
HAL Id: hal-00912832
https://hal.science/hal-00912832

Submitted on 2 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust real-time optimization for the linear oil blending
Stefan Janaqi, Jorge Aguilera, Mèriam Chèbre

To cite this version:
Stefan Janaqi, Jorge Aguilera, Mèriam Chèbre. Robust real-time optimization for the linear oil blend-
ing. RAIRO - Operations Research, 2013, 47, pp.465-479. �10.1051/ro/2013052�. �hal-00912832�

https://hal.science/hal-00912832
https://hal.archives-ouvertes.fr

1

Robust real-time optimization for the linear oil blending

Stefan Janaqia, Jorge Aguileraa, Meriam Chèbreb

aLGI2P Ecole des Mines d’Alès, Parc Scientifique Georges Besse, 30035 Nîmes Cedex 1, France

bAdvanced Process Control Department, Technical Direction, TOTAL Refining &Marketing, Le Havre, France

Abstract
In this paper we present a robust real-time optimization method for the online linear oil
blending process. The blending process consists in determining the optimal mix of
components so that the final product satisfies a set of specifications. We examine different
sources of uncertainty inherent to the blending process and show how to address this
uncertainty applying the Robust Optimization techniques. The polytopal structure of our
problem permits a simplified robust approach. Our method is intended to avoid reblending
and we measure its performance in terms of the blend quality giveaway and feedstocks prices.
The difference between the nominal and the robust optimal values (the price of robustness)
provides a benchmark for the cost of reblending which is difficult to estimate in practice. This
new information can be used to adjust the level of conservatism in the model. We analyze the
feasibility of a blend to be produced from a set of feedstocks when the heel of a previous
blend is used in the composition of the new blend. Additional critical information for the
control system is then produced.

Key words: Blending, Robustness, Polyhedra, RTO, Linear Programing.

2

1. Introduction
The oil blending process consist in determining the optimal proportions to blend from a set of
available feedstocks or components such that the final product obtained fulfills a set of
specifications on their properties. A blending system is typically constituted by three
functional subsystems: the scheduling subsystem, the online optimizer and the control
subsystem.

The scheduling subsystem is the one in charge of the general refinery production planning.
The scheduling subsystem uses a linear program to calculate for a given period (up to a
month) the recipes � , properties � and volumes � of reference for a sequence of blends
���

�, ��
�, ����, 	 = 1,… ,
 (typically
 ∈ �10,15�). These calculations are based on the mean

characteristics of components.

Several sources of uncertainty (see below) perturb the process. The online optimizer is then
required to update the target recipe which may became sub-optimal, or even infeasible, due to
these disturbances in the process. For the first blends of the sequence, the online process fits
well with the forecasted ���

�, ��
�, ����. Nevertheless, after a number of blends, it happens

sometimes that the blending environment differs significantly from the mean characteristics
considered by the scheduling subsystem. In these cases (the example presented at the end of
the paper is one of them), it is very difficult for the online optimizer to take the right decision.
The blending environment is represented in this paper by the blending polytopes (see section
2) that change with time and are different from mean polytopes used by scheduling
subsystem.

The feedback is based on measures of the blends’ and components’ properties gathered by
online analyzers. Finally, the control subsystem is in charge to adjust the component’s flow
rates (the recipe �) in order to attain the current target recipe. Here we focus on the Real Time
Optimization (RTO) system formed by the online optimizer and the control subsystem. An
RTO loop consist of calculating the optimal recipe �∗ for the new constraints and adjusting
the actual recipe � by �∗ − �. Typically, our control subsystem adjusts the recipe every 5
minutes by calling the online optimizer with different sets of constraints (up to 100 calls in 5
minutes). The total time for a blend is several hours (10-20 hours). A RTO is one that meets
this time constraint. This motivates our approach for robust blend models that can be
calculated efficiently. Our uncertainty model gives rise to linear models that are efficiently
solved.

An important characteristic in the oil blending process is the strict requirements over some
properties controlled by environmental, legal and technological standards. If these properties
are not satisfied, one can correct the blend to a certain limit by dumping the appropriate
additives in it. Otherwise, the blend must be reblended. The additives are too expensive

3

whereas reblending reduces the refinery capacity, so one should consider these blends’
bounds as hard constraints which must be satisfied.

On the other hand, oil blending is a complex process where several unknown and uncertain
factors affect the blend’s properties. In addition to the plantmodel error produced by the
linearization of blending laws, there are other sources of uncertainty: measure errors on
components and properties caused by instruments’ precision; uncertain knowledge of the
components’ properties due to upstream process variations and uncontrolled blending
conditions such as air temperature, humidity, etc. All these are typical uncertainties arising in
any RTO problem (see [6]).

Hard constraints on the blends’ properties combined to these sources of uncertainty are the
ideal characteristics to apply the Robust Optimization (RO) techniques (see [1]), which are an
approach to optimize under uncertainty. Roughly speaking, robust optimization looks for
optimal solutions that are strictly inside the optimization domain. The robust optimization
models differ in the way they insure and measure the “how much inside the optimization
domain?”. A strength of the RO techniques is to consider a deterministic and set-based
uncertainty model if one has no information on the random process(es). No probabilistic
assumption is made over the uncertainty and the solution obtained is optimal for any
realization of the uncertainty in a given set. RO techniques seem to be ad hoc to address an
uncertain RTO problem where the feasibility is the primary concern.

Some previous works have been devoted to find robust solutions to the blending problem. In
[3], a geometric approach is presented for the product and mixture design problems but only
considering the uncertainty due to measurement imprecision. To deal with components’
properties uncertainty, [4] proposed a nonlinear blend RTO system based on predictions of
feedstocks properties whereas [5] presented a chance constraint model and a hybrid neural
networks–genetic algorithm solution. More recently, [2] introduced a linear blending control
algorithm which handles this type of uncertainties via an estimator of the components’
properties. A more general method based on stochastic programming which covers various
types of uncertainty is presented in [7].

Our contribution begins by highlighting the polytopes underlying the blending process. This
and the form of uncertainty on components (see below) permit to conceive robust models
without the need of convex programming tools. Based on the data, we develop robust models
that give rise to linear models. Consequently, a linear programming solver is all we need.
With linear programming solvers we meet the real time constraint that is “less than 3s per
solver call”. Actually, we obtain 0.25s per solver call. This point is of greatest interest in the
real time processes under investigation. Another result of interest is the calculation of a
feasible volume’s interval. As we’ll see in the following, a blend may be infeasible because of
its volume. It is then useless to try to modify the recipe while the blend volume is out of the
feasible interval.

4

In this paper we study the blending process with linear blending laws and the components
stocked in running tanks. The paper’s structure follows. Section 2 presents the Blending
Polytopes inherent to the Blending Problem and the Basic Equation which will be used to
introduce the updated data in the RTO model. Section 3 analyzes the general case when the
heel of a previous blend is used in the production of the new blend and a RTO approach is
proposed to solve the Blending Problem. In Section 4 we construct uncertainty sets for
various types of uncertainty. These sets determine the robust regions for the blending
polytopes in which the new robust RTO (RRTO) method is based. Finally, the price of
robustness and reblending is introduced and explained through a real numerical example of
the RRTO method in Section 5.

2. Blending Polytopes
Let’s denote by � and � the number of components and properties respectively. We will
represent a blend’s recipe (recipe in short) by a vector � ∈ �� such that �� is the percentage

of component � present in the blend whereas the blend’s properties (properties) will be
denoted by a vector � ∈ ��. Then the set of components is described by the � × � matrix �
where ��,� is the i th physical and / or chemical property of the component j. It is customary

when blending to use the heel of a previous blend to produce a new one. The process starts
then with a volume �� of a previous blend with properties �� ∈ �� and continues by adding
gradually a volume � of the new blend to obtain a final product’s volume � ! "# = �� + � .

We suppose that a blend’s properties are a linear combination (or more precisely, a convex
combination) of its component’s properties. This is not true in general, but a number of
invertible transformations exist such that the transformed properties blend linearly. So, for
any % ∈ �0, �� the blend’s properties corresponding to the recipe � are determined by the
basic equation:

���� = &'�� + ('�� (2.1)

where, &' =)*

)*+,	, (' = ,
)*+,	.

Having a blend’s volume �� with properties ��, equation (2.1) can be used at any time in the
process to plan the production of a fixed volume % ∈ �0, ��. We just update �� and the matrix
� and take � − % as the remaining volume to pour. For this planning horizon, the optimal
recipe � is obtained by solving the Blending Problem (BP):

min1 23�
� ≤ � ≤ � (2.2)

� ≤ ���� ≤ � (2.3)

13� = 1, 0 ≤ � ≤ 1 (2.4)

5

Here the components’ costs are represented by the vector 2 ∈ ��. A recipe � is subject to
components availability and hydraulic bounds which impose the component’s constraints
(2.2). Similarly, the properties constraints (2.3) are determined by properties lower � and

upper (�) bounds. If �� = �� then we say that property �� is regulated, otherwise it is

controlled. Additionally, properties’ bounds are labeled as hard 5�6, �67	 or soft 5�8, �87.

Hard bounds are related to legal, commercial and environmental specifications which must be
satisfied whereas soft bounds can be violated but incurring into quality giveaway. This means
that the blend is better than needed. Finally, (2.4) are the percentage constraints.

We note 9: = ;� ∈ ��	|	13� = 1= and the simplex >: = ;� ∈ ��	|	13� = 1, 0 ≤ � ≤ 1=.

Now, there are 4 distinct polytopes participating in blending process. Geometrically, the
intersection of the regions determined by the components constraints and >: defines the
recipe’s polytope:

? = @� ∈ >:	|	� ≤ � ≤ �A (2.5)

which represents the set of all recipes that can be produced. On the other hand, the properties
constraints define the polyhedron (as it may be unbounded):

BC = D� ∈ ��	|	� ≤ ���� ≤ �E (2.6)

Both are defined in the component’s space.
In properties space, the image of ? under the basic equation is the possible blend’s polytope:

F = ;���� ∈ ��	|	� ∈ ?= (2.7)

Finally, the target polytope is defined by:

B = D� ∈ ��	|	� ≤ � ≤ �E (2.8)

The polytope F depends on the volume %. Let’s define F�∞� = ;��	|	� ∈ ?=	. Then, ���� ∈
F if and only if ���� − �� = ('��� − ��� . This shows that F = F�%� is a homothetic
transformation of F�∞� with homothetic center �� and homothetic ratio ('. When % grows
continuously from 0 to �, F�%� “moves” continuously from �� to F���. Consequently, if B
has a non empty intersection with the cone 2H�I���, F�∞�� defined by the apex �� and the
base F�∞� then, there is an interval % ∈ �����, ��"J� such that F�%� ∩ B ≠ ∅ . In the
following we suppose that 2H�I���, F�∞�� ∩ B ≠ ∅. If this were not the case, one has to
change the components (and F�∞�) in order to assure feasibility.

6

Any point in F represents the properties of a blend issued from one or more recipes in ?
whereas B depicts the target properties to be attained by the blend produced.

We notice that, among the four preceding polytopes, only F and BC depend on %. We omit the
% when it is considered to be fixed.

At this point we have identified the polytopes underlying the BP and we observe that for a
fixed volume %, a feasible solution of BP is a recipe � ∈ ? ∩ BC such that ���� ∈ F ∩ B .
Equivalently, �F	NO	N�PIQON�RI	 ⟺ 	F ∩ B = 	∅	 ⟺ ? ∩ BC = 	∅.

3. Blending from a previous blend: a RTO method
In any RTO loop, the online optimizer is required to produce a recipe that permits the
controller to guide the blending process. In Section 2 we stated that for a fixed volume % to
pour, the optimal recipe can be obtained by solving the BP. However, the BP can result to be
infeasible because of the uncertainty perturbing the process or for instance, when a previous
blend with properties out of specification is used in the production of the new blend.
Therefore, a method to compute at any time the best recipe for the planning horizon is
required. Later we present this method but first we discuss the BP feasibility when the heel of
a previous blend is used.

If the blend is produced from scratch or the volume to pour is too big compared with the
heel’s volume, that is, if �� = 0 or % → ∞ then the basic equation reduces to ���� = �� and
the polytope F�%� does not depend on �� . However, the fact of using the actual blend’s
properties �� in the basic equation to update the model inside the RTO loop, makes blending
from a previous blend the regular case. As explained in the preceding section, we suppose that
there is an interval of volumes ��U��, �U"J� such that F�%� ∩ B ≠ 	∅, ∀	% ∈ ��U��, �U"J�. The
BP is feasible only for these volumes.

Having the values �U�� and �U"J helps to select the appropriate planning horizon at each
RTO loop. Choosing a planning horizon by taking a volume % < �U�� produces an infeasible
BP and makes it necessary to generate an alternative recipe with a possible deterioration of
the overall performance of the RTO method. On the other hand, �U"J is the maximum volume
to blend when looking for a blend within specifications. After �U"J has been poured, F�%�
moves away from B and the blend’s properties deteriorate progressively.

Furthermore, knowing �U�� and �U"J helps the control system to reduce unnecessary and
inefficient interventions. The latter have as purpose to correct the blend to be within
specifications but often they are based on a limited view of the problem. In order to compute

the interval ��U��, �U"J�, let’s rewrite the basic equation (with �� = X*
'):

���� = :
:Y1*

����� + ��� (3.1)

7

The polyhedron BC becomes BC = D� ∈ ��	|	�1 + ���� ≤ ���� + �� ≤ �1 + ����E and the

constraints remain linear. Now we present the RTO method:

Blending RTO Method

Let’s denote by B6C = D� ∈ ��	|	�6 ≤ ���� ≤ �6E the polyhedron defined by the hard

constraints and let �3 ∈ B6C an “ideal” target blend without quality giveaway provided by the
scheduling subsystem.

At any RTO loop, we proceed through the steps I. to VI. as follows:

I. Incorporate the newly available information ���, ��, �, �� in the basic equation. If

�� = 0, solve problems 3.3, 3.6 and 3.7 in this order until having a feasible
solution, then STOP. Otherwise, go to step II.

II. Compute �U�� and �U"J by solving the linear programming problem:

max	�min�1*,1 ��, � ∈ ? ∩ BC, �� ≥ 0 (3.2)

If Problem 3.2 is infeasible or if � ∉ ��U��, �U"J� go to step IV. Otherwise, a
blend without quality giveaway exists for any volume % ∈ ��U��, �U"J�. Choose a
blending horizon % ∈ ��U��, �U"J� and go to step III.

III. Compute the optimal recipe:

min^ 23� , � ∈ ? ∩ BC (3.3)

Notice that solving Problem 3.3 with % free and the additional constraint:

��U�� ≤ �� ≤ ��U"J (3.4)

we obtain at the same time the optimal blending horizon %∗ ∈ ��U��, �U"J� and
the optimal recipe for this volume. This is the best choice if it’s not imperative to
produce a particular volume. If this is the case STOP. Otherwise go to step IV.

IV. Forget the components costs and focus only on the hard constraints. Compute
the interval ��U��, �U"J� by solving the problem:

max	�min�1*,1 ��, � ∈ ? ∩ B6C , �� ≥ 0 (3.5)

If this problem is infeasible or if � ∉ ��U��, �U"J� go to step VI. Otherwise, go to
step V.

8

V. Look for a recipe � ∈ ? ∩ B6C and a volume %∗ ∈ ��U��, �U"J� producing the
blend with minimal quality giveaway. To do this, solve the following problem
with fixed % from a finite set of values, % ∈ ;%:, … , %_= ⊂ ��U��, �U"J�:

min1, 	‖���� − ��b�‖: , � ∈ ? ∩ B6C, b ∈ BC (3.6)

VI. Find � ∈ ? to produce a volume � of blend with properties as near as possible to
the ideal blend �3:

min1 	‖���� − �3‖: , � ∈ ? (3.7)

Following these steps, the RTO method always produces a recipe that guides the control
process. In step I, �� = 0 and solving problems 3.3, 3.6 and 3.7 we obtain the minimal cost
recipe, the blend with minimal quality giveaway or the closest blend to �3 . If BP is feasible
for some volume % ∈ ��U��, �U"J� then a blend without quality giveaway exists and the
method generates the one of minimal cost (step III). Otherwise, the hard constraints become
the priority and the method searches for a blend satisfying them while minimizing the blend’s
quality giveaway (step V). Finally, if there is no blend satisfying the hard constraints, the
recipe producing the blend with properties as close as possible to �3 is proposed (step VI).
We finish this section by stressing the possible application of the RTO method to determine
the appropriate heel’s volume to use in the blend. In our analysis, �� is considered as fixed but
we can solve the Problem 3.3 with the additional constraint 3.4 with �� and � free in order to
obtain the cheapest recipe �∗ for some ��

∗ ∈ ���U��, ��U"J�. Then we can find (by means of

the relation �� = X*
') a suitable pair ��, �. The choice of norm c:, in problems 3.6 and 3.7

permits to obtain blends violating a minimum number of properties. Moreover, it yields LP
problems which can be solved efficiently.

4. Robust RTO
In the previous section we proposed a blending RTO method based on blending polytopes and
its evolution with the blended volume. Looking to reduce the model deviations produced by
some uncertainties, the method uses blend’s and components’ properties updates to feedback
the model via the basic equation. However, model updating may fail to guarantee even a
feasible solution. A main reason of this failure is the implicit assumption that data remains
unchanged inside each RTO loop.

For instance, when online blending is used, � values fluctuate with time because components
are issued from different process presenting also perturbations. To address this problem, [4]
proposed a blending RTO method which updates the model with predictions of the
components’ properties. Although this method improves the model accuracy, it continues to
be non robust as it depends on the quality of the predictions. Moreover, uncertainty in the
blending process affects other factors than � values as we will see below.

9

4.1 BP Uncertainty
In accordance with [6], uncertainty in any RTO system may be of four types:

1. Process uncertainty: components properties, temperature, humidity, etc.
2. Measurement uncertainty.
3. Model uncertainty.
4. Market uncertainty: components availabilities and prices, blends demands, etc.

In this work we consider the uncertainties arising from components measurement and blend’s
properties measurement (type 2) and the uncertainty caused by imprecise knowledge of the
components properties (type 1).

Measurement and components properties uncertainties manifest geometrically in different
ways: for the first type, the real recipe (the real percentages of each component used in the
blend) and its properties may differ from the nominal ones. So, the real recipe and its
properties are located in neighborhoods of the nominal recipe and its properties respectively.
For the second type, the real matrix �d differs from the nominal matrix � and hence the real

polytope BeC is different from the nominal polytope BC. In both cases, when a nominal feasible
recipe � ∈ ? ∩ BC is computed, the real recipe may lie outside the polytope BC and the real
blend’s properties may be outside the polytope B. Then the real recipe results to be infeasible.

An intuitive idea to fix our RTO method against measure and � uncertainties follows from the
previous geometric information. The idea consists in computing for polytope BC its convex
robust region �BC such that any point in this region resists to � uncertainty and to
measurement errors. That is, any point in �BC is guaranteed to remain inside the real polytope
for all possible realizations of � and any measurement error, within reasonable limits.
So, the robust RTO method will consist in replacing polytope BC by �BC in the RTO method
from Section 3. To develop this idea, first we need to model and measure the uncertainty we
would like to be protected against and then to compute the appropriate robust region of BC.
This development follows the Robust Optimization (RO) theory developed by Ben-Tal et al
(see [1]).

4.2 Robust Regions and Robust RTO
Let � be a nominal recipe and ���� its properties. To model the components and properties
measurement uncertainties, we suppose that the real recipe �f lies in the ball >��, g�� of radius
g� and center � whereas the real blend’s properties �f lies in the ball:

>�����, g�� = ;� ∈ ��	|	���� − g� ≤ � ≤ ���� + g�=

We are given the minimal � and maximal � values of � . In order to model matrix �

uncertainty, we use interval sets. That is, we suppose that each real value �d�,� is comprised in

the interval h��,� = i��,� − j�,�k , ��,� + j�,�Y l around its nominal value ��,� for some positive

values j�,�k , j�,�Y .

10

Here we could use different sets and any norm to model the uncertainty. The level of
conservatism (how much we want to be protected against uncertainty) and the problem
complexity depend on these selections. Taking interval sets and the max norm, the robust
regions obtained are polytopes and the complexity in the model is preserved at the expense of
being probably too conservative (we are protected from the worst deviations of all � values
and from the biggest measurement errors occurring all at the same time). Now we proceed to
construct the robust region of polytope BC.

Any point � ∈ BC is robust regarding � uncertainty iff 	� ≤ �f��� ≤ �. That is, iff for any �d

such that �d�,� ∈ h��,�,

�� ≤ &'��,� + ('�d��	 ≤ ��, N = 1,… ,� (4.1)

holds. Notice that any row �d� can be expressed parametrically as �d��m� = �� + mk3n�
k +

mY3n�
Y , with, n�

k = oNQpqj�,:k , … , j�,�k r, n�
Y = oNQpqj�,:Y , … , j�,�Y r, mk = min�0, m� , mY =

max�0, m� for some m ∈ �� such that ‖m‖s ≤ 1 . Therefore we can deduce that � ∈ BC is
robust regarding � uncertainty iff

�� + ('j�k�	 ≤ ����� ≤ �� − ('j�Y�, N = 1,… ,� (4.2)

In order to derive equation (4.2) let’s define for a given �, P�m� = mk3�n�

k�� + mY3�n�
Y��.

We then resolve the following optimization problem:

maxt P�m� , ‖m‖s ≤ 1.

The optimal m� saturates the constraints. Thus, for any � = 1,… , � one has: either m���� =
1 = mY���� or m���� = −1 = mk���� . The optimal value is P�m�� = −∑ j�,�k ���,v*���wk: +
∑ j�,�Y ���,v*���w: . This is clearly less than or equal to ‖n�

Y�‖: = j�Y� (because of positivity of

j�Y and �) and this gives the right side inequality of (4.2). By resolving mint P�m� , ‖m‖s ≤ 1
we deduce the left side inequality of (4.2) with a similar reasoning. This is a particular case of
a duality result: when resolving maxt Qm , ‖m‖x ≤ 1 , the optimum is ‖Q‖y , where 	‖∗‖x,
‖∗‖y are dual norms with 	z{	Y	z|w:.

From now on we denote by }�k��� = ('j�k�	 and }�Y��� = ('j�Y�.

In addition to � uncertainty, � ∈ BC resists also to components’ measure uncertainty if and
only if any point in >��, g�� satisfies (4.2). That is, iff

�� + }�k��� 	≤ ���� + b� ≤ �� − }�Y���, N = 1,… ,� (4.3)

holds for all b ∈ �� such that ‖b‖s ≤ g�. Then, computing the minimum and maximum on b
we get that (4.3) holds iff

11

�� + }�k��� + g� ≤ ���� + b� ≤ �� − }�Y��� − g�, N = 1,… ,� (4.4)

with g� = ('g�‖��‖:. The reasoning follows the same lines as the deduction of inequalities
(4.2).

Equivalently, any recipe � ∈ BC is robust regarding � uncertainty and properties’ measure
uncertainty iff

�� + }�k��� ≤ ����� + ~� ≤ �� − }�Y���, N = 1,… ,� (4.5)

holds for all ~ ∈ �� such that |~�| ≤ g�� . As previously, computing the minimum and
maximum on ~, (4.5) holds if

�� + }�k��� + g�� ≤ ����� ≤ �� − }�Y��� − g��, N = 1, … ,� (4.6)

Finally, letting ∆�= max	�g�, g��� we obtain the robust region �BC of polytope BC:

�BC = D� ∈ ��	|	�� + }�k��� + ∆�≤ ����� ≤ �� − }�Y��� − ∆�, N = 1,… ,�E (4.7)

Any � ∈ �BC resists to � uncertainty and to components and properties’ measurement
uncertainties.

To summarize, let’s consider a nominal feasible recipe � ∈ ? ∩ BC . If �f ∈ >��, g�� and
�f ∈ >�����, g�� for some g� ∈ �Y and g� ∈ ��Y and if ��,� ∈ h�,�, then the recipe �f will be

feasible in reality: �f ∈ ?� ∩ BeC.

The RTO method proposed in Section 3 transforms then in a robust RTO method by a simple
substitution of BC with �BC. This reduces the impact in implementation as the structure of
RTO remains the same. As � and �� may be considered as free variables in the RTO method,
we can describe the polytope �BC by using explicitly Equations 4.4 and 4.6 in association
with the identity (' = z

z+�*
 instead of Equation 4.7 where a Max is involved. This robust RTO

method depends completely on the robust region �BC and to obtain it we only need to
determine the values of jk, jY, g�, g�. This study lies upon the fact that this information is
available. It’s worthwhile to note that while g� and g� are considered as fixed values
independent of the RTO loop’s length, jk and jY depend on it. As fluctuations on � may
accumulate over time, the longest the loop’s length is, the biggest these fluctuations can be.

Here we limit the analysis to measurement and components properties uncertainties.
However, other types of uncertainty manifest geometrically in the same way and thus can be
treated identically. For instance, when the uncertainty is due to uncontrolled factors like
temperature or humidity, the real blend’s properties are located in a ball around the nominal
blend’s properties. To model the uncertainty in the components prices, we can transform the
optimization problem to one with certain objective function and such that uncertainty appears

12

as a constraint (23� ≤ 2). Then we can construct the uncertainty sets and determine the way it
affects the robust regions. We can proceed similarly for the uncertainty in the components
availabilities which affects the robust region �? of polytope ?.

5. The price of robustness and reblending
In this section we present a case study based on real data to illustrate and compare some key
aspects of the RTO method and its robust counterpart. The BP consists in producing a fixed
volume � ! "# = 5000	�� of blend from 8 components and �� = 2000	�� of the heel’s
volume from a previous blend. Each component and the previous blend have 7 properties to
be controlled during the process and they are represented by the 7 × 8 matrix � and vector ��
respectively. Vectors ���� and ��"J stand for the properties bounds while vector 2 denotes
the components’ cost.

B b0 ymin ymax

y1 36.00 36.00 32.00 42.00 16.00 31.00 35.00 46.00 30.00 30.00 46.00

y2 0.04 0.04 0.03 0.08 0.08 0.14 0.06 0.55 1.66 0.18 1.66

y3 630.00 620.00 600.00 580.00 620.00 600.00 540.00 450.00 640.00 540.00 640.00

y4 32.77 32.77 32.77 16.98 16.98 37.72 24.08 8.26 35.19 6.98 35.19

y5 937.95 937.95 636.62 199.06 199.06 170.47 1381.90 2.80 1381.90 2.02 432.09

y6 0.80 0.10 0.05 0.04 1.50 2.50 0.05 0.01 1.81 0.00 10.00

y7 50.00 49.00 50.00 55.00 25.00 39.00 41.00 45.00 40.00 40.00 55.00

c 87.06 87.06 87.02 86.00 83.08 78.05 87.06 117.01

In order to produce a robust recipe, we assume that components and properties measurement
errors are bounded by g� = �0.12, 0.0003, 4.5, 0.0826, 0.028, 0.000049, 0.2� and g� =
0.01 respectively. Regarding � uncertainty, we dispose of �k and �Y the absolute lower and
upper bounds of matrix �. Let’s define, �k = � − �k, �Y = �Y − � and � = �Y − �k. We

suppose that there are jk and jY such that � − jk ≤ �d ≤ � + jY , with jk = min	��k, ���
and jY = min	��Y, ��� for some 0 < � < 1. As we stated in Section 4.2, the values of g� and
g� are fixed during the process whereas � is directly related to the RTO loops’ length. We
take � = 0.01.

Solving the robust version of problem 3.2 with �� = 2000	��, we get ���U��� , ��U"J�� =
�0, 0.0362� and the corresponding robust feasible volumes interval: 	��U��� , �U"J�� =
�55304,∞�. The subscript “�” will indicate the result of a robust version of an optimization
problem. The corresponding interval for the nominal (non robust) case is	��U��, �U"J� =
�34587,∞�. This means that we need to produce at least 34587	�� (55304	��) in order to
get a (robust) blend within specifications which uses completely ��. Taking only the hard
constraints, we obtain similar intervals.

If we decide to produce � ! "# = 5000�� using �� = 2000�� then we solve the problem 3.7
and we obtain a recipe with cost 90.72	�I�	�� but producing a blend out of specifications.
Actually, this blend violates only one property’s bound but by more than 80%. Instead of this,

13

we can compute the biggest heel’s volume allowing us to produce 5000�� of robust blend.
This is the decision taken in practice. From relations ��U"J� =)*

) and � ! "# = �� + � we

obtain:

��U"J� = � ! "# × ��U"J�
1 + ��U"J�

= 174.5��

These 174.5�� are far below the nominal �� = 2000�� forecasted by the scheduling
system. The scheduling system uses a linear program to calculate every month the recipes,

properties and volumes of reference for a sequence of blends ���
�, ��

�, ����, 	 = 1,… ,

(typically
 ∈ �10,15�). For the first blends of the sequence, the online process fits well with

the forecasted ���
�, ��

�, ����. Nevertheless, after a number of blends, it happens sometimes that
the overall blending environment differs significantly from the mean characteristics
considered by the scheduling system. In these cases (the present example is one of them), it is
very difficult for the online optimizer to take the right decision. Our decision was based on the
criterion “minimize reblending”.

Next, fixing �� = 174.5�� and � = 4285.5�� we solve the robust version of problem 3.3 to
obtain the optimal robust recipe ��

∗ = �0.1428, 0.0819, 0.0352, 0.1049, 0.2, 0.2, 0.0352, 0.2�
with cost 2�∗ = 90.72. Incidentally, this is the same recipe that produces the blend out of
specifications!

On the other hand, the optimal nominal recipe

�_
∗ = �0.1428, 0.0819, 0.0478, 0.169, 0.2, 0.2, 0.0352, 0.1233�

has a cost of 2_∗ = 88.35. Therefore, producing a robust recipe induces a cost increase of
2.68%. However, we observe that if we take �� = 0 (no reblending), then the robust recipe
cost is 87.70 and the nominal recipe cost is 87.04 producing a cost increase of only 0.76%.

From these results we are interested in comparing the price of robustness with the reblending
cost (the cost difference between the recipes obtained when the heel’s volume is used and
when it is not). In order to provide a fair comparison, the price of robustness is obtained by
taking �� = 0 (no reblending involved) and the reblending cost from the nominal recipes (no
robustness involved).

To compute the price of robustness we conduct a blending simulation over 36 RTO loops of
2-hours length (10% of the total blend time). In Table 1 we show the average recipe’s cost
over the 36 periods and the percentage increase in cost (∆2) from the nominal recipe to the
robust recipe for different � values and taking �� = 0. We used the GLPK solver on an
INTEL, 2 CPU, 32bits, 2GHz, 4Gb computer. The execution time for each call was about
0.25s.

14

We compared this performance (in terms of CPU time) with the classical quadratic model of
robustness [1]. This model gives rise to convex programming. We used the CVX toolbox with
Matlab (see [8]). The CVX solver took about 15s at each call and this is much above our time
constraint (no more than 3s per call).

Then we generate the optimal nominal recipes when �� = 168.44 (��U"J for � = 0.01) (with
reblending) and �� = 0 (without reblending) are used in the production of 5000�� of blend.
The cost of these recipes are 88.29 and 87.04 respectively. This is normal in general as a
“bad” heel is difficult to correct. We observe that for this case, the recipe’s cost with

reblending is
���.��k��.���

��.�� =1.43% greater than the nominal recipe’s cost whereas the relative

price of robustness is of only 0.35% for a significant value of � = 0.1.

� 2�∗ 2_∗ ∆2�%�

0.01 87.3851 87.1097 0.32

0.02 87.3542 87.0763 0.32

0.03 87.3847 87.1036 0.32

0.04 87.3632 87.0795 0.32

0.05 87.4058 87.1194 0.33

0.06 87.4134 87.1249 0.33

0.07 87.4232 87.1309 0.33

0.08 87.4258 87.1306 0.34

0.09 87.4297 87.1307 0.34

0.1 87.4077 87.1062 0.35

Table 1: Relative price of robustness for different levels of uncertainty.

6. Conclusions
In this paper a robust real time optimization method for the linear oil blending process has
been introduced. The method is based on the RO techniques and it is intended to avoid
reblending while minimizing the blend’s cost and the quality giveaway. We constructed a set
of models for different types of uncertainty arising in the blending process. The simplicity of
these models may produce over conservative solutions (blends too expensive) but we showed
via an example the convenience of the RO techniques even for these simple models.

A main characteristic of our RRTO method is the integration of the case when the heel of a
previous blend has to be incorporated in the new blend. This feature provides meaningful
information for the control system, for instance, to determine the appropriate heel’s volume to
use in the blend or to have an estimate of the volume to pour before getting a blend within
specifications.

There are many factors associated with the cost of reblending a previous blend which failed to
be within specifications: the tank use, the process time, the inventory costs. Another one is the
recipe’s cost increase for using the heel’s volume of the previous blend. This cost depends

15

(obviously) on the particular blend in which it is used. In this work we compared this cost of
reblending with the price of robustness to stress the convenience of the RO techniques.

The results obtained comfort the idea that if reblending or additives cost is expensive enough,
then using a more conservative technique like RO may improve the global performance of the
blending process. The recipe cost rises by taking the robust recipe in place of the nominal one
but reblending and additives expenses cancel. More experiments need to be realized in order
to estimate the impact of RTO with a large panel of scenarios.

It appears as a good perspective (kindly suggested by referees) to deal with variable g� and
g� especially when longer blending horizons are to be considered. Also, Monte Carlo
simulation with variable � could be a way to compare both methods.

Acknowledgements
We thank the referees for their suggestions and remarks.

References
[1] Ben-Tal, A., Ghaoui, L. E., Nemirovski, A., August 2009. Robust Optimization (Princeton
Series in Applied Mathematics). Princeton University Press.
[2] Chèbre, M., Crefi, Y., Petit, N., April 2010. Feedback control and optimization for the
production of commercial fuels by blending. Journal of Process Control 20 (4), 441-451.
[3] Hendrix, E., July 1996. Finding robust solutions for product design problems. European
Journal of Operational Research 92 (1), 28-36.
[4] Singh, A., February 2000. Model-based real-time optimization of automotive gasoline
blending operations. Journal of Process Control 10 (1), 43-58.
[5] Wang, W., Li, Z., Zhang, Q., Li, Y., 2007. Online optimization model design of gasoline
blending system under parametric uncertainty. In: Proceedings of the 15th Mediterranean
Conference on Control & Automation.
[6] Zhang, Y., June 2001. Results analysis for trust constrained real-time optimization.
Journal of Process Control 11 (3), 329-341.
[7] Zhang, Y., Monder, D., Fraser Forbes, J., April 2002. Real-time optimization under
parametric uncertainty: a probability constrained approach. Journal of Process Control 12 (3),
373-389.
[8] Grant, M., Boyd, S., December 2009. CVX User’s Guide.

