
HAL Id: hal-00912829
https://hal.science/hal-00912829

Submitted on 2 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Person Detection with a Computation Time Weighted
AdaBoost

Alhayat Ali Mekonnen, Frédéric Lerasle, Ariane Herbulot

To cite this version:
Alhayat Ali Mekonnen, Frédéric Lerasle, Ariane Herbulot. Person Detection with a Computation
Time Weighted AdaBoost. Advanced Concepts for Intelligent Vision Systems (ACIVS), Oct 2013,
Poznan, Poland. pp.632-644, �10.1007/978-3-319-02895-8_57�. �hal-00912829�

https://hal.science/hal-00912829
https://hal.archives-ouvertes.fr

Person Detection with a Computation Time Weighted
AdaBoost

A. A. Mekonnen, F. Lerasle, and A. Herbulot

CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

{alhayat-ali.mekonnen, frederic.lerasle, ariane.herbulot}@laas.fr

Abstract. In this paper, a boosted cascade person detection framework with het-
erogeneous pool of features is presented. The boosted cascade construction and
feature selection is carried out using a modified AdaBoost that takes computation
time of features into consideration. The final detector achieves a low Miss Rate
of 0.06 at 10−3 False Positive Per Window on the INRIA public dataset while
achieving an average speed up of 1.8× on the classical variant.

Keywords: Person Detection, AdaBoost, Feature Selection.

1 Introduction

Person detection is one of the prominent problems considered in Computer Vision. It
has a vast pool of applications spanning surveillance systems, human-robot interac-
tion, biometric data acquisition, and pedestrian protection systems in the automotive
industry, to name a few. At the same time, it is a very challenging task owing to the
physical variation of persons, variable appearances, occlusion, background clutter, and
many more. Designing a detection system that is capable of overcoming these chal-
lenges while fulfilling real time detection requirements ofmany applications is still an
open problem [3].

Depending on the type of sensor(s) utilized, different approaches could be employed
for person detection. In this work, we focus only on monocular images which could be
from a classical camera either fixed or mounted on a moving vehicle (no static camera
assumption). We present a person detection system that makes use of heterogeneous
pool of features–five of the most commonly used features: Haar like features [14],
Edge Orientation Histograms (EOH) [4], Local Binary Patterns (LBP) [17], Histogram
of Oriented Gradients (HOG) [1]–with a boosted cascade detector configuration [14].
Contrary to classical approaches which only take detectionperformance into consid-
eration, our boosted cascade detector is constructed taking detection performance and
feature computation time into consideration simultaneously. Our implementation shows
very promising detection performance on the INRIA public dataset [1] with only a 6%
Miss Rate at 10−3 FPPW while on average taking 1.8× less time than that of a similar
detector constructed without computation time consideration.

1.1 Related Works

The problem of person detection has been studied for more than a decade by researchers.
Through these times, a large number of different approaches have been proposed; it is

practically impossible to mention all due to space constraints. We will restrict this sec-
tion by highlighting works on monocular images that employ heterogeneous features
in a sliding window candidate generation scheme (see recentsurvey papers [3, 5] for a
broader review).

The interesting pioneering works on person detection were first reported using Haar
like features [11,15]. Since then, person detection has improved a lot. The work of Dalal
and Triggs [1] which introduced and used HOG features was next in line to set the bar
high. To date, HOG is the most discriminant feature, and in fact, a majority of detectors
proposed hence-after make use of HOG or its variant one way oranother [3]. Most
of the works that have improved over [1] combine HOG with multiple other features
(e.g. with LBP [17], with edgelets and covariance descriptors [18]), i.e., they consider
heterogeneous features.

Different features try to capture different facets of a given image: edge distribution,
intensity differences, appearance variations,etc. Using heterogeneous features, thus,
helps acquire complementary information that could be useful to handle challenging
detection tasks. This has clearly been demonstrated in the literature. To mention a few:
Walk et al. [16] considered HOG, Histogram Of Flow, and CSS features and carried
out different experiments by combining them combinatorially. The best results were re-
ported when considering a feature set made up by concatenating the three sets. Schwartz
et al. [13] presented a detection system composed of HOG, color frequency features,
and co-occurrence features, asserting similar conclusions. The same goes to Hussain
and Triggs [7] whom considered feature sets made up of HOG, LBP, and Local Ternary
Patterns (LTP).

The main issue to consider with heterogeneous features is how to combine them.
The trivial approach is to concatenate all features to make avery high dimensional
vector and use SVM as a classifier [16]. The downside with thisis the high computation
time required to extract the complex features and to apply the SVM weights on each
candidate window which inevitably leads to low frame rates.Applying a dimensional
reduction scheme [7, 13] might help performance and speed uptraining period, but,
it still suffers during detection because of the data projection involved. In addition,
different features could possibly be best dealt with different classifiers–they could for
example lie in linear or non-linear spaces which may requiredifferent classification
techniques [18].

A second approach is to gather all heterogeneous features inone big pool and learn
an ensemble classifier using a boosting technique. Employing an attentional cascade
configuration [14] is natural with this as it speeds up detection drastically. This has the
added advantage that different classifier types well suited to a specific feature could
be used as weak learners in the boosting framework. Representative works include the
works of Dolĺar et al. [2], which used heterogeneous integral channel features in a
boosting framework, and Geronimo et al. [4], which combinedEOH and Haar like fea-
tures via AdaBoost. At each iteration of the boosting learning cycle, the feature which
reflects the best detection performance on the training set,measured by the weighted
classification error, is added to the ensemble. Evidently, this tends to favor complex fea-
tures amongst different candidates irrespective of the associate computation time. The
preferred way would be to weigh detection performance against computation time and

privilege features that make a compromise between the two. In this vein, Jourdheuil
et al. [8] proposed to add a multiplicative factor to penalize the criterion to minimize
in AdaBoost with a normalized computation time corresponding to each feature. This
way features are selected only if their combined detection performance and normalized
computation time are better (have the minimum value) than the other candidates. The
authors used this to detect persons in a stereo camera using features extracted from
depth maps and images. Their implementation led to a detector with an acceptable de-
tection performance and reduced computation time. Inspired by this, we use a similar
formalization to learn a cascaded person detector on heterogeneous features extracted
from monocular images. This work differs from [8] in three main aspects: First, it is
intended for monocular images and hence employs five commonly used heterogeneous
features that have never been considered all together. Second, unlike [8] which use a
single node, it uses a cascaded configuration to allow early rejection for improved detec-
tion speed. Third, evaluations and results are presented onthe INRIA public dataset [1].
These points conglomerated make the gist of the contribution this paper tries to make.

This paper begins by highlighting the different heterogeneous pool of features prop-
erly categorized in section 2. In section 3, it describes theclassifier learning algorithm
with emphasis on computation time consideration. Finally,experimental results are de-
tailed in section 4 finishing off with concluding remarks in section 5.

2 Heterogeneous Pool of Features

The heterogeneous pool of features considered are a mix of both scalar and multi-
dimensional features. Five different families of features are used. Scalar features: Haar
like and Edge Orientation Histogram features; multi-dimensional features: Color Self
Similarity, Local Binary Patterns, and Histogram of Oriented Gradients. Each feature
family is extracted within a given fixed size image candidatewindow of 64x128 pixels.
To generate the overcomplete set of features, the position and scale (width and height)
of the region the features are computed is exhaustively varied within the candidate win-
dow. The computation time of each feature is determined irrespective of any imple-
mentation optimization that can be done during detection, e.g. use of caches to buffer
some features. This helps establish an upper bound on it. Foreach feature considered,
the computation time is made up of two components. A part associated with image pre-
processing (including rudimentary feature preparation) that is mostly shared by features
of the same family, and a second part pertaining to the feature extraction and necessary
computation during detection (e.g., multi-dimensional feature projection). For a feature
indexed byj, these are represented asτp, j andτe, j consecutively; the combined com-
putation time of that feature becomesτ j = τp, j + τe, j. These values are determined by
averaging over 1,000 times repeated computation iterations.

2.1 Scalar Features

Haar like Features Haar like features represent a fast and simple way to compute
region differences. These features have been extensively used for face, person, and var-
ious object detections, e.g. [4, 9, 11, 14]. For a given feature, the response is obtained
by subtracting the sum of pixels spanned by the black region from the sum of pixels

spanned by the white region. In this work, we have used the extended Haar like fea-
tures from Viola and Jones [14] and Lienhart and Maydt [9], which contains upright
and tilted filters of various configurations as shown in fig. 1.In our implementation, a
horizontal and vertical stride of 2 pixels is used to generate the overcomplete set,Fhaar.
As these features furnish scalar feature values, a decisiontree is used as a weak classi-
fier. Computationally, these features are very cheap to extract. The pre-processing stage

Fig. 1: Set of extended Haar like features used.

for this family of features corresponds to the integral image computation. The feature
extraction is carried out efficiently with a few additions and subtractions on the inte-
gral image; feature evaluation (prediction) during detection is done via a table lookup
operation (using a table expanded from the decision tree).

Edge Orientation Histogram (EOH) EOH is another feature set that has been used
for person detection [4]. These features represent ratios of gradients computed from
edge orientations histograms. Within a given overlaid region, first gradients are com-
puted. Then, a gradient histogram is built by quantizing thegradient orientations. Fi-
nally, the ratios of each histogram bin with one another makes up individual features.
The overcomplete EOH feature pool set, denotedFEOH, is constructed by extracting
feature values for all possible combinations of overlaid region location and size within
the candidate window.In this work, gradient orientation quantization levels of 4 (shown
to give best results in [4]) and horizontal and vertical strides of 4 pixels are used. Owing
to the scalar feature values, decision trees are used as a weak classifier.

The pre-processing step, here, corresponds to the gradientcomputation (this is also
shared by HOG features). The feature extraction relates to the gradient histogram con-
struction and bin ratio computation. Similar to Haar like features, the feature evaluation
during detection is merely a memory lookup operation.

2.2 Multi-dimentional Features

Color Self Similarity (CSS) CSS features, proposed by Walk et al. [16], encode color
similarities in different sub-regions. To compute the features, first the image window is
subdivided into non-overlapping blocks of 8x8 pixels. Thenwithin each block, a 3x3x3
color histogram inHS V space is built with interpolation. Then, similarities are com-
puted by intersecting individual histograms. In [16], all histogram intersections values
are used to define one feature vector. But, here, we define the intersection of one his-
togram block with the rest of the blocks as a single feature. With an 8x8 block size
and 64x128 candidate window, there are 128 different blocks. The intersection of one
block with the rest gives 127 scalar values (excluding intersection with itself). These
scalar values all together make the feature vector computedfor the block location. This
is repeated for each block resulting in 128 different features, the CSS feature pool set
(FCS S), of 127 dimensions each. Fig. 2a shows an exemplar feature computed at the
crossed block position. The figure at the bottom is an unrolled representation of the fea-
ture shown at the top right; observe how neighboring blocks are similar. These features
are few in number and multi-dimensional, hence, SVM is used as a weak classifier.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Feature Dim.

(a) CSS

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

Feature Dim.

(b) CS-LBP

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

Feature Dim.

(c) HOG

Fig. 2: Sample extracted multi-dimensional features.

The complete set of features extracted from this family relyon a histogram com-
puted once for each block. If one feature is extracted, extracting another feature involves
using the same histogram with changed reference block for the histogram intersection.
Keeping this in mind, the pre-processing stage encompassesthe histogram computation.
The rest of the computation time is consumed by the extraction (histogram intersection)
and the multiplication by the SVM hyperplane during detection.

Local Binary Pattern (LBP) Local Binary Patterns were initially proposed as a texture
characterization features [10]. Since then, they have beenused in many applications–
primarily facial analysis, e.g. [19], and person detection, e.g. [17]. To date, many vari-
ants of LBP have been proposed. In this work, we adhere to Center-Symmetric Local
Binary Pattern (CS-LBP) as feature because of the short histograms it furnishes and
its demonstrated good performance on person datasets [6]. In our implementation, CS-
LBP is computed over a 3x3 pixel region (best results reported in [6]) by comparing the
opposite pixels and adding a modulated term accordingly (see [6] for detail). This gives
a scalar value less than 16 which is assigned to the center pixel. This is done for all the
pixels in the candidate window, top right image in fig. 2b (values are scaled to aid vis-
ibility). Finally, the actual feature is constructed by constructing a CS-LBP histogram
over a given overlaid region. Fig. 2b bottom shows an exemplar histogram obtained
from the overlaid rectangular region shown on top. Similarly, by varying the position
and scale of the overlaid region exhaustively within the candidate window gives the
LBP feature pool, denotedFCLBP. The histograms have 16 bins corresponding to CS-
LBP quantization levels. Since the feature vectors are no more scalar, Fisher’s Linear
Discriminant Analysis (LDA) with decision tree is used as a weak classifier. Fisher LDA
is preferred over SVM because of its comparatively short training duration. Given the
large number of features in this feature pool family (table 1), employing SVM would
lead to an overwhelming training period.

The pre-processing stage for this feature family corresponds to the raw CS-LBP
feature computation. The rest is made up of histogram construction (extraction phase),
and LDA projection during detection.

Histogram of Oriented Gradients (HOG) HOG features are extracted first by com-
puting the gradient, then by constructing a histogram weighted by the gradient in an
atomic region called a cell. Histograms of neighboring cells are grouped into a single
block, cross-normalized and concatenated to give a featurevector per block. The final
extracted feature within a given detection window is the concatenation of the vectors
from each feature block (details in [1]). In this work, we usethe original HOG features
as proposed by Dalal and Triggs [1] with a cell size of 8x8 pixels, a feature block size
of 2x2 cells and an 8 pixel horizontal and vertical stride. For a given overlaid region, the
feature vector corresponds to a concatenation of all block features within it. The over-
complete set,FHOG, is then generated by varying the location and scale of the overlaid
region. Fig. 2c demonstrates a sample feature computed in this manner. Computation
time wise, the gradient computation falls in the pre-processing step and the rest in the
extraction part.

Table 1: Feature pool summary with minimum and maximum feature computation time
in each feature family. Time is reported as a multiple of the cheapest feature computa-
tion time of 0.0535µs.

Feature Type No of features
τmin τmax Weak Classifier

(tp)min (te)min (tp)max (te)max

Haar like 672,406 0.6 0.4 1.88 1.6 Decision Tree
EOH 712,960 2.72 2.11 315.65 2.1 Decision Tree
LBP 59,520 1.24 14.26 111.6 282.04 LDA + Decision Tree
CSS 128 560.75 457.19 560.75 457.19 SVM
HOG 3,360 10.59 479.12 315.75 51103.8SVM

Table 1 summarizes the characteristics of the heterogeneous pool of features con-
sidered. The total number of features in each family, the minimum and maximum fea-
ture computation time (both pre-processing,tp, and extraction,te)–scaled with 0.0535
µs1 which corresponds to the combined computation time of cheapest feature, a two
boxed horizontal Haar feature–along with the weak classifier used are listed. Finally,
the complete feature pool is determined by merging all heterogeneous feature pool
sets,i.e. F = {FHaar,FEOH ,FCLBP,FCS S ,FHOG}. The computation time of each indi-
vidual feature is denoted asτ j, where j ∈ {1,2, ..., |F |}. Each feature is also associated
with a weak learnerh j that maps each instance of the training set to a discrete label,
h j : X → {−1,+1}.

3 Classifier Learning Algorithm
3.1 Feature Computation Time

Equation 1 shows the smoothed normalized computation time,τ̃ j, for each feature
which will be used within AdaBoost.β ∈ [0,1] is an exponential smoothing coefficient.
τmax,i denotes the maximum computation time registered within each distinct feature
pool family, i.e., i ∈ {Haar, EOH, CLBP, CS S , HOG}.

τ̃ j =
τ
β

j
∑
i
τ
β

max,i

(1)

1 Computed on a core i7 machine running at 2.4Ghz

The computation time associated with each feature,τ j = τp, j + τe, j, is not constant
(consequentially ˜τ j changes too). The exact value evolves during the classifier learning
stage. It changes in two cases. The first is when a feature thathas already been selected
is considered in future cascade nodes, and the second is whena feature from the same
family gets selected. In the prior case, the computation time of the selected feature is
replaced by a constant time,τ0, in future references which accounts for only memory
access. In the latter case, the computation time for all of the features in the same family
gets affected, specifically, the time associated with the pre-processing stage,τp, j, is set
to zero for all the features in that family. This is logical and is done to favor features
of the same family. For example, if a Haar feature is selected, it will better to consider
another Haar feature so the integral image computation can be done once for the area
spanned by the two features, rather than considering another feature from a different
family which will require a different pre-processing step. This way the computation
time of the features within the same family will be levied significantly speeding up
detection. Accordingly, the normalized computation time of all affected features is up-
dated. The computation time,Tk, of a trained cascade nodek is determined straightfor-
ward by adding the computation time of each selected component features (associated

weak learners),i.e.,Tk =
T∑

t=1
τt. Here, an indext is used to signify reference of a selected

feature andT represents the total number of features in this cascade node.

3.2 Modified Discrete AdaBoost

Given the complete heterogeneous feature pool,F , and associated computation time,
{τ j}{ j=1,2,...,|F |}, a modified version of Viola and Jones Discrete AdaBoost [14]is used to
learn a strong classifier for each node of the cascade. As discussed in section 2, each
feature is associated with a unique weak learner,h j, that maps the given training setX
to a discrete label,i.e., h j : X → {−1,+1} 2. The original Discrete AdaBoost algorithm
constructs a strong classifier by iteratively selecting thebest weak classifier,ht, based
on the error distribution on the training set,ǫ j, weights it, withαt, and adds it to the en-
semble. Each subsequent addition tries to correct the errors made by previously added
weak classifiers. The modification here is to select the best weak classifier that mini-
mizes the error weighted with a normalized computation timeof the features, equation
2. This modification enables AdaBoost to select the feature (weak learner) that offers
the best compromise between computation time and detectionerror. This is detailed in
algorithm 1 (main modifications on the classical one are shown in bold typeface).

ht = arg min
h j∈F

τ̃ j ∗ ǫ j (2)

Given the vast number of features involved, looping througheach feature set at each
iteration of AdaBoost is infeasible. Hence, as is commonly done, e.g. in [18,20], at each
AdaBoost iteration 3000 features are randomly sampled, proportional to the number of
features from each family, to build the strong per node classifier incrementally. 3000 is
well way above the suggested number of trials,≈ 299, required to obtain amongst the
best 0.05 estimates of random variables with a probability of 0.99 [12](pp. 180). Once,

2 Because of this we can use a weak learner and a feature interchangeably.

the required detection performance, specified a priori via aNode Miss Rate (NMR) and
Node False Positive Rate (NFPR), is achieved on a separate validation set, the feature
addition stops and the node is retrained using both the training and validation set up until
the previously validated number of features have been added(see [14] for details). The
final ensemble obtained is the strong classifier for this nodeand construction proceeds
to the next node.

Algorithm 1 Modified Discrete AdaBoost

Given: A set of labeled examples{(xm, ym)}{m = 1, ..., (n+ + n−)} where xm ∈ X, ym ∈ Y =
{−1,+1}

Extract Features:F = {FHaar,FEOH ,FCLBP,FCS S ,FHOG}

Initialize: D1(m) =
1

(n+ + n−)
\\distribution over training samples

For t = 1, ...,T

� Select 3000 features randomly,F ∗ ⊂ F
� Find the best weak learnerht : X → {−1,+1}

� Compute τ̃ j =

τ
β

j

∑

i
τ
β

max,i

� ht = arg min
h j∈F

∗

τ̃ j ∗ ǫ j whereǫ j =

n++n−∑

m=1

Dt(m)[ym , h j(xm)]

� Update the computation time of the selected featureτ j to τ0

� Update the computation time of the features in the same family as the selected feature
by setting their pre-processing time to 0, i.e., τ j ← τe, j

� αt =
1
2

ln
1− ǫt
ǫt

� Dt+1(m) =
Dt(m) exp(−αtymht(xm))

Zt
\\Zt is a normalization factor used to make Dt+1

a distribution

Strong classifier:H(x) = sign(
T∑

t=1
αtht(x)) Computation time of cascade node:T =

T∑
t=1
τt

3.3 Cascade Construction

The cascade detector construction is inspired by the works of Viola and Jones [14]. The
detection performance requirement of each cascade node arespecified by two param-
eters, the NMR and NFPR. Given a total ofN+ andN− cropped positive and negative
training windows respectively (bear in mindN− >> N+), the construction begins by
randomly selecting a subset of negative windows,n−, and using all positive training
windows,n+ = N+. This is divided into a training and validation set, in our case 60%
and 40% respectively. Following, the modified AdaBoost is used to learn the strong
classifier for this node using the heterogeneous features set.

This learning is monitored via the validation set; at each boosting iteration the zero
threshold is lowered to see if the strong classifier meets theNMR and NFPR criteria.

When that is achieved, the AdaBoost is retrained using the whole training and valida-
tion set to the point determined during validation. This completes the construction of
the first node. Henceforth, allN− are tested with the trained node and all those that get
misclassified (harder examples) are used in consecutive stages of the cascade. The pro-
cess continues until such a point where the number of negative windows is less than the
positive windows, in which case the construction terminates furnishing the whole de-
tector cascade. The MR and FPR of the entire cascade are products of the nodes NMR
and NFPR consecutively.

4 Experiments and Results
4.1 Evaluation metrics

To evaluate the detection performance, Detection Error Tradeoff (DET) curves with
Miss Rate versus False Positive Per Window (FPPW) on a log-logscale are used [1].
To determine these values the True Positives, False Positives, True Negatives, and False
Negatives of the test set are determined via a per-window approach [3]. The per-window
approach relies on cropped labeled positive and negative train and test set. The training
is performed using these cropped images and the test likewise (please refer [3] for
details).

4.2 Dataset

Experiments are carried out using the public INRIA person detection dataset [1]. The
training set for this dataset consists of 2,416 cropped positive instances and 1,218
images free of persons (out of which many negative train cropped windows are gen-
erated). The test set contains 1,132 positive instances and 453 person free images for
testing purposes. This is the most widely used dataset for person detector validation and
comparative performance analysis. For constructing the cascade the complete positive
instances and randomly sampled, at different scales and locations, 2.55× 106 negative
cropped instances from the training set are used. During cascade construction, the num-
ber of negative windows per each node,n−, has been kept equal to the positive windows
n+, i.e., 2,416. For testing, the 1,132 positive instances and uniformly sampled 2× 106

cropped windows from the test set are used.

4.3 Results

Validation: In our framework the parameters that need to be specified are per node
NMR and NFPR and the depth of the decision tree to use. Since wewant the cascade to
detect all possible positive instances, a 0.0 NMR is used for each node. The NFPR on
the other hand affects the number of cascade nodes built. Higher values resultin more
number of nodes to exhaust the training set. As a compromise,NFPR of 0.5 is used so
each node is required to discard at least 50% of the incoming candidate windows.

The best depth of the decision trees for Haar like features, EOH, and LBP features
is determined empirically using a 1 fold cross validation. Adecision tree depths of 2, 3,
and 3 are used for Haar like features, EOH features, and LBP features respectively. The
weak classifiers learned using these depths offer a better trade off between detection
performance and overfitting on the validation set. Computing Fisher LDA weights, for

LBP features, per each node makes the classifier overfit on thetraining set with deteri-
orated performance on the validation set. Hence, the LDA weights for LBP computed
at the first node are used throughout the cascade by learning only new decision trees.

Similarly, the exact value ofβ, the computation time smoothing exponential factor,
to use in the modified AdaBoost is determined empirically through a validation step.
The modified AdaBoost is used to learn a single nodal cascade using differentβ values
on a subset of the training set. Then the classification errors on a validation set and the
conglomerated computation time of the trained node is determined to select the best
value that offers a good trade-off. Fig. 3 shows the validation result plots for different
values ofβ. Clearly, higherβ reduces smoothing, in effect, features with low computa-
tion time dominate improving speed but with poor detection performance. Lower values
favor complex features. As a compromise, aβ value of 0.2 is used to train the final cas-
cade classifier.

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Modified AdaBoost Iterations

C
la

ss
ifi

er
 E

rr
or

0.05, Time Scaled: 1.00x
0.10, Time Scaled: 0.46x
0.20, Time Scaled: 0.24x
0.30, Time Scaled: 0.02x
0.50, Time Scaled: 0.02x

Fig. 3:β parameter tuning in the modi-
fied algorithm.

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2
DET − Person Detection

false positives per window (FPPW)

m
is

s
ra

te

Classical AdaBoost
Modified AdaBoost

Fig. 4: Comparative performance evalua-
tion of the cascade detector on the INRIA
dataset.

Table 2: Proportion of features in the final cascaded detector.
Haar like EOH LBP CSS HOG Average Time Improvement

Classical AdaBoost25.36% 53.79% 10.16% 4.00% 6.67% 1.0x

Modified AdaBoost 86.72% 0.00% 9.14% 2.40% 3.90% 1.8x

Test results: A complete boosted cascade detector is learned using the framework pre-
sented,i.e., with a modified computation time weighted AdaBoost, using the combined
training and validation dataset (referred as modified AdaBoost hereafter). As a bench-
mark, a second complete cascade detector is also learned using the classical Discrete
AdaBoost (referred as classical AdaBoost hereafter). The modified AdaBoost cascade
has ten nodes with a combined total of 821 features. The minimum and maximum num-
ber of features per node are 6 in the first and 350 on the 7th node, respectively. The pro-
portion of selected features from each family is shown in table 2. The most used features
are Haar like features, 86.72%, and the least are CSS features, 2.40%. Compared to the
classical cascade, there is smaller number of the complex multi-dimensional features.
No EOH features are selected. This is because, Haar like and EOH features exhibit
comparable detection performance but Haar like features have less computation time
thus are privileged. The selected features for the first nodeof the cascade are shown
in fig. 5. For HOG and LBP, the illustrations show the support region of the selected

features. The four selected Haar like features are also shown in fig. 5c and 5d. Indeed,
four out of six selected features are from the computationally cheapest feature category.

(a) HOG (b) LBP (c) Haar like (d) Haar like

Fig. 5: The features selected and used in the first node of the cascade superimposed on
an average human gradient image.

The performance of this modified detector on the test set is depicted as an MR vs
FPPW plot in fig. 4. It achieves a 0.06 MR at 10−3 FPPW. This is a 2% loss compared to
the detection performance achieved by the classical AdaBoost at the same FPPW. But,
this reduction results on an average 1.8× accelerated speed. The final detector misses
only 97 persons out of the total 1132 tested instances. A majority of these mistakes
correspond to persons with non-upright/non-conventional poses. Some of the detection
mistakes are shown in fig. 6 for both positive and negative samples.3

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6: Sample misclassified positive (a to d) and negative (eto h) instances.

5 Conclusion

In conclusion, in this work, a computation time weighted AdaBoost has been presented
to learn a cascaded person detector using heterogeneous pool of features. The final de-
tector achieves 1.8× average speed up compared to a classical AdaBoost based cascade
with only a 2% detection performance loss at 10−3 FPPW. At this point, it is capable
of detecting persons with a very low Miss Rate of 6% as demonstrated on the INRIA
public dataset.

3 Sample detections are not shown here due to space constraints. Please visit home-
pages.laas.fr/aamekonn/acivs/ for illustration.

Currently, investigations are on the way to use this detector in a tracking-by-detection
framework in the context of Robotic navigation in crowds.

Acknowledgment

This work was supported by a grant from the French National Research Agency under
grant number ANR-12-CORD-0003.

References

1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR.
pp. 886–893 (2005)

2. Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proc. BMVC. pp.
1–11 (2009)

3. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state
of the art. IEEE T-PAMI 34(4), 743–761 (2012)

4. Geŕonimo, D., Ĺopez, A.M., Ponsa, D., Sappa, A.D.: Haar wavelets and edge orientation
histograms for on-board pedestrian detection. In: Proc. IbPRIA. pp. 418–425 (2007)

5. Geronimo, D., Lopez, A., Sappa, A., Graf, T.: Survey of pedestrian detection for advanced
driver assistance systems. IEEE T-PAMI 32(7), 1239–1258 (2010)

6. Heikkil, M., Pietikinen, M., Schmid, C.: Description of interest regionswith local binary
patterns. Pattern Recognition 42(3), 425 – 436 (2009)

7. Hussain, S., Triggs, B.: Feature sets and dimensionality reduction for visual object detection.
In: Proc. BMVC. pp. 1–10 (2010)

8. Jourdheuil, L., Allezard, N., Chateau, T., Chesnais, T.: Heterogeneous adaboost with real-
time constraints - application to the detection of pedestrians by stereovision. In: Proc. VIS-
APP. pp. 539–546 (2012)

9. Lienhart, R., Maydt, J.: An extended set of haar-like features forrapid object detection. In:
Proc. ICIP. pp. 900–903 (2002)

10. Ojala, T., Pietikinen, M., Harwood, D.: A comparative study of texture measures with clas-
sification based on featured distributions. Pattern Recognition 29(1), 51 –59 (1996)

11. Papageorgiou, C., Poggio, T.: A trainable system for object detection. IJCV 38(1), 15–33
(2000)

12. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, Cambridge, MA, USA (2001)

13. Schwartz, W.R., Kembhavi, A., Harwood, D., Davis, L.S.: Human detection using partial
least squares analysis. In: Proc. ICCV. pp. 24–31 (2009)

14. Viola, P.A., Jones, M.J.: Robust real-time face detection. IJCV 57(2), 137–154 (2004)
15. Viola, P.A., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and ap-

pearance. In: Proc. ICCV. pp. 734–741 (2003)
16. Walk, S., Majer, N., Schindler, K., Schiele, B.: New features andinsights for pedestrian

detection. In: Proc. CVPR. pp. 1030–1037 (2010)
17. Wang, X., Han, T., Yan, S.: An HOG-LBP human detector with partial occlusion handling.

In: Proc. ICCV. pp. 32–39 (2009)
18. Wu, B., Nevatia, R.: Optimizing discrimination-efficiency tradeoff in integrating heteroge-

neous local features for object detection. In: Proc. CVPR. pp. 1–8 (2008)
19. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an

application to facial expressions. IEEE T-PAMI 29(6), 915–928 (2007)
20. Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade of his-

tograms of oriented gradients. In: Proc. CVPR. pp. 1491–1498 (2006)

