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Abstract

In this paper we present a robust real-time op@ton method for the online linear oll
blending process. The blending process consistgddatermining the optimal mix of
components so that the final product satisfiestaobspecifications. We examine different
sources of uncertainty inherent to the blendingcgss and show how to address this
uncertainty applying the Robust Optimization tecluas. The polytopal structure of our
problem permits a simplified robust approach. Owthud is intended to avoid reblending
and we measure its performance in terms of thedoderality giveaway and feedstocks prices.
The difference between the nominal and the robpstnal values (the price of robustness)
provides a benchmark for the cost of reblendingctviig difficult to estimate in practice. This
new information can be used to adjust the levaopiservatism in the model. We analyze the
feasibility of a blend to be produced from a setfeddstocks when the heel of a previous
blend is used in the composition of the new bledditional critical information for the
control system is then produced.
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1. Introduction
The oil blending process consist in determiningdpgmal proportions to blend from a set of
available feedstocks or components such that th& foroduct obtained fulfills a set of
specifications on their properties. A blending egstis typically constituted by three
functional subsystems: the scheduling subsystem,otiime optimizer and the control
subsystem.

The scheduling subsystera the one in charge of the general refinery petidn planning.
The scheduling subsystem uses a linear progranaltulate for a given period (up to a
month) the recipesa, propertiesy and volumed/ of reference for a sequence of blends
up, y2, V), k =1, ...,K (typically K € [10,15]). These calculations are based on the mean
characteristics of components.

Several sources of uncertainty (see below) pettuebprocess. Thenline optimizeris then
required to update the target recipe which mayinecsub-optimal, or even infeasible, due to
these disturbances in the process. For the fiesidd of the sequence, the online process fits
well with the forecasteduy, y?, V). Nevertheless, after a number of blends, it happen
sometimes that the blending environment differsificantly from the mean characteristics
considered by the scheduling subsystem. In thesesgghe example presented at the end of
the paper is one of them), it is very difficult fitve online optimizer to take the right decision.
The blending environment is represented in thisepay the blending polytopes (see section
2) that change with time and are different from megaolytopes used by scheduling
subsystem.

The feedback is based on measures of the blendst@ngonents’ properties gathered by
online analyzers. Finally, theontrol subsysterns in charge to adjust the component’s flow
rates (the recipe) in order to attain the current target recipe.eH&e focus on the Real Time
Optimization (RTO) system formed by the online optier and the control subsystem. An
RTO loop consist of calculating the optimal recyddor the new constraints and adjusting
the actual recipa by u* —u. Typically, our control subsystem adjusts the pecevery 5
minutes by calling the online optimizer with diféert sets of constraints (up to 100 calls in 5
minutes). The total time for a blend is severalredd0-20 hours). A RTO is one that meets
this time constraint. This motivates our approaoh fobust blend models that can be
calculated efficiently. Our uncertainty model givese to linear models that are efficiently
solved.

An important characteristic in the oil blending pess is the strict requirements over some
properties controlled by environmental, legal aachhological standards. If these properties
are not satisfied, one can correct the blend t@réain limit by dumping the appropriate

additives in it. Otherwise, the blend must be netiézl. The additives are too expensive



whereas reblending reduces the refinery capacayprse should consider these blends’
bounds as hard constraints which must be satisfied.

On the other hand, oil blending is a complex precgkere several unknown and uncertain
factors affect the blend’s properties. In additionthe plantmodel error produced by the
linearization of blending laws, there are other sesrof uncertainty: measure errors on
components and properties caused by instrumenégigion; uncertain knowledge of the
components’ properties due to upstream processatiars and uncontrolled blending
conditions such as air temperature, humidity, Aticthese are typical uncertainties arising in
any RTO problem (see [6]).

Hard constraints on the blends’ properties combitvethese sources of uncertainty are the
ideal characteristics to apply the Robust Optinra(RO) techniques (see [1]), which are an
approach to optimize under uncertainty. Roughlyakpey, robust optimization looks for
optimal solutions that are strictly inside the ap#iation domain. The robust optimization
models differ in the way they insure and measuee “tlow much inside the optimization
domain?”. A strength of the RO techniques is to mmersa deterministic and set-based
uncertainty model if one has no information on taedom process(es). No probabilistic
assumption is made over the uncertainty and thatisol obtained is optimal for any
realization of the uncertainty in a given set. ROhhiques seem to be ad hoc to address an
uncertain RTO problem where the feasibility is pnenary concern.

Some previous works have been devoted to find tadmlations to the blending problem. In

[3], @ geometric approach is presented for the ywbdnd mixture design problems but only
considering the uncertainty due to measurementaaigion. To deal with components’

properties uncertainty, [4] proposed a nonlineantlRTO system based on predictions of
feedstocks properties whereas [5] presented a ehemstraint model and a hybrid neural
networks—genetic algorithm solution. More recenf®},introduced a linear blending control

algorithm which handles this type of uncertaintiega an estimator of the components’

properties. A more general method based on stachastgramming which covers various

types of uncertainty is presented in [7].

Our contribution begins by highlighting the polytspenderlying the blending process. This
and the form of uncertainty on components (seew)efzermit to conceive robust models

without the need of convex programming tools. Basethe data, we develop robust models
that give rise to linear models. Consequently,nadr programming solver is all we need.
With linear programming solvers we meet the realeticonstraint that is “less than 3s per
solver call”. Actually, we obtain 0.25s per solwall. This point is of greatest interest in the
real time processes under investigation. Anothsulteof interest is the calculation of a

feasible volume’s interval. As we’'ll see in thelfoling, a blend may be infeasible because of
its volume. It is then useless to try to modify tieeipe while the blend volume is out of the

feasible interval.



In this paper we study the blending process witledr blending laws and the components
stocked in running tanks. The paper’s structurdofed. Section 2 presents the Blending
Polytopes inherent to the Blending Problem andBheic Equation which will be used to
introduce the updated data in the RTO model. Se@ianalyzes the general case when the
heel of a previous blend is used in the productibthe new blend and a RTO approach is
proposed to solve the Blending Problem. In Secdowe construct uncertainty sets for
various types of uncertainty. These sets deterntive robust regions for the blending
polytopes in which the new robust RTO (RRTO) meth®dased. Finally, the price of
robustness and reblending is introduced and exgdaihrough a real numerical example of
the RRTO method in Section 5.

2. Blending Polytopes
Let's denote byr andm the number of components and properties respéctiViée will
represent dlend’s recipe(recipe in short) by a vectare R™ such that; is the percentage
of componenij present in the blend whereas the blend’'s propeffpeoperties) will be
denoted by a vectgr € R™. Then the set of components is described byrthen matrix B
whereB, ; is thei™ physical and / or chemical property of the commoelt is customary
when blending to use the heel of a previous blendroduce a new one. The process starts
then with a volumé&, of a previous blend with propertieg € R™ and continues by adding
gradually a volumé& of the new blend to obtain a final product’s voki,;o; = Vo +V .

We suppose that a blend’s properties are a lineaabmation (or more precisely, a convex
combination) of its component’s properties. Thisn® true in general, but a number of
invertible transformations exist such that the sfarmed properties blend linearly. So, for
anyv € [0,V] the blend’s properties corresponding to the recigge determined by the
basic equation

y(u) = ayby + B,Bu (2.1)

-V —
where,a, = 50, B, = 2 -

Having a blend’s volum#&, with properties,, equation (2.1) can be used at any time in the
process to plan the production of a fixed volume [0, V]. We just updaté, and the matrix

B and také/ — v as the remaining volume to pour. For this planriagizon, the optimal
recipeu is obtained by solving thBlending Problen{BP):

min, cTu

u<u<u 2.2)
y<syw <y (2.3)
Tu=10<u<1 (2.4)



Here the components’ costs are represented bydbmrne € R™. A recipeu is subject to
components availability and hydraulic bounds whistpose the component’s constraints
(2.2). Similarly, the properties constraints (2a88¢ determined by properties lowemland

upper (v) bounds. Iin =y, then we say that property is regulated otherwise it is

controlled Additionally, properties’ bounds are labeled hesd (XHJH) or soft(XS,is).

Hard bounds are related to legal, commercial antt@mmental specifications which must be
satisfied whereas soft bounds can be violatedrmutriing into qualitygiveaway This means
that the blend is better than needed. Finally,)(2rd the percentage constraints.

We noteH; = {u € R" | 1Tu = 1} and the simple$; = {u e R" |1Tu =1,0 <u < 1}.

Now, there are 4 distinct polytopes participatimghlending process. Geometrically, the
intersection of the regions determined by the corepts constraints angl defines the
recipe’s polytope

U={uesS |lusu<u} (25)

which represents the set of all recipes that caprbduced. On the other hand, the properties
constraints define the polyhedron (as it may be unted):

Cy={uerR"|y<yw <y} (26)

Both are defined in theomponent’s space
In properties spacehe image ot/ under the basic equation is thessible blend’s polytope

P={y(w) ER™|ueU} (2.7)

Finally, thetarget polytopas defined by:

c={yerm|y<y<3y} (28)

The polytopeP depends on the volume Let's defineP (o) = {Bu|u € U}. Then,y(u) €

P if and only if y(u) — by, = B,(Bu— by). This shows thaP = P(v) is a homothetic
transformation ofP (o) with homothetic centel, and homothetic rati@,. Whenv grows
continuously from0 toV, P(v) “moves” continuously fronb, to P(V). Consequently, i€
has a non empty intersection with the cooee(b,, P(0)) defined by the apek, and the
baseP(x) then, there is an interval € [V,,in, Vinax] Such thatP(v)NnC # @ . In the
following we suppose thabne(by, P(0)) N C # @. If this were not the case, one has to
change the components (a¢ho)) in order to assure feasibility.



Any point inP represents the properties of a blend issued framm a@r more recipes iti
wheread’ depicts the target properties to be attained bylved produced.

We notice that, among the four preceding polytopas; P andC,; depend ow. We omit the
v when it is considered to be fixed.

At this point we have identified the polytopes urigiag the BP and we observe that for a
fixed volumev, a feasible solution of BP is a recipes U n Cy such thaty(u) e PN C.
Equivalently,BP is infeasible & PNC= @0 < UNCy = Q.

3. Blending from a previousblend: a RTO method
In any RTO loop, the online optimizer is requirex groduce a recipe that permits the
controller to guide the blending process. In Secflowe stated that for a fixed volumedo
pour, the optimal recipe can be obtained by soltmgBP. However, the BP can result to be
infeasible because of the uncertainty perturbireggiocess or for instance, when a previous
blend with properties out of specification is usedthe production of the new blend.
Therefore, a method to compute at any time the bmspe for the planning horizon is
required. Later we present this method but firstdiseuss the BP feasibility when the heel of
a previous blend is used.

If the blend is produced from scratch or the volummepour is too big compared with the
heel’s volume, that is, if, = 0 or v — o then the basic equation reducegfa) = Bu and

the polytopeP (v) does not depend dry. However, the fact of using the actual blend’s
propertiesh, in the basic equation to update the model indi@geRTO loop, makes blending
from a previous blend the regular case. As expthinghe preceding section, we suppose that
there is an interval of volum&By;,,, Vyax] such thaP(v) N C #= @,V v € [Vyin, Vamaxl- The

BP is feasible only for these volumes.

Having the value®,,, andV,,, helps to select the appropriate planning horizorazh
RTO loop. Choosing a planning horizon by takingotumev <V, produces an infeasible
BP and makes it necessary to generate an alteenaoipe with a possible deterioration of
the overall performance of the RTO method. On therhand)/,,, is the maximum volume
to blend when looking for a blend within specifioats. AfterV,,, has been poure@(v)
moves away frond’ and the blend’s properties deteriorate progrelsive

Furthermore, knowind/y;, andVy,,, helps the control system to reduce unnecessary and
inefficient interventions. The latter have as pwgao correct the blend to be within
specifications but often they are based on a lonview of the problem. In order to compute

the interval[Vyin, Viraxl, 1€L'S rewrite the basic equation (witly = % :

1
1+ug

yw) = (uoby + Bu)  (3.1)



The polyhedrorC,; becomeg, = {u ER"| (1 +uy)y <ugbg+Bu<(1+ uo)y} and the
constraints remain linear. Now we present the RTéthod:

Blending RTO Method
Let's denote byCyy = {u ER"|yg <y < ?H} the polyhedron defined by the hard

constraints and let; € Cy; an “ideal” target blend without quality giveawaropided by the
scheduling subsystem.

At any RTO loop, we proceed through the steps VItas follows:

l. Incorporate the newly available informati@ny, by, B,V) in the basic equation. If
V, = 0, solve problems 3.3, 3.6 and 3.7 in this ordeil urving a feasible
solution, then STOP. Otherwise, go to step Il.

Il. Computé/y;, andV,,,, by solving the linear programming problem:

max (min),,, ,, Uo, u € U N Cy,uy =0 (3.2)
If Problem 3.2 is infeasible or ¥ & [Viyin, Vmax] 90 to step IV. Otherwise, a
blend without quality giveaway exists for any volIime [Vyin, Virax].- Choose a
blending horizorv € [Vyin, Vimaxl @nd go to step Il
[ll. Compute the optimal recipe:
min, cTu,u € UNCy (3.3)
Notice that solving Problem 3.3 withfree and the additional constraint:
Uomin < Uy < Ugyax  (3-4)
we obtain at the same time the optimal blendingzborv™ € [Vyin, Viaxl @nd
the optimal recipe for this volume. This is thetbgwoice if it's not imperative to

produce a particular volume. If this is the cas©8TOtherwise go to step IV.

IV. Forget the components costs and focus only on theé d@nstraints. Compute
the interval[Vyin, Viax] DY Solving the problem:

max (min),,, ,, Ug, u € U N Cyy,Ug = 0 (3.5)

If this problem is infeasible or ¥ & [Viin, Vmax] 90 to step VI. Otherwise, go to
step V.



V. Look for a recipeu € U N Cyy and a volumer™ € [Viyin, Vuax] producing the
blend with minimal quality giveaway. To do this,ha® the following problem
with fixed v from a finite set of value®, € {vy, ..., vy} € [Viins Viaxl:

min, ¢ ly(w) —y@®ll,,u € UNCyy,t €Cy (3.6)

VI. Findu € U to produce a volumi of blend with properties as near as possible to
the ideal blend;:

min, [ly(w) —yrll;, u €U (3.7)

Following these steps, the RTO method always preslue recipe that guides the control
process. In step ¥, = 0 and solving problems 3.3, 3.6 and 3.7 we obtagnntiinimal cost
recipe, the blend with minimal quality giveawaytbe closest blend tg, . If BP is feasible
for some volumer € [Vyin, Vuax] then a blend without quality giveaway exists ahd t
method generates the one of minimal cost (step@therwise, the hard constraints become
the priority and the method searches for a bletidfgag them while minimizing the blend’s
quality giveaway (step V). Finally, if there is fbend satisfying the hard constraints, the
recipe producing the blend with properties as ciasspossible tg; is proposed (step VI).

We finish this section by stressing the possiblgliegtion of the RTO method to determine
the appropriate heel's volume to use in the blémdur analysisV, is considered as fixed but
we can solve the Problem 3.3 with the additionalst@int 3.4 with/, andV free in order to
obtain the cheapest recipéfor someug € [ugpin, Uomax]- Then we can find (by means of

the relationu, = %) a suitable paivy, V. The choice of normy;, in problems 3.6 and 3.7

permits to obtain blends violating a minimum numbé&iproperties. Moreover, it yields LP
problems which can be solved efficiently.

4. Robust RTO
In the previous section we proposed a blending Rigthod based on blending polytopes and
its evolution with the blended volume. Looking exuce the model deviations produced by
some uncertainties, the method uses blend’s angh@oemts’ properties updates to feedback
the model via the basic equation. However, modelatipg may fail to guarantee even a
feasible solution. A main reason of this failurethe implicit assumption that data remains
unchanged inside each RTO loop.

For instance, when online blending is usedalues fluctuate with time because components
are issued from different process presenting alstugi@ations. To address this problem, [4]
proposed a blending RTO method which updates thelemavith predictions of the
components’ properties. Although this method impsotlee model accuracy, it continues to
be non robust as it depends on the quality of tlegliptions. Moreover, uncertainty in the
blending process affects other factors tBavalues as we will see below.



4.1  BP Uncertainty
In accordance with [6], uncertainty in any RTO systmay be of four types:

1. Process uncertainty: components properties, textyse, humidity, etc.

2. Measurement uncertainty.

3. Model uncertainty.

4. Market uncertainty: components availabilitied @nices, blends demands, etc.

In this work we consider the uncertainties aridimgn components measurement and blend’s
properties measurement (type 2) and the uncertaeniged by imprecise knowledge of the
components properties (type 1).

Measurement and components properties uncertaintasfest geometrically in different
ways: for the first type, the real recipe (the rpaicentages of each component used in the
blend) and its properties may differ from the norhinaes. So, the real recipe and its
properties are located in neighborhoods of the nahrecipe and its properties respectively.
For the second type, the real matixiiffers from the nominal matri® and hence the real
polytopeCy, is different from the nominal polytop®,. In both cases, when a nominal feasible
recipeu € U N Cy is computed, the real recipe may lie outside tbytppeC, and the real
blend’s properties may be outside the polyt6p&hen the real recipe results to be infeasible.

An intuitive idea to fix our RTO method against ree@ and uncertainties follows from the
previous geometric information. The idea consist€eamputing for polytopé€y its convex
robust regionRC; such that any point in this region resists Rouncertainty and to
measurement errors. That is, any poink(f, is guaranteed to remain inside the real polytope
for all possible realizations & and any measurement error, within reasonabledimit

So, the robust RTO method will consist in replagiadytopeCy by RCy; in the RTO method
from Section 3. To develop this idea, first we néahodel and measure the uncertainty we
would like to be protected against and then to astephe appropriate robust regionGyf.
This development follows the Robust OptimizatiorOjRheory developed by Ben-Tat al
(see [1)).

4.2  Robust Regionsand Robust RTO
Letu be a nominal recipe andu) its properties. To model the components and pti@ser
measurement uncertainties, we suppose that thee@péti lies in the balS(u, u) of radius
du and centeu whereas the real blend’s propertjebes in the ball:

Sy(w),dy) ={y €eR™|y(w) — 6y <y <y(u) + 6y}

We are given the minima and maximaiB values ofB. In order to model matriB
uncertainty, we use interval sets. That is, we egpghat each real vallﬁigj Is comprised in
the intervallB;; = [B;; — €;;, B;; + &;] around its nominal valug;; for some positive

valuese s{fj.

i)’



Here we could use different sets and any norm talenthe uncertainty. The level of
conservatism (how much we want to be protectednagaincertainty) and the problem
complexity depend on these selections. Taking vatesets and the max norm, the robust
regions obtained are polytopes and the compleritheé model is preserved at the expense of
being probably too conservative (we are protectethfthe worst deviations of &l values
and from the biggest measurement errors occurtireg the same time). Now we proceed to
construct the robust region of polytofe.

Any pointu € Cy is robust regarding uncertainty iffy < y(u) <y. That is, iff for anyB

such thaﬁi,j € IBi,ja

y; < avbo,i + ,Bvél-u < yi,i =1,..,m (41)

holds. Notice that any roW; can be expressed parametricallyBa&) = B; + z77Q; +
ztTQ; , with, Q; = diag(s{l,...,eifn), Qf = diag(sifl,...,e;fn),z‘ = min(0,2), zt =
max(0, z) for somez € R™ such thatl|z||, < 1. Therefore we can deduce that Cy is
robust regardin@ uncertainty iff

Vit Breiu <y (W) <y, - Brgfui=1,...,m (4.2)

In order to derive equation (4.2) let's define togivenu, f(z) =z T(Q; w) + z*T(Q; w).
We then resolve the following optimization problem:

max; f(2), ||zl < 1.

The optimalz® saturates the constraints. Thus, for amy1,...,n one has: either®(j) =
1=2%°() orz°() = =1 =2z7%(j). The optimal value i¥(z°) = =¥ 0(j)=-1 &% +
Yjz0()=1€;ju;. This is clearly less than or equallt@; u|l; = & u (because of positivity of
g andu) and this gives the right side inequality of (4 Ry resolvingmin, f (2), ||z]|., < 1

we deduce the left side inequality of (4.2) witkimilar reasoning. This is a particular case of
a duality result: when resolvingax, az, ||z||, < 1, the optimum id|all,, where [|x]|,,
|I<|l; are dual norms Witr%+%=1.

From now on we denote by (u) = B,&;u andy;" (u) = B,& u.

In addition toB uncertaintyu € Cy resists also to components’ measure uncertaingndf
only if any point inS(u, du) satisfies (4.2). That is, iff

yityvi@ <yu+) <y, —yfW,i=1..,m (4.3)

holds for allt € R™ such that|t||, < éu. Then, computing the minimum and maximumton
we get that (4.3) holds iff

10



Vitvi W+ 6 <yu+) <y, -yfW-6,i=1..m (44)

with §; = B,0u||B;|l;. The reasoning follows the same lines as the dentuof inequalities
(4.2).

Equivalently, any recipa € Cy is robust regarding uncertainty and properties’ measure
uncertainty iff

yitri@W<yW+Z <y, -y, i=1..,m (4.5)

holds for allZ € R™ such thatfZ;| < dy;. As previously, computing the minimum and
maximum onZ, (4.5) holds if

VityviW+8y <y <y, -y -8y,i=1..,m (4.6)
Finally, lettingA;= max(d;, §y;) we obtain the robust regidtC, of polytopeCy:
RCy = {u ER"|yi+yi(wW+A<y (W) <y, - yiw)—4,i=1, ...,m} 4.7)

Any u € RCy resists toB uncertainty and to components and properties’ oreasent
uncertainties.

To summarize, let's consider a nominal feasiblepea € UN Cy. If i € S(u, du) and
y € S(y(u), 8y) for somedu € R* anddy € R™" and ifB;; € I; j, then the recip& will be

i,jr
feasible in realityfi € U n Cy.

The RTO method proposed in Section 3 transforms ith@ robust RTO method by a simple
substitution ofC; with RCy. This reduces the impact in implementation asstnecture of
RTO remains the same. AXsandV,, may be considered as free variables in the RTMadlet
we can describe the polytoR€,; by using explicitly Equations 4.4 and 4.6 in asstan
with the identityg, = —— instead of Equation 4.7 where a Max is involvelisTobust RTO

+ug

method depends completely on the robust re@i6p and to obtain it we only need to
determine the values of , ™, du, §y. This study lies upon the fact that this inforroatis
available. It's worthwhile to note that whilku and §y are considered as fixed values
independent of the RTO loop’s length, ands* depend on it. As fluctuations dhmay
accumulate over time, the longest the loop’s lemgtthe biggest these fluctuations can be.

Here we limit the analysis to measurement and compis properties uncertainties.
However, other types of uncertainty manifest geoicadty in the same way and thus can be
treated identically. For instance, when the ungargtais due to uncontrolled factors like
temperature or humidity, the real blend’s properaee located in a ball around the nominal
blend’s properties. To model the uncertainty in ¢benponents prices, we can transform the
optimization problem to one with certain objectfuaction and such that uncertainty appears

11



as a constraint{u < ¢). Then we can construct the uncertainty sets aterghine the way it
affects the robust regions. We can proceed similiant the uncertainty in the components
availabilities which affects the robust regiBtl of polytopeU.

5. Thepriceof robustnessand reblending
In this section we present a case study basedabrmlaéa to illustrate and compare some key
aspects of the RTO method and its robust counterpae BP consists in producing a fixed
volume V,,.q; = 5000 m3 of blend from 8 components amf = 2000 m3 of the heel’s
volume from a previous blend. Each component angtbeious blend have 7 properties to
be controlled during the process and they are septed by th& x 8 matrix B and vectob,
respectively. Vectors,,;, andy,,., stand for the properties bounds while vectolenotes
the components’ cost.

B bO Ymin Ymax
V1 36.00f 36.00] 32.00] 42.00] 16.00] 31.00 35.00] 46.00 30.00{ 30.00] 46.00
Yo 0.04 0.04 0.03 0.08 0.08 0.14 0.06 0.55 1.66 0.18 1.66

Y3 630.00 620.00 600.00| 580.00, 620.00 600.00f 540.00, 450.00 640.00| 540.00] 640.00
Ya 3277 3277 32.77) 16.98 16.98 37.72 24.08 8.26 35.19 6.98| 35.19
Ys 937.95 937.95 636.62| 199.06| 199.06 170.47| 1381.90 2.80| 1381.90 2.02| 432.09
Vs 0.80 0.10 0.05 0.04 1.50 2.50 0.05 0.01 1.81 0.00| 10.00
Y7 50.00f 49.00] 50.00{ 55.00f 25.00] 39.00f 41.00] 45.00, 40.00f 40.00] 55.00
c 87.06/ 87.06| 87.02] 86.00, 83.08/ 78.05| 87.06] 117.01

In order to produce a robust recipe, we assumectiraponents and properties measurement
errors are bounded b§y =[0.12,0.0003, 4.5,0.0826,0.028,0.000049,0.2] and du =
0.01 respectively. Regarding uncertainty, we dispose 8f andB* the absolute lower and
upper bounds of matri®. Let's defineT- =B —-B~, Tt =B*—BandT = BT — B~. We
suppose that there are ande™ such that3 — e~ < B < B + &%, with e~ = min(T ", 8T)
ande™ = min(T*, 0T) for somed < 6 < 1. As we stated in Section 4.2, the valuegwfind

6y are fixed during the process wheréas directly related to the RTO loops’ length. We
taked = 0.01.

Solving the robust version of problem 3.2 with= 2000 m3, we get{uoying Uomaxr] =
[0,0.0362] and the corresponding robust feasible volumesniate [Vying, Viaxr]l =
[55304, oo]. The subscriptR” will indicate the result of a robust version af aptimization
problem. The corresponding interval for the nomif@n robust) case ¥yin Viaxl =
[34587, ]. This means that we need to produce at [&4587 m3 (55304 m3) in order to
get a (robust) blend within specifications whichesicompletely,. Taking only the hard
constraints, we obtain similar intervals.

If we decide to produck,.,; = 5000m?3 usingV, = 2000m3 then we solve the problem 3.7
and we obtain a recipe with c&H.72 per m3 but producing a blend out of specifications.
Actually, this blend violates only one propertysumd but by more thaB0%. Instead of this,
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we can compute the biggest heel’'s volume allowingousroduces000m? of robust blend.
This is the decision taken in practice. From relaiugyqr = V—VO andVpr = Vo +V we
obtain:

Vtotal X UoMaxR

= 174.5m3
1+ UoMaxR

Vomaxr =

These174.5m3 are far below the nomindl, = 2000m3 forecasted by the scheduling
system. The scheduling system uses a linear progwacalculate every month the recipes,
properties and volumes of reference for a sequasfcelends(up,y?, Vo), k=1,..,K
(typically K € [10,15]). For the first blends of the sequence, the onpireeess fits well with
the forecaste@uy, y?,Vy). Nevertheless, after a number of blends, it hapsemetimes that
the overall blending environment differs signifidgn from the mean characteristics
considered by the scheduling system. In these ¢dsepresent example is one of them), it is
very difficult for the online optimizer to take thight decision. Our decision was based on the
criterion “minimize reblending”.

Next, fixingV, = 174.5m3 andV = 4285.5m3 we solve the robust version of problem 3.3 to
obtain the optimal robust recipg = [0.1428,0.0819,0.0352,0.1049, 0.2,0.2,0.0352, 0.2]
with costcy = 90.72. Incidentally, this is the same recipe that preguthe blend out of
specifications!

On the other hand, the optimal nominal recipe
uy = [0.1428,0.0819,0.0478,0.169,0.2,0.2,0.0352,0.1233]

has a cost ofy = 88.35. Therefore, producing a robust recipe induces & twrease of
2.68%. However, we observe that if we takg= 0 (no reblending), then the robust recipe
cost is87.70 and the nominal recipe costd%.04 producing a cost increase of 0101y 6%.

From these results we are interested in compahagtice of robustness with the reblending
cost (the cost difference between the recipes médaivhen the heel's volume is used and
when it is not). In order to provide a fair comgan, the price of robustness is obtained by
takingV, = 0 (no reblending involved) and the reblending cosif the nominal recipes (no
robustness involved).

To compute the price of robustness we conduct radbig simulation over 36 RTO loops of
2-hours length (10% of the total blend time). InblEal we show the average recipe’s cost
over the 36 periods and the percentage increasesinfAc) from the nominal recipe to the
robust recipe for differerd values and taking, = 0. We used the GLPK solver on an
INTEL, 2 CPU, 32bits, 2GHz, 4Gb computer. The exiecutime for each call was about
0.25s.
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We compared this performance (in terms of CPU timi#) the classical quadratic model of

robustness [1]. This model gives rise to convexgamming. We used the CVX toolbox with

Matlab (see [8]). The CVX solver took about 15&ath call and this is much above our time
constraint (no more than 3s per call).

Then we generate the optimal nominal recipes Wwiyea 168.44 (Vypax for 8 = 0.01) (with
reblending) and’, = 0 (without reblending) are used in the productiors@d0m3 of blend.
The cost of these recipes &&29 and87.04 respectively. This is normal in general as a

“bad” heel is difficult to correct. We observe thimir this case, the recipe’s cost with

reblending is(8&2;7—+w:1_43% greater than the nominal recipe’s cost wdsethe relative

price of robustness is of only 0.35% for a sigmifitvalue ot = 0.1.

0 Ch CN Ac(%)
0.01 87.3851 87.1097 0.32
0.02 87.3542 87.0763 0.32
0.03 87.3847 87.1036 0.32
0.04 87.3632 87.0795 0.32
0.05 87.4058 87.1194 0.33
0.06 87.4134 87.1249 0.33
0.07 87.4232 87.1309 0.33
0.08 87.4258 87.1306 0.34
0.09 87.4297 87.1307 0.34
0.1 87.4077 87.1062 0.35

Table 1: Relative price of robustness for differentls of uncertainty.

6. Conclusions

In this paper a robust real time optimization mdtlior the linear oil blending process has
been introduced. The method is based on the ROnitpeds and it is intended to avoid
reblending while minimizing the blend’s cost and thality giveaway. We constructed a set
of models for different types of uncertainty argsim the blending process. The simplicity of
these models may produce over conservative solufldasds too expensive) but we showed
via an example the convenience of the RO techniques for these simple models.

A main characteristic of our RRTO method is thegnation of the case when the heel of a
previous blend has to be incorporated in the neamdl This feature provides meaningful

information for the control system, for instanaedetermine the appropriate heel’'s volume to
use in the blend or to have an estimate of themelto pour before getting a blend within

specifications.

There are many factors associated with the cosgliénding a previous blend which failed to
be within specifications: the tank use, the prodiess, the inventory costs. Another one is the
recipe’s cost increase for using the heel's volwhéhe previous blend. This cost depends
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(obviously) on the particular blend in which itused. In this work we compared this cost of
reblending with the price of robustness to streescbnvenience of the RO techniques.

The results obtained comfort the idea that if nreieg or additives cost is expensive enough,
then using a more conservative technique like R® im@arove the global performance of the

blending process. The recipe cost rises by takkiegabust recipe in place of the nominal one
but reblending and additives expenses cancel. Mgperiments need to be realized in order
to estimate the impact of RTO with a large panedagnarios.

It appears as a good perspective (kindly suggdsteeferees) to deal with variabde and
éu especially when longer blending horizons are tocbesidered. Also, Monte Carlo
simulation with variablé® could be a way to compare both methods.
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