the laws of large numbers for I
[p]
n proven

in [6] for d = 2 and [2] for d ≥ 3. Note that I
[p]
n can be extended to p ∈ (0,∞).

Let us define K1 := 0 and

∆n,k := s−1
n (Kk −Kk−1) = s−1

n qk

k−1∑

i=1

qi1{Si=Sk}, k ≥ 2. (93)

Then ∆n,m is a martingale difference array under P(·|S) w.r.t. the filtration Fm := σ(qi, i ≤ m).
The corresponding quadratic variations are given by

Qn,m :=
m∑

k=1

E
[
∆2

n,k

∣∣ S,Fk−1

]
. (94)
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According to [12], the proof will be finished once we show that, for all ǫ > 0,

lim
n→∞

n∑

k=2

E

[
∆2

n,k1{|∆n,k|>ǫ}

∣∣∣ S
]
= 0, (95)

and that, for all t ≥ 0,

lim
n→∞

Qn,⌊nt⌋ = σ2t in probability under P(·|S). (96)

To verify (95), write

n∑

k=2

E

[
∆2

n,k1{|∆n,k|>ǫ}

∣∣∣ S
]
≤ C

n∑

k=2

E [|∆n,k|γ | S]

= Cs−γ
n

n∑

k=2

E

[∣∣∣∣∣

k−1∑

i=1

qi1{Si=Sk}

∣∣∣∣∣

γ ∣∣∣∣∣ S
]

≤ Cs−γ
n

n∑

k=2

(
k−1∑

i=1

1{Si=Sk}

)γ/2

= Cs−γ
n

∑

x∈Zd

n∑

k=2

1{Sk=x}N
γ/2
k−1(x)

≤ Cs−γ
n I [1+γ/2]

n , (97)

where for the third step we used Burkholder’s inequality. Since I
[p]
n /sγn goes to 0 a.s. as n → ∞,

(95) follows.

Let us now verify (96). Write

Qn,m = s−2
n

(
Im −m

2
+R(1)

m +R(2)
m

)
, (98)

where

R(1)
m :=

m∑

k=2

k−1∑

i=1

(q2i − 1)1{Si=Sk}

=

m−1∑

i=1

(q2i − 1)Ni,m(Si)

(99)

with Na,b(x) :=
∑b

k=a+1 1{Sk=x}, and

R(2)
m := 2

m∑

k=2

∑

1≤i<j≤k−1

qiqj1{Si=Sj=Sk}

= 2
∑

x∈Zd

∑

1≤i<j≤m−1

qiqj1{Si=Sj=x}Nj,m(x).

(100)

Since (I⌊nt⌋ − ⌊nt⌋)/2s2n → σ2t a.s., we only need to show that the remaining terms in (98)
converge to 0.
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Let us first deal with R
(2)
m . Note that, under P(·|S), the summands in the r.h.s. of (100) are

independent and centered for different x to write

E

[
(R(2)

m )2
∣∣∣ S
]
= 4

∑

x∈Zd

∑

1≤i<j≤m−1

1{Si=Sj=x}N
2
j,m(x)

≤ C
∑

x∈Zd

N4
m(x) = CI [4]m (101)

and conclude that R
(2)
⌊nt⌋/s

2
n goes to 0 in probability under P(·|S). To control R

(1)
m , we split into

two cases. If γ ≥ 4, then reasoning as before we get

E

[
(R(1)

m )2
∣∣∣ S
]
≤ CI [3]m

and we conclude as for R
(2)
m . If γ < 4, we use Theorem 1(c) in [17]. Note that

m−1∑

i=1

N
γ/2
i,m (Si) =

∑

x∈Zd

m−1∑

i=1

1{Si=x}N
γ/2
i,m (x)

≤
∑

x∈Zd

N1+γ/2
m (x) = I [1+γ/2]

m , (102)

and also
P
(
|q2 − 1| ≥ u

)
≤ Cu−γ/2 ∀ u > 0. (103)

Letting

an,i :=

{
Ni,⌊nt⌋(Si)/s

2
n if i ≤ ⌊nt⌋,

0 otherwise,
(104)

we obtain from the aforementioned theorem that, for some constant C > 0,

P

(
|R(1)

⌊nt⌋| > ǫs2n

∣∣∣ S
)
≤ CI

[1+γ/2]
⌊nt⌋ /sγn, (105)

which goes to 0 as n → ∞. �
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