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Abstract 

The European Water Framework states that macrophyte communities (seaweeds 

and seagrass) are key indicators of the ecological health of lagoons. Furthermore 

the restoration of these communities, especially the Zostera meadows, is one of 

the main objectives of the Berre lagoon restoration plan. Consequently a 

monitoring program of the main macrophyte species still present in the lagoon 

was initiated in 1996. This monitoring resulted in a sequence of eleven spatially 

structured annual tables consisting of the observed density of these species. These 

tables are processed in this study. 

First, we specify the principles of Beh’s Ordinal Correspondence Analysis 

(OCA), designed for ordered row/column categories, and compare this method to 

classical Correspondence Analysis (CA). Then, we show that OCA is 

straightforwardly adaptable for processing a sequence of ordered contingency 

tables like ours. Both OCA and CA are afterwards used to reveal and test the 

main patterns of spatiotemporal changes of two macrophyte species in the Berre 

lagoon: Ulva and Zostera. The results we obtained are compared and discussed. 

Keywords: ordinal correspondence analysis, tests, Chi-squared partitioning, 

ecological monitoring, Macrophytes, Berre lagoon 

 

1. Introduction 

Since the early to mid-20th century coastal lagoons and estuaries have become among 

the most disturbed coastal ecosystems in the world. The initial causes are relatively well 

identified: eutrophication and organic pollution as a result of increasing agriculture, 

urbanisation in river catchments and port facilities, aquaculture, turbidity and over-

sedimentation [16, 11]. Seagrass beds, which are common dwellers of these habitats, are 

declining throughout the world [33] at the expense of macroalgae. Indeed, 



eutrophication created suitable conditions for macroalgae blooms in several coastal 

lagoons, bays and estuaries over the last decades [37, 7, 18]. In general, the process of 

eutrophication leads to a shift in the macrophytobenthic community from slow-growing 

seagrasses to phytoplankton and fast-growing macroalgae such as Ulva. The high 

surface-area to volume ratio of these macroalgae favours rapid nutrient uptake, high 

production and rapid growth rates, which enables them to outcompete the original 

vegetation [29, 25]. 

  

Monitoring of submerged aquatic vegetation distribution and abundance ranges from 

coarse assessments of presence/absence or area distribution in large areas – based on 

remotely sensed data and presented as macroscale maps - to fine-scale diver 

assessments of depth limits and cover (in % of the bottom surface area), biomass or 

shoot density along depth gradients [22, 6]. The cover is indeed the most frequently 

used measure for vegetation surveys, since it is not destructive and requires relatively 

little effort compared to other measurements of vegetation health. 

The Berre lagoon (Provence, France) is one of the largest Mediterranean brackish 

lagoons (155 km²) and was occupied at the turn of the 20th century by extensive 

seagrass meadows (perhaps over 6000 ha). Subsequently the lagoon was disturbed by 

urban and industrial pollution. The monitoring of macrophytes  in this lagoon is based 

on visual censuses in scuba-diving along permanent transects, each compounded of 20 

spatial units. A coding in six classes (intervals of cover) was adopted for studying the 

temporal variations (1996 to 2008) of the cover by eight species (or groups of species) 

of macrophytes. In this paper, we will focus on only two species of cardinal importance 

for evaluating the health of this ecosystem: Zostera and Ulva. Our goal is double: 



1. from the spatio-temporal side, we want to investigate whether or not the distance 

to the shoreline (indirectly associated with coastal topography, depth, currents, 

etc.) is related to the abundance of each species and, when the answer is 

positive, we will try to identify homogeneous regions where its dynamics is 

important (regions of interest) 

2. from the purely temporal side, it is capital to investigate the ways the new policy 

for freshwater discharge established since 2004 (the 8th observation) impacted 

the abundance of each species in its regions of interest. 

We chose to investigate these points through the Ordinal Correspondence Analysis 

(OCA) of Beh [1, 2, 3] and classical Correspondence Analysis (CA). Because of the 

above decision-making concerns, we will focus on the different decompositions of the 

Peason chi-squared statistics associated with CA and OCA. For that purpose, we first 

compare decomposition and reconstitution formulas associated with both of these 

methods and propose original representations of the chi-squared statistics 

apportionment. We also propose original representations of the interaction terms in 

OCA, and a variant of this method suited for analyzing a sequence of doubly-ordered 

contingency tables. 

2. Material and methods 

2.1 Study site and sampling procedures 

In 1966 the diversion of the Durance River towards a hydroelectric power plant and 

then into the Berre lagoon resulted in a heavy input of freshwater. Surface water salinity 

declined from 24-36 to 1-22 resulting in haline stratification, eutrophication and 

unstable ecological conditions [26, 27, 36]. The seagrass beds underwent a dramatic 

decline. In fact they are functionally extinct since 1998; in 2004 they occupied a total 

surface area of 1.5 ha [5]. During that time, large macroalgae blooms mainly constituted 



of Ulva  were observed in the lagoon. Consequently enormous amounts of drift algae 

were washed up on the shore [30, 35] (G. Bernard and P. Bonhomme pers. obs.).  

A new policy for freshwater discharges aiming at restoring the lagoon started up in 

2004. The policy induced strong changes in the lagoon: freshwater and silt inputs from 

theSt-Chamas hydroelectrical plant were heavily reduced. As a result, the global salinity 

of the lagoon increased while its stratification and the frequency of anoxia phenomena 

in its deepest part decreased.  

[Figure 1 near here] 

 

Thirty one permanent transects [35] (G. Bernard & P. Bonhomme, pers. obs.), 

100 m long by 1 m width, and regularly distributed along the shore (see Fig. 1), were 

annually explored by scuba-diving, in July, from 1996 to 1998 and from 2001 to 2008 

(11 years of sampling). Each transect is divided in 20 successive individual units (5m² 

each). The cover of Zostera and Ulva (in % of the bottom surface area) has been 

evaluated by visual census for each individual unit and has been coded with an ordinal 

scale in 6 classes, ranging from 0 to 5 (see table 1). We used a “à la Braun-Blanquet'' 

[31] cover score adapted for marine ecology, because the field of vision of divers is 

reduced.  

[Table 1 near here] 

Thus, for each species, the data consists in 11 annual contingency tables, of 

common size 206× ; the ith row of each table lists the overall frequency ( )31≤  of the 

abundance code 1−i  at each one of the 20 successive units composing transects. Thus, 

both the variables associated with rows and column of these tables are ordinal. 

2.2 Statistical methods 



Notice first that the data set associated with each macrophyte consist in a “cube” 

of size KJI ×× , with I=6, J=20, K=11. There are in the literature a lot of statistical 

methods suited for such three-ways data, which can be essentially divided into two large 

families. The first one is a whole family of genuine three-way methods: 

CANDECOMP/PARAFAC, TUCKER, etc.  [23], which are extensions of PCA to 

three-ways quantitative data. These methods were not designed for contingency tables, 

but Carlier and Kroonenberg [12] proposed an extension of CA to three-way 

contingency tables. Nevertheless, to our knowledge, none of these methods has been 

adapted to ordinal data. 

The second family was designed for processing a sequence of partial tables. 

Roughly speaking, these methods consist in analyzing a “compromise” table built from 

this sequence. For instance, in the setting of Multiple Factor Analysis and related 

methods, the compromise is obtained by weighting the partial tables according to their 

dominant eigenvalues [38], while in the setting of STATIS [24] the compromise is 

obtained from a preliminary PCA of operators associated with the partial tables. In the 

same line, Foucart [15] proposed a method consisting in performing CA of the average 

table, the rows and columns of the partial tables being represented as supplementary 

elements. This method is frequently used by ecologists [28], and we will show that it is 

straightforwardly adaptable for ordinal data. The relationships between both these 

families were investigated by Kiers [20, 21]. 

Let us now introduce the notation used. Depending on the context, JI × will 

denote either the dimensions of a table of I rows and J columns, or the Cartesian 

product of the sets { }I,,1L  and { }J,,1L . We shall denote K1  the constant vector 

t)1,,1,1( L  of dimension K, ( )( ) JIjiji VUVUVU
×∈

==⊗
,

':  the tensor product of two 

vectors of respective length I and J, and o  the element-wise (Hadamard) product of 



matrices: ( ) jijiji BABA ,,, :=o , where jiA ,  denotes the entry of the matrix A at the ith 

row and jth column (for further details, see for instance [19]). At last, the expression 

“ l≅V ” will mean that the random variable V obeys the distribution l , and p
mδ  will 

denote the Kronecker symbol ( 0=p
mδ if pm ≠  and 1=p

pδ ). 

2.2.1 Correspondence Analysis in a nutshell (Benzécri, 1967; Beh, 2004; Greenacre, 

1984) 

It is time now to remind the reader of essential principles of CA. Let T be some 

JI × contingency table of grand totaln , nTP /:=  be the associated probabilities table, 

and ∑ =
= J

j jii PP
1 ,:  (resp. ∑ =

= I

i jij PP
1 ,: ) be the marginal probabilities. The aim of CA 

is to highlight the ways P  possibly differs from the matrix JI PP ⊗  of general entry 

ji PP  or, in other words, to investigate the ways the model of complete independence 

between rows and columns of T diverges from reality. 

Practically, it consists [3, 17] in performing the Generalized Singular Value 

Decomposition of the matrix Θ  of general entry 
ji

ji
ji PP

P,
, :=θ  (Pearson ratios), giving 

rise to a system of singular values and singular vectors (also named principal axes) 

( ) MmBA mmm ≤≤0:,;λ , with ]1,1[: −−= JIMinM  (remember that 10 =λ , IA 10 =  

and JB 10 = ). We can now write: 

jmm

M

m
imji BA ,

0
,, λθ ∑

=

=  

or, using tensor products [4, 19] (see also the appendix): 

)1(
0

m

M

m
mm BA ⊗=Θ ∑

=

λ  

and also the reconstitution formula: 



( ) ( ) ( ) )2(
1
∑

=

⊗⊗+⊗=Θ⊗=
M

m
mmJImJIJI BAPPPPPPP oo λ . 

The singular vectors are centred and normed, i.e.fulfil: 

)3(,),( ,
1

,,
1

,
p

mjpj

J

j
jmipi

I

i
im BPBAPAMMpm δ==×∈∀ ∑∑

==
. 

They also verify: 

∑ ×∈
=

JIji jpjiim
p

mm BPA
),( ,,, )4(δλ . 

Consider now the Pearson chi-squared statistics  

( )2

),( ,
2 1: ∑ ×∈

−×=Χ
JIji jiji PPn θ . 

Because of formula (1), we obtain an alternative decomposition of this statistics: 

∑
=

=Χ M

m
mn 1

2
2

)5(λ . 

2.2.2 Correspondence Analysis with ordered categories 

Since the principal axes issued from CA do not take into account the order of the 

categories associated with the rows and the column of P , Beh [1] proposed an 

alternative decomposition of 2Χ , where the role of principal axes is played by 

orthonormal polynomials. To compare his Ordinal CA (OCA) with CA, we will use the 

same notations as in the previous section, denoting { }11: −≤≤ ImAm  the system of 

row polynomials, and { }11: −≤≤ JpBp , the one of column polynomials. Each one of 

these systems only depends on a score [2], and on the associated marginal probability, 

either IP  or JP . The chosen score reflects the ordered structure of the categories. The 

polynomials, resulting from Emerson’s recurrence formula [14, 2], are centred and 

verify: 

)6(),1()1(),( ,
1

,,
1

,
p

mjpj

J

j
jmipi

I

i
im BPBAPAJIpm δ==−×−∈∀ ∑∑

==
 



There are substantial differences between principal axes of CA and these 

polynomials: as singular vectors, axes are paired, as shown in formula (1); moreover 

they are naturally sorted according to their common variance. Emerson’s polynomials 

don’t possess such properties, and the decomposition of the variance associated with 

OCA includes all the bivariate moments between row and column polynomials, giving 

rise to a whole )1()1( −×− JI matrix ColumnsRows,Λ , of general entry: 

∑ ×∈
=

JIji jpjiimpm BPA
),( ,,,, )7(:λ . 

We have also a reconstitution formula [1]: 

( ) ( ) .
)1()1(),( ,∑ −×−∈

⊗⊗+⊗=
JIpm pmJIpmJI BAPPPPP oλ  

While the interest of this saturated formula is only theoretical, it can be coupled 

with tests in order to get some “de-noised table”. More precisely, suppose a set 

JIS ×⊂  of relevant interactions has been determined. The associated de-noised table 

is given by the unsaturated reconstitution formula [1]: 

( ) ( ) ).8(
~

),( ,∑ ∈
⊗⊗+⊗=

Spm pmJIpmJIS BAPPPPP oλ  

Notice the similarity between formulas (7) and (4), (3) and (6), and (8) and (2). 

Representation of a sequence of ordered tables 

For this purpose, we will straightforwardly adapt Foucart’s Correspondence 

Analysis [15, 28]. Remember that the processed table is the sum of 11 annual partial 

tables, with identical rows and columns (“slices”) of the data cube ∑ =
= K

k

kTT
1

: , and let 

us denote ∑ ×∈
=

JIji

k
ji

k T
),( ,:π  the sum of the kth contingency table, and kkk TP π/:=  the 

associated kth partial probability. The table analyzed [15, 28] is ∑
=

=
K

k

kk PP
1

α , with 

∑
=

=
K

k

kkk

1

/ ππα . While Foucart [15] analyzed T through CA, we will use OCA instead. 



Let ( )10 ,,: −=Β JBB L  denotes the matrix of column polynomials, and 

( )10 ,,: −=Α IAA L  the corresponding matrix for rows. The column profile coordinates 

are given by: Α= − PDG
JP
1:  [1]; consequently, because ∑

=

− Α=
K

k

k
P

k PDG
J

1

1α , the 

column profiles obtained from the OCA of P  are situated at the barycentre of the 

partial probabilities projected as supplementary elements. 

2.2.3 Tests 

The unique rigorous independence test in CA is based on 2Χ  which, under the 

hypothesis (H) of independence of the columns and rows of T, asymptotically obeys a 

chi-square distribution: ( ))1()1(22 −−≅Χ JIχ . Benzécri [4] derived from this 

statistics and (5) a heuristic for determining the number of significant principal axes in 

CA of contingency tables. It consists in seeking for the smaller m such that, for some 

fixed [5.0,0]∈τ  : 

( )( ) )9(,)1()1(
1

22∑
+=

−−<
M

mk
k JIQn τχλ  

where the threshold ( )τ,lQ  denotes the quantile of order τ of the probability law l  

(Benzécri [4] merely proposed to use the mean )1()1( −− JI  as a threshold). This 

heuristic is useful for data representation and reconstitution [4, 1, 3] from the set of 

significant axes. 

Contrary to CA, OCA gives rise to a three-level battery of tests. Firstly, at the cell-level, 

Rayner & Best [32] proved that under (H), we have asymptotically: 

)10()1,0(),1()1(),( , NnJIpm pm ≅−×−∈∀ λ  

and that all such bivariate moments are asymptotically independents. Thus, since 

every polynomial { }11: −≤≤ ImAm  can be correlated with every { }11: −≤≤ JpBp , 

we will use (10) to test whether or not each interaction can be considered as significant. 



At the intermediary level we can also test whether or not each row polynomial 

mA  (respectively column polynomial pB ) significantly contributes to the Pearson chi-

squared statistics, since we have under (H): 

∑
−

=
−≅= 1

1

2
)1(2

, )11(:
J

p

J
pmm n

χ
λη  

)12(:
1

1

2
)1(2

,∑
−

=
−≅= I

m

I
pmp n

χ
λµ . 

Finally, at the global level, we find again the classical test, associated with a 

third decomposition: 

∑∑
−

=

−

=
==Χ 1

1

1

1

2
J

p p

I

m mn
µη . 

Thus, mη  (resp. pµ ) is the part of the total information bore by mA  (resp. pB ), 

and these quantities are relevant criteria for selecting best projection planes for the 

columns (resp. the rows) profiles (because of the duality between rows and columns). 

3. Data analysis 

3.1 Scores and weights 

As we said in the previous section, the system { }11: −≤≤ ImAm  of row 

polynomials only depends on IP  and on a score Is  reflecting the gaps between 

successive categories of cover. Similarly, the system { }11: −≤≤ JpBp  only depends 

on the pair ( )JJ sP , . Because all the individual units of the transect have the same 

length, we chose the “natural score” [2] kksJ =:)(  to build the column polynomials. On 

the contrary, since the cover modalities are not equally spaced, we defined )(ksI  as the 

centre of the (k-1)th interval of cover if 2≥k , while 0:)1( =Is  (see Table 1). Notice 



that, due to the sampling conditions, JJ J
P 1

1=  does not depend on the data, while IP  

does. 

3.2 Spatial and temporal dynamics of Ulva 

We will now analyze the 206×  contingency table ∑ =
= 11

1
:

k

kTT  obtained by 

summing the 11 annual “slices” of the cube of type 11206 ××  associated with the data. 

This will be done first through CA, and afterwards through OCA; issues from the 

second analysis will be explained in greater detail. 

3.2.1 Results of CA of the Ulva data 

The overall Pearson statistics was 346.05: this is highly significant since, under 

(H), ( )9522 χ≅Χ . To determine the number of principal axes to keep, we fixed in 

formula (9) either 05.0=τ , or 5.0=τ . In both cases, formula (9) indicated that only 

two axes are significant, associated respectively with 67.2% and 13.5% of the total 

inertia. The corresponding components are plotted on Figure 2; the individual units (in 

grey) are labelled by their distance to the shoreline along the sampling transects (from 

0-5m to 95-100m), while the cover is labelled by the original code (from 0 to 5). 

[Figure 2 near here] 

We can infer from Figure 2 that the first 20 meters of the transects are equally 

associated with the codes {2,3,4,5} and concentrates most of the Ulva abundances 

trough the time series, while the last 50 meters are associated with the absence of Ulva 

(code 0). 

3.2.2 Results of OCA 

We will first use formulas (11) and (12) to determine the relevant polynomials. 

On Figure 3 are plotted the contributions { }11:ˆ −≤≤ Jjn jµ  on the left, and 

{ }11:ˆ −≤≤ Iin iη  on the right; on these plots, grey and black lines respectively mark 



the quantiles of order 0.5 and 0.95 of the associated chi-squared distributions. It is 

noteworthy that while 1µ̂  corresponds to about 60.5% of total variance (close to the first 

principal axis: 67.2%), 1η̂  corresponds to only 29.4% of the same quantity. This stresses 

the complexity of column profiles of this table. 

[Figure 3 near here] 

On Figure 3, the only significant column polynomials are 1B , 2B  and, at the 

very outside, 3B , while all the { }51: ≤≤ mAm  seem statistically significant. Since in 

both cases both the first polynomials correspond to higher variances, it is reasonable to 

simultaneously display on Figure 4 the row profiles projected on the plane ( )21, BB , and 

the column profiles on the plane ( )21, AA , i.e. the location and dispersion components in 

the terminology of Beh [1]. 

[Figure 4 near here] 

Note that, even if Figure 4 is quite different from Figure 2, its interpretation is 

similar: the same clusters of rows and columns are evidenced in both plots. 

Issues of the tests associated with formula (10) are represented on Figure 5. On 

this figure is represented a table of type SpaceDensity,Λ  of bivariate moments, where each 

pm,λ  is associated with some cell whose grey level depends on its estimated value. 

Precisely, each statistics ( ) ]1,0[ˆ,
1

:),(
2

,
2
1 ∈





 





 >= pmnPMinpmGl λχτ

τ
 has been 

computed and coded in gray levels for producing Figure 5 (and Figure 12 too). 

[Figure 5 near here] 

On this figure, non-significant bivariate moments (bilateral test at the threshold 

0.05) correspond to white cells ( 1),( ≈pmGl ), while highly significant ones 



( 0),( ≈pmGl ) correspond to black ones, and moderate interactions correspond to grey 

cells. It is noteworthy that issues of these tests have implications for simultaneous 

representation of the row and column. For instance, a glance on Figure 5 indicates that 

the simultaneous representation of rows and columns on Figure 4 would undoubtedly 

make sense if the bivariate moments 1,1λ̂  and 2,2λ̂  were high, while 2,1λ̂  and 1,2λ̂  would 

be low; since it is not the case, we must be cautious! Furthermore, one should also be 

careful with polynomials of degree greater than 4, because the estimation variance of 

these moments can be excessive [32]. We can indeed see on Figure 5 that no column 

polynomial of degree greater than 3 is very important for Ulva, excepted 8B , since 8,4λ̂  

is highly significant. The very dominant term in this decomposition is 4.8ˆ
1,1 −≈λ , 

corresponding to about 20.5% of the total inertia. Thus, the salient feature of T is that 

the more we move away from the shoreline, the more the cover by Ulva decreases (see 

the left panel of Figure 6). 

[Figure 6 near here] 

The second dominant interaction is the quadratic by linear one 35.7ˆ
1,2 ≈λ  . In this case, 

when we move away from the shoreline (see the right panel of Figure 6), the cover, 

which is initially medium, gradually concentrates on extreme values: the dispersion 

increases. More insights about interactions are provided in the appendix. 

The set S of significant interactions, displayed on Figure 5, enabled us to 

reconstitute the table by using formula (8); the result is displayed on Figure 7. 

[Figure 7 near here] 

Finally, we display on Figure 8 the spatio-temporal variations of cover by Ulva, 

projected onto the plane ( )21, AA  . Each panel of this figure represent the variations of 



cover of an individual unit of the transect. Each year is represented by its index, and the 

coordinates of the average point are the same as in Figure 4. The reader can see on 

Figure 8 that most of the dynamics of Ulva took place in the 20 first meters of the 

transect, which is consistent with the maximal abundances observed (see Figures 2&4). 

To save place, we discarded the units from 50 to 100m, where the dynamics is less 

important. 

[Figure 8 near here] 

 

Note that until now, the time was passive (projection of supplementary 

elements). But, since the units 0 to 20m consist in an homogeneous region, we can make 

the time play an active part by considering the “transposed cube” of type JKI ×× (I=6, 

J=20, K=11), and keeping only its first four slices { }41 ,, UU L . We will then analyse 

the 116×  contingency table ∑ =
= 4

1
:

k

kUU  in the same way as T ; notice that while the 

row polynomials remain the same as in the previous analysis, the column polynomials 

{ }11: −≤≤ JpBp  are now associated with time, which is thus active. To save place, 

we will only mention the main issues of OCA and CA of U . 

The overall chi-squared statistics associated with U  is highly significant (under 

(H), X2=527.8 should obey ( )502χ ). All the row polynomials are significant, and the 

highest contributions of polynomials, 1µ̂  and 1η̂  correspond to only 44% of total 

variance, while 2µ̂  and 2η̂  correspond to respectively 15% and 9.8% of total variance. 

Thus, CA seems more efficient than OCA for displaying the data: the first eigenvalues 

of CA corresponded to 83.6% and 10.12% of the total variance while, according to the 

heuristic (9), the next ones were not significant. We can see on Figure 9 that through the 

whole time series, the Ulva abundance increased trough time, from 1996 to the years 



2001 and followings (unfortunately, 1999 and 2000 are missing). The year 2005 is 

singular, while 2002 is associated with extreme abundances of Ulva. 

[Figure 9 near here] 

From the inference point of view, complementary insights can be derived from OCA, 

thanks to the table of bivariate moments (of type TimeDensity,Λ ). The most important 

moments are: 2.10ˆ
1,5 ≈λ , 5.8ˆ

1,1 ≈λ  and 8.8ˆ
10,1 ≈λ . Thus, the most important and 

reliable interactions are associated with 1B , i.e. the flow of time. Since 0ˆ
1,1 >λ  

indicates an increasing linear by linear interaction, the significance of this moment 

confirms that the abundance of Ulva increased with time in the lagoon. The moment 

1,5λ̂  is also very important, and corresponds to a progressive regularization of the cover 

in the region of interest: extreme values (cover around 20% or 80%) got rarer, while 

medium values (about 50%) became more frequent. 

3.3 Spatial and temporal dynamics of Zostera 

We proceeded the same way for Zostera as for Ulva, processing first the table 

∑ =
= 11

1
:

k

kTT  successively through CA and OCA. 

3.3.1 Results of CA of the Zostera data 

Notice first that the overall Pearson statistics is now 228.4: this is significant for 

some ( )952χ , but remember it was 346.05 for Ulva. Correlatively, we found from (9) 

that a single principal axis is significant, which is associated with 75.3% of the total 

inertia. The first principal plane is displayed on Figure 10. 

[Figure 10 near here] 

This plane essentially highlights that Zostera was mostly absent in the lagoon 

(the code 0 represent 97.3% of the observations) and that the highest modalities of cover 



were extremely rare for this species; it stresses that most Zostera abundances were 

observed in the first part of the sampling transects from 5 to 25 m, from the shore, in 

very shallow waters. 

3.3.2 Results of OCA of the Zostera data 

One can see on Figure 11 that four column polynomials { }6521 ,,, BBBB  and two 

row polynomials { }51, AA  are statistically significant. Consequently, the best 

representation of the column profiles is obtained in the plane ( )51, AA . The row profiles 

can also be displayed on the associated plane ( )51,BB , but notice that the planes 

( )21, BB  and ( )61, BB  would convey as much information. 

[Figure 11 near here] 

We separately plotted on Figure 12 the row and column profiles because, as one 

can see on Figure 13, simultaneous representation could be dubious: 5,5λ̂  is hardly 

significant, while 5,1λ̂  and 1,5λ̂  are really big. 

[Figure 12 near here] 

The reader can also see on Figure 13 that only a few of the polynomials of 

degree greater than 4 are important for Zostera. Nevertheless, the very dominant term in 

the decomposition is 4.7ˆ
1,1 −≈λ , corresponding to about 23.8% of the total inertia. 

Thus, the salient feature of T is that the more we move away from the shoreline the 

more the cover by Zostera decreases. It is noteworthy that the same phenomenon 

appears for Ulva and Zostera with similar proportions of variance. 

[Figure 13 near here] 



The second important interaction in this SpaceDensity,Λ  table is the quintic by linear 

one 6.4ˆ
1,5 −≈λ  . Plotting the associated function, we saw that this interaction is 

dominated by very low values of the cover due to the rarity of Zostera. Indeed, the 

probability of not observing it decreases when we move away from the shoreline. But 

we also have 2.4ˆ
5,1 ≈λ  and 5.4ˆ

6,1 −≈λ . We noted that in these two cases, interactions 

are dominated by low values of the cover. In these cases, the probability of not 

observing Zostera is highly oscillating along the transect, without any trend. This erratic 

spatial structure is is probably linked with the rarity of Zostera, and its patchiness. 

On the other hand, notice that 1µ̂  corresponds to about 38.7% of total variance (much 

less than the first principal axis of CA: 75.3%), and 1η̂  corresponds to 53.6% of the 

same quantity. 

Thanks to formulas (8) and (10), the table could be reconstituted from the set S 

of significant interactions, displayed on Figure 13. Since the “independence structure” 

JI PP ⊗  is very strong, we preferred to plot the discrepancy of P from independence, 

JI PPP ⊗− , and its approximation 

( ) ( )∑ ∈
⊗⊗=⊗−

Sm mmJImJIS BAPPPPP oλ~
. 

One can see on Figure 14 how the original discrepancy is filtered this way, and 

how much the position of null densities on the transect is important. 

[Figure 14 near here] 

Next, we display on Figure 15 the temporal variations of cover by Zostera, 

projected onto the optimal plane ( )51, AA . We discarded the segment 50-100m, where 

there is practically no Zostera. 

[Figure 15 near here] 



We can see on Figure 15 that for Zostera too, through the whole time series, 

most part of the dynamics took place in the 20 first meters of the transect, very close to 

the shoreline, and that these four units were those where this species was most abundant 

(see Figures 10&12). Thus we will proceed the same way as for Ulva, keeping only the 

first four slices of the transposed cube for investigating further the temporal variations 

of Zostera. To save place, we will only mention the main results of OCA and CA of U . 

The overall chi-squared statistics associated with this table is hardly significant 

(X2=70.16 while, under (H), it would obey ( )502χ ); remember that in the case of Ulva it 

was 527.8! The decomposition of U  through OCA is also very different from that 

obtained for Ulva: only the two first row an column polynomials are significant. They 

correspond to moderate percentages of the total variance: 25.2 and 29.1% for the 

column polynomials, 26.5 and 27.6% for the row polynomials. In the case of CA, only 

the first component (62.7%) is significant; we will use OCA for displaying the data on 

Figure 16, where the observations posterior to 2004 are clearly opposed to the previous 

ones. 

[Figure 16 near here] 

The very dominant bivariate moment in the TimeDensity,Λ  table is 4.3ˆ
1,1 −≈λ , 

corresponding to 16% of the total variance (Pvalue=8.10-4). The significance of this 

moment shows that the abundance of Zostera decreased with time in the lagoon. The 

moments 2,1λ̂  and 2,2λ̂  are significant too, but with much bigger Pvalues (0.037 and 

0.045); each of them is associated with about 6% of total variance.  

Thus, through the whole time series, there is a significant decrease of Zostera 

abundance, even if it remains in low levels of abundances, close to 0. On Figure 16, the 



years 2004 to 2008 are associated with the score 0, indicating a slight but indubitable 

rarefaction of Zostera. 

3.4 Ecological significant results for submerged aquatic vegetation monitoring 

Among submerged aquatic vegetation, Ulva and Zostera are identified as 

biological indicators of ecological status in the Water Framework Directive for 

transition waters. As a consequence, their monitoring concerns most of the lagoon’s 

managers worldwide. We have shown that the abundances of Ulva and Zostera in the 

Berre lagoon are statistically dependent of the distance to the shore, and that this spatial 

structuring is stronger but more complicated for Ulva than for Zostera. Most of the 

cover of these two species is located in the first 20 meters of the sampling transects, 

very close to the shore in very shallow water. The main part of the variability is also 

concentrated along the first 20 meters of the sampling transects, and remain high up to 

50m from the shore. This is probably due to the Ulva way of growing, which spends 

most of its life-cycle as a free drift, transported by the currents and accumulated on the 

shore depending on the hydrodynamic conditions. As a consequence, for each year, 

bathymetry and coast-line topology could be related to Ulva density in a point. 

Concerning Zostera, the present day extent of the seagrass meadows in the lagoon, 

restricted to very shallow waters, suggest light as the limiting factor [37, 5]. Light 

reduction could be due either to the silt input being still too high or to sediment 

resuspension. It could also be related to eutrophication of the lagoon which results in 

micro- and macro-algae blooms together with high levels of colonization of Zostera 

leaves by epiphytes and light reduction for the seagrass meadows. 

Trough time, Ulva cover shows a clear increase from 1998 to 2008 despite a 

high interannual variability: years with high Ulva abundances (2002) can be 

distinguished from years with weak abundances (1996-1998). From the first years of the 



time-series, the Zostera cover remained very weak and the abundances decrease with 

time. There is no clear sign of re-colonization since 2005, when the environmental 

pressure (inputs of freshwater, silts and nutrients) have been strongly reduced. The 

reasons could be, in addition to continuing nutrient inputs, the resuspension of silt, no 

longer trapped under the seagrass canopy, during wind episodes, which are frequent in 

the area, and/or the release of nutrients from the bare silt habitat, which would constitute 

an indication of a possible hysteresis of the system. Competition between the two 

species could also be one of the constraining factors for Zostera growth, the suffocation 

by an enteromorph-like Ulva of a Zostera meadow has been described in the literature 

[34, 8, 9, 13, 10]. 

4. Conclusion 

We studied an 11 year long sequence of the abundance of Ulva and Zostera in a 

heavily disturbed Mediterranean lagoon, the Berre lagoon, through the Ordinal 

Correspondence Analysis of Beh. The results are compared with those issued from 

classical Correspondence Analysis. Both of these methods consist in distinct 

decompositions of the Pearson chi-squared statistics and of the corresponding 

contingency table, according to different systems. 

In the case of CA, since the systems consist in singular vectors, there is no interaction 

between factors of different orders, which is optimal in a purely descriptive perspective. 

The price to pay lies in the complexity of the factors. 

The systems associated with OCA are very simple (orthogonal polynomials), but it 

takes into account numerous interactions between row and column systems, giving rise 

to representation difficulties (simultaneous projections, for instance). Consequently, we 

propose a number of graphical guidelines (2χ  plots, interactions plots, partial table 



plots) to help the user to select the relevant components and interpret the associated 

interactions.  

Indeed the main advantages of OCA over CA (in addition to simplicity of the factors) is 

that it takes into account the ordinal nature of row and/or column variables, and that it is 

possible to test the significance of all the pairs of factors. We could thus obtain de-

noised tables given by the unsaturated reconstitution formula, and determine significant 

patterns of spatial (firstly) and temporal (secondly) changes of Ulva and Zostera 

abundance. 

The spatial location of Ulva and Zostera seems to be strongly dependant on the 

distance to the shore, and indirectly to the depth. Main abundances and variability are 

observed very close to the shore since this is where free-floating Ulva drift can 

accumulate and limit light for the deeper growing Zostera. Through time Ulva shows a 

clear increase of its abundances while Zostera remained in very weak abundances; this 

suggests a high level of eutrophication despite recent reduction of nutrient inputs in the 

lagoon.  
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Appendix 

1. Why tensor products? 

Since ': VUVU =⊗ , one should think that only regular matrix-vector algebra is 

necessary for our purpose. Nevertheless, we preferred to use the tensor product notation 

for three reasons: 

1. as Benzécri noticed [4, p. 58], this is a natural notation for bilinear applications, 

and it is straightforwardly extensible to three (or more) ways tables (see for 

instance [12] or most papers about PARAFAC) 

2. suppose E is a vector space equipped with the basis { }mee ,,1 L  and F is another 

vector space, equipped with the basis { }pff ,,1 L ; then FE ⊗  is a third vector 

space, equipped with the basis { }pjmife ji ≤≤≤≤⊗ 1,1: : this perfectly fit 

the bivariate moments tables structure (see figures 5 and 12) 

3. the tensor product of two vectors is straightforwardly extensible to functional 

spaces: if 1)( Hyf ∈  and 2)( Hxg ∈ , the tensor product 21 HHgf ⊗∈⊗  of 

these functions is ( ) )()(:, xgyfxygf =⊗ ; we will use such products in the 

next paragraph. 

2. About bivariate moments 

Remember the aim of OCA is to highlight the ways P  possibly differs from the 

matrix JI PP ⊗ . As we saw in Section 2.2.2, this difference can be decomposed (see 

formula (8)) in a sum of contributions of general form: ( ) ( )pmJIpm BAPP ⊗⊗ o,λ . 

Notice that in that expression, the vectors mA  and pB  actually stem from the sampling 

of othonormal polynomials. The column polynomial pB  is obtained from a recurrence 

formula [2], where the score )(isI  plays the part of the abscissa in Emerson’s 



recurrence formula [14], while the score )( jsJ  plays the part of the ordinate for 

obtaining the )(yAm . Consequently, it is natural to define the polynomial ( )xyBA pm ,⊗  

on the rectangle [ ] [ ])(),1()(),1( IssJss IIJJ × . Proceeding the same way with the sampled 

probability, we can finally describe each interaction with the bi-dimensional function 

( )( ) ( )( )xyBAxyPP pmJIpm ,,, ⊗⊗λ  defined on this domain. As an illustration, we have 

shown on Figure 6 the dominant interactions obtained in the analysis of the spatio-

temporal distribution of Ulva (see section 3.2.2). 



 

Table 1. Classes and scores corresponding to the cover of the bottom surface area by 
Ulva and Zostera for each 5m² successive units of the 31 permanent transects along the 
Berre lagoon shore. See 3.1 for the definition of the scores. 
 

Cover (%) 0 < 5 5 to 20 20 to 50 50 to 90 > 90 

Class 0 1 2 3 4 
5 

 

Score 0 2.5 12.5 35 70 95 

 



 

Figure 1. location of the permanent transects along shore for monitoring the submerged 
aquatic vegetation in the Berre lagoon. 

 



 

Figure 2 Ulva: the first principal plane of CA. The individual sampling units clearly 
constitute three groups: 0 to 20m, 20 to 50m and 50 to 100m. 

 

Figure 3: Chi-square tests on row and column polynomials for Ulva. 

 



Figure 4: location and dispersion components for Ulva. 

 

Figure 5: significance of bivariate moments at the threshold 0.05 for Ulva. 

 



Figure 6 Ulva: the two main bivariate moments of the spatio-temporal OCA. 

 

Figure 7: approximation of P by SP
~

, from formula (8), for Ulva. 

 



Figure 8: projection of the partial tables onto the plane ( )21, AA , for Ulva. Years of 
sampling are represented by their index (1 to 11). To save place, only the first 50m of 
the transects are represented. 

 



Figure 9: first plane of temporal CA for Ulva (83,6%, 10.1 %). 

 

Figure 10: Zostera: the first principal plane of CA. 

 

Figure 11: Chi-square tests on row and column polynomials for Zostera. 

 



Figure 12: row and column profiles projected onto the plane (1,5) of Zostera. 

 

Figure 13: significance of bivariate moments at the threshold 0.05, for Zostera. 

 

Figure 14: the discrepancy, and its approximation for Zostera. 

 



Figure 15: projection of the partial tables onto the plane ( )51, AA  for Zostera. Years of 

sampling are represented by their index (1 to 11). To save place, only the first 50 m of 
the transects are represented. 

 



Figure 16: first plane of temporal OCA for Zostera. 

 
 


