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Application of Ordinal Correspondence Analysisfor Submerged
Aquatic Vegetation Monitoring

Abstract

The European Water Framework states that macroptgmemunities (seaweeds
and seagrass) are key indicators of the ecolobealth of lagoons. Furthermore
the restoration of these communities, especiaythsterameadows, is one of

the main objectives of the Berre lagoon restoragpiam. Consequently a
monitoring program of the mamacrophytespecies still present in the lagoon
was initiated in 1996. This monitoring resultedaisequence of eleven spatially
structured annual tables consisting of the obsetfeedity of these species. These

tables are processed in this study.

First, we specify the principles of Beh’s Ordinairéspondence Analysis
(OCA), designed for ordered row/column categor@sl compare this method to
classical Correspondence Analysis (CA). Then, voavdinat OCA is
straightforwardly adaptable for processing a seqge@f ordered contingency
tables like ours. Both OCA and CA are afterward=dius reveal and test the
main patterns of spatiotemporal changes oftvaarophytespecies in the Berre

lagoon:Ulva andZostera.The results we obtained are compared and discussed.

Keywords: ordinal correspondence analysis, tegtssQuared partitioning,

ecological monitoringMacrophytesBerre lagoon

1. Introduction

Since the early to mid-30century coastal lagoons and estuaries have beaororg

the most disturbed coastal ecosystems in the wohed.initial causes are relatively well
identified: eutrophication and organic pollutionaagesult of increasing agriculture,
urbanisation in river catchments and port fac#itiaquaculture, turbidity and over-
sedimentation [16, 11]. Seagrass beds, which arermm dwellers of these habitats, are

declining throughout the world [33] at the expeakeacroalgae. Indeed,



eutrophication created suitable conditions for roalgae blooms in several coastal
lagoons, bays and estuaries over the last decadgeg,[18]. In general, the process of
eutrophication leads to a shift in the macrophytthie community from slow-growing
seagrasses to phytoplankton and fast-growing miy@eauch atllva. The high
surface-area to volume ratio of these macroalgasufa rapid nutrient uptake, high
production and rapid growth rates, which enablesitbto outcompete the original

vegetation [29, 25].

Monitoring of submerged aquatic vegetation distiidiuand abundance ranges from
coarse assessments of presence/absence or aribaitilist in large areas — based on
remotely sensed data and presented as macrosgade- neafine-scale diver
assessments of depth limits and cover (in % obttem surface area), biomass or
shoot density along depth gradients [22, 6]. Theeces indeed the most frequently
used measure for vegetation surveys, since ittisestructive and requires relatively
little effort compared to other measurements ofetatpn health.

The Berre lagoon (Provence, France) is one ofaigest Mediterranean brackish
lagoons (155 km2) and was occupied at the turh@®tf' century by extensive
seagrass meadows (perhaps over 6000 ha). Subdgdghernagoon was disturbed by
urban and industrial pollution. The monitoringmécrophytesin this lagoon is based
on visual censuses in scuba-diving along perman@mséects, each compounded of 20
spatial units. A coding in six classes (intervdlsaver) was adopted for studying the
temporal variations (1996 to 2008) of the coveelght species (or groups of species)
of macrophytesin this paper, we will focus on only two speadardinal importance

for evaluating the health of this ecosystetosteraandUIva. Our goal is double:



1. from the spatio-temporal side, we want to inveségahether or not the distance
to the shoreline (indirectly associated with coastaography, depth, currents,
etc.) is related to the abundance of each spentkaxhen the answer is
positive, we will try to identify homogeneous regsowhere its dynamics is
important (regions of interest)

2. from the purely temporal side, it is capital toestigate the ways the new policy
for freshwater discharge established since 20@dttobservation) impacted
the abundance of each species in its regions efast.

We chose to investigate these points through tlien@irCorrespondence Analysis
(OCA) of Beh [1, 2, 3] and classical Correspondencelysis (CA). Because of the
above decision-making concerns, we will focus andtiferent decompositions of the
Peason chi-squared statistics associated with @ACEDA. For that purpose, we first
compare decomposition and reconstitution formuta®eaiated with both of these
methods and propose original representations oflthequared statistics
apportionment. We also propose original represemsf the interaction terms in
OCA, and a variant of this method suited for anialgza sequence of doubly-ordered
contingency tables.

2. Material and methods

2.1 Study site and sampling procedures
In 1966 the diversion of the Durance River towaads/droelectric power plant and
then into the Berre lagoon resulted in a heavytigpireshwater. Surface water salinity
declined from 24-36 to 1-22 resulting in halineasfication, eutrophication and
unstable ecological conditions [26, 27, 36]. Thagsass beds underwent a dramatic
decline. In fact they are functionally extinct ®nt998; in 2004 they occupied a total

surface area of 1.5 ha [5]. During that time, lamggcroalgae blooms mainly constituted



of Ulva were observed in the lagoon. Consequently enormmaints of drift algae
were washed up on the shore [30, 35] (G. BernaddParBonhomme pers. obs.).

A new policy for freshwater discharges aiming atoeng the lagoon started up in
2004. The policy induced strong changes in thedag&reshwater and silt inputs from
theSt-Chamas hydroelectrical plant were heavilyiced. As a result, the global salinity
of the lagoon increased while its stratificatioml @ne frequency of anoxia phenomena

in its deepest part decreased.

[Figure 1 near here]

Thirty one permanent transects [35] (G. Bernard. 8@&homme, pers. obs.),
100 m long by 1 m width, and regularly distributddng the shore (see Fig. 1), were
annually explored by scuba-diving, in July, from®690 1998 and from 2001 to 2008
(11 years of sampling). Each transect is divideB(rsuccessive individual units (5m?
each). The cover afosteraandUIva (in % of the bottom surface area) has been
evaluated by visual census for each individual and has been coded with an ordinal
scale in 6 classes, ranging from 0 to 5 (see thbl#/e used a “a la Braun-Blanquet”
[31] cover score adapted for marine ecology, bex#us field of vision of divers is

reduced.

[Table 1 near here]

Thus, for each species, the data consists in 1daeontingency tables, of
common sizé x 20; the " row of each table lists the overall frequer{syd1) of the
abundance code-1 at each one of the 20 successive units composingects. Thus,
both the variables associated with rows and colafithese tables are ordinal.

2.2 Statistical methods



Notice first that the data set associated with e@aabrophyteconsist in a “cube”
of sizel xJx K, with =6, J=20, K=11. There are in the literature a lot otistecal
methods suited for such three-ways data, whichbeagssentially divided into two large
families. The first one is a whole family of genaiithhree-way methods:
CANDECOMP/PARAFAC, TUCKERetc. [23], which are extensions of PCA to
three-ways quantitative data. These methods werdasigned for contingency tables,
but Carlier and Kroonenberg [12] proposed an extensf CA to three-way
contingency tables. Nevertheless, to our knowledgee of these methods has been
adapted to ordinal data.

The second family was designed for processing aesexg of partial tables.
Roughly speaking, these methods consist in anajyaittompromise” table built from
this sequence. For instance, in the setting of ilglelFactor Analysis and related
methods, the compromise is obtained by weightiegpidrtial tables according to their
dominant eigenvalues [38], while in the setting0ATIS [24] the compromise is
obtained from a preliminary PCA of operators assed with the partial tables. In the
same line, Foucart [15] proposed a method congigtiperforming CA of the average
table, the rows and columns of the partial tabkadprepresented as supplementary
elements. This method is frequently used by ecsted8], and we will show that it is
straightforwardly adaptable for ordinal data. TeRtionships between both these
families were investigated by Kiers [20, 21].

Let us now introduce the notation used. Dependmthe context] x J will

denote either the dimensions of a tablé mfws and] columns, or the Cartesian
product of the setfl,---,1} and{1---,J}. We shall denot&? the constant vector

@1--- )" of dimensiorK, U OV :=UV'= (uivj) the tensor product of two

(i,j)o=J

vectors of respective lengtlandJ, and- the element-wise (Hadamard) product of



matrices:(Ao B),, := A B, where A ; denotes the entry of the matiat the
row and " column (for further details, see for instance J18} last, the expression

“V C ¢” will mean that the random variableobeys the distributiori, and J.; will

denote the Kronecker symbad{ =0if m# p andd; =1).

2.2.1 Correspondence Analysis in a nutshell (BenzE267; Beh, 2004; Greenacre,
1984)
It is time now to remind the reader of essential@ples of CA. Lefl be some

| x J contingency table of grand tota] P:=T /n be the associated probabilities table,
and P = Z?:lli}j (resp.P, = Zilzll:;vi ) be the marginal probabilities. The aim of CA
is to highlight the way$® possibly differs from the matri, [J P, of general entry

PP, or, in other words, to investigate the ways thelel@f complete independence

between rows and columnsDfliverges from reality.
Practically, it consists [3, 17] in performing tBeneralized Singular Value

P
Decomposition of the matri® of general entryg ; = —_ (Pearson ratios), giving

PP
rise to a system of singular values and singulators (also named principal axes)
(A,.; A, B,):0sm< M, with M := Min[l -1,J -1] (remember thafl, = 1A, =1,

and B, :17). We can now write:
M
6= Z_()An,i A B
or, using tensor products [4, 19] (see also theapx):
M
©=>1,A 0B, @
m=0

and also the reconstitution formula:



P=(ROP)-©=R OP, +iﬂlm(a OP)o(A,0B,) (2.

m=1

The singular vectors are centred and normedulfil:
|
O(mp)OMxM, > A PA, =3B, PB, =3 @.
i=1 j

They also verify:
Am 5rTF1) = Z(i,j)DIXJ Aﬂ,i Pll Bp-i (4) '

Consider now the Pearson chi-squared statistics
2 ._ 2
X2=n Z(i,j)Dli R xP; (HIJ _1) :

Because of formula (1), we obtain an alternativeodgposition of this statistics:

XZ_M )
T_Zam ©).

m=1
2.2.2 Correspondence Analysis with ordered catesgori

Since the principal axes issued from CA do not fake account the order of the

categories associated with the rows and the colinth, Beh [1] proposed an

alternative decomposition of ?, where the role of principal axes is played by

orthonormal polynomials. To compare his Ordinal @*CA) with CA, we will use the

same notations as in the previous section, denéﬂggls m< | —]} the system of
row polynomials, andBp 1< p<d —1}, the one of column polynomials. Each one of

these systems only depends asta e [2], and on the associated marginal probability,

eitherP, or P;. The chosen score reflects the ordered strucfuteaategories. The

polynomials, resulting from Emerson’s recurrenaarfola [14, 2], are centred and

verify:

DM P00 -Dx(3 -0, Y AR A, =3B, P B, =5 ()



There are substantial differences between prin@pas of CA and these
polynomials: as singular vectors, axes @a@ ed, as shown in formula (1); moreover
they are naturallgorted according to their common variance. Emerson’s patyials
don’t possess such properties, and the decompositithe variance associated with
OCA includes all théivariate moments between row and column polynomials, giving
rise to a whol€¢l —1) X (J —1) matrix A

of general entry:

Rows Columns?

Am.p = Z(i,j)Dli AmJ PII Bp,i (7)
We have also a reconstitution formula [1]:

P=ROP +3 Anp (POP)(A,08,)

(m.p)I(I-Dx(3-1) .
While the interest of this saturated formula isyathleoretical, it can be coupled
with tests in order to get some “de-noised taliédre precisely, suppose a set
SO 1 xJ of relevant interactions has been determined.a8seciated de-noised table

is given by the unsaturated reconstitution fornjtila
PS = I:)I |:| PJ +Z(m,p)DS Am,p (F)I D PJ)O(A’H D Bp) (8)
Notice the similarity between formulas (7) and (&),and (6), and (8) and (2).
Representation of a sequence of ordered tables

For this purpose, we will straightforwardly adapiuEart’s Correspondence

Analysis [15, 28]. Remember that the processectisithe sum of 11 annual partial

tables, with identical rows and columns (“slicesfthe data cubd := Z:le" , and let

us denoterr =)’ TX the sum of the'kcontingency table, anB* :=T*/ 77 the

(i,j)Oix3 i

K
associated 'k partial probability. The table analyzed [15, 28F = > ak P, with

k=1

K
a* =n"1) m* . While Foucart [15] analyzeTthrough CA, we will use OCA instead.

k=1



Let B:=(B,,---,B,_,) denotes the matrix of column polynomials, and

A= (Ab,---,A1_1) the corresponding matrix for rows. The column peofoordinates

K
are given byG := D" PA [1]; consequently, becausg =) a* D;' P* A, the

k=1
column profiles obtained from the OCA &f are situated at the barycentre of the
partial probabilities projected as supplementaeyrgnts.

2.2.3 Tests

The unique rigorous independence test in CA isdaseX > which, under the
hypothesisl) of independence of the columns and row$ aisymptotically obeys a
chi-square distributionx ? 0 x2((I -1) (J -1)). Benzécri [4] derived from this
statistics and (5) a heuristic for determining tlsenber of significant principal axes in
CA of contingency tables. It consists in seekingtfi® smallem such that, for some

fixed 7 0]005[ :

n Y42 <Ql*(0 -0@-D)) ©

K=Trm
where the threshold)(ﬁ, r) denotes the quantile of ordeof the probability law/¢
(Benzécri [4] merely proposed to use the mélanl) (J —1) as a threshold). This
heuristic is useful for data representation andmstitution [4, 1, 3] from the set of
significant axes.
Contrary to CA, OCA gives rise to a three-leveltdat of tests. Firstly, at the cell-level,
Rayner & Best [32] proved that under (H), we hasynaptotically:
Omp) 0 -)x@-1,vnA,, ON©OD @0

and that all such bivariate moments are asymptbticadependents. Thus, since

every ponnomiaI{Aﬂ l<ms<| —]} can be correlated with evetﬁp 1< p<d —1},

we will use (10) to test whether or not each intgoa can be considered as significant.



At the intermediary level we can also test whetiranot each row polynomial

A, (respectively column polynomid ) significantly contributes to the Pearson chi-

squared statistics, since we have under (H):

)((J—l)
Z —1 mp n (1])

)((2|—1)
Z m=1""mp D n (12)

Finally, at the global level, we find again thesdecal test, associated with a

third decomposition:

A S I
T_ m=1 m —1’UP

Thus, 77, (resp. 4, ) is the part of the total information bore By, (resp.B,),
and these quantities are relevant criteria forcsielg best projection planes for the
columns (resp. the rows) profiles (because of thaity between rows and columns).

3. Data analysis

3.1 Scores and weights

As we said in the previous section, the sysfém:1< m< | -1} of row
polynomials only depends o and on a score, reflecting the gaps between
successive categories of cover. Similarly, theesys{in 1< p<d —1} only depends
on the paif(P,,s, ). Because all the individual units of the transemte the same
length, we chose the “natural score” [2](k) := k to build the column polynomials. On
the contrary, since the cover modalities are natyg spaced, we defineg (k) as the

centre of the (k-1) interval of cover ifk = 2, while S, @ :=0 (see Table 1). Notice



that, due to the sampling conditiorf3, = %1? does not depend on the data, wiile

does.

3.2 Spatial and temporal dynamics of Ulva
We will now analyze th& x 20 contingency tabld := Zi;Tk obtained by

summing the 11 annual “slices” of the cube of type20x11 associated with the data.
This will be done first through CA, and afterwatdsough OCA; issues from the
second analysis will be explained in greater detalil

3.2.1 Results of CA of the Ulva data

The overall Pearson statistics was 346.05: thiggkly significant since, under
(H), X2 Ox? (95). To determine the number of principal axes to keepfixed in
formula (9) eitherr = 005, or 7 = 05. In both cases, formula (9) indicated that only
two axes are significant, associated respectivdly &7.2% and 13.5% of the total
inertia. The corresponding components are plottedigure 2; the individual units (in
grey) are labelled by their distance to the shoessilong the sampling transects (from

0-5m to 95-100m), while the cover is labelled bg driginal code (from 0O to 5).

[Figure 2 near here]

We can infer from Figure 2 that the first 20 metgfrthe transects are equally
associated with the codes {2,3,4,5} and concerdgratest of theéJlva abundances
trough the time series, while the last 50 metegsagsociated with the absenceéJbia
(code 0).

3.2.2 Results of OCA

We will first use formulas (11) and (12) to deteneithe relevant polynomials.

On Figure 3 are plotted the contributioms?; :1< j < J -1 on the left, and

{n/?i A<i<| —1} on the right; on these plots, grey and black liespectively mark



the quantiles of order 0.5 and 0.95 of the assediahi-squared distributions. It is

noteworthy that whiley, corresponds to about 60.5% of total variance éctoghe first

principal axis: 67.2%)j), corresponds to only 29.4% of the same quantitjs $tiesses

the complexity of column profiles of this table.

[Figure 3 near here]

On Figure 3, the only significant column polynorsiateB,, B, and, at the
very outside,B,, while all the{An 1<sm< 5} seem statistically significant. Since in

both cases both the first polynomials corresporftigber variances, it is reasonable to

simultaneously display on Figure 4 the row profgpesjected on the pIan@Bl, Bz), and

the column profiles on the plar(éxi, Az), I.e. the location and dispersion components in

the terminology of Beh [1].

[Figure 4 near here]

Note that, even if Figure 4 is quite different fréiigure 2, its interpretation is
similar: the same clusters of rows and columnssaigenced in both plots.
Issues of the tests associated with formula (1®Yyepresented on Figure 5. On

this figure is represented a table of tyfg,q, space O Divariate moments, where each

Anp IS associated with some cell whose grey level dépen its estimated value.
. . 1 . 2 N 2
Precisely, each statisti&sl(m, p) == MIH[T, P()(l > n(/]m p) ﬂ 0[0]1] has been
r :

computed and coded in gray levels for producingiféd (and Figure 12 too).

[Figure 5 near here]

On this figure, non-significant bivariate momerigdteral test at the threshold

0.05) correspond to white cell&{((m, p) = ),While highly significant ones



(Gl(m, p) = 0) correspond to black ones, and moderate interactorrespond to grey

cells. It is noteworthy that issues of these thatge implications for simultaneous
representation of the row and column. For instaagdance on Figure 5 indicates that

the simultaneous representation of rows and columnrSigure 4 would undoubtedly
make sense if the bivariate momevi§§ and/izv2 were high, While/il2 and/izvl would
be low; since it is not the case, we must be castiburthermore, one should also be

careful with polynomials of degree greater thabekause the estimation variance of

these moments can be excessive [32]. We can irgkedn Figure 5 that no column

polynomial of degree greater than 3 is very imparfar Ulva, excepteds,, sincej%

is highly significant. The very dominant term inglidlecomposition isﬂAll =- 84
corresponding to about 20.5% of the total ineffiaus, the salient feature ®fis that

the more we move away from the shoreline, the rtfteecover by Ulva decreases (see

the left panel of Figure 6).

[Figure 6 near here]

The second dominant interaction is the quadratitri@ar one/izvl = 735 In this case,

when we move away from the shoreline (see the pghel of Figure 6), the cover,
which is initially medium, gradually concentrates @éxtreme values: the dispersion
increases. More insights about interactions argigeal in the appendix.

The setSof significant interactions, displayed on Figureebabled us to

reconstitute the table by using formula (8); theukeis displayed on Figure 7.

[Figure 7 near here]

Finally, we display on Figure 8 the spatio-tempmaaiations of cover byJlva,

projected onto the plan(eﬁ&, Az) . Each panel of this figure represent the vanregiof



cover of an individual unit of the transect. Eadaris represented by its index, and the
coordinates of the average point are the samefagume 4. The reader can see on
Figure 8 that most of the dynamicsldiiva took place in the 20 first meters of the
transect, which is consistent with the maximal al@untes observed (see Figures 2&4).
To save place, we discarded the units from 50 @ni @vhere the dynamics is less

important.

[Figure 8 near here]

Note that until now, the time wamassive (projection of supplementary
elements). But, since the units 0 to 20m consiahilmomogeneous region, we can make

the time play amctive part by considering the “transposed cube” of typeK x J (1=6,

J=20, K=11), and keeping only its first four slic%,sl,---,u 4}. We will then analyse
the 6x11 contingency tabléJ = Zizlu “ in the same way 4§ ; notice that while the

row polynomials remain the same as in the prevanaysis, the column polynomials
{B, :1= p < J -1 are now associated wittme, which is thusactive. To save place,
we will only mention the main issues of OCA and GIAU .

The overall chi-squared statistics associated Witls highly significant (under
(H), X?=527.8 should obe,yz(SO)). All the row polynomials are significant, and the
highest contributions of polynomialg, and7, correspond to only 44% of total
variance, whilgi, and/, correspond to respectively 15% and 9.8% of toasiance.

Thus, CA seems more efficient than OCA for displgyihe data: the first eigenvalues
of CA corresponded to 83.6% and 10.12% of the tatgbnce while, according to the
heuristic (9), the next ones were not significae can see on Figure 9 that through the

whole time series, thélva abundance increased trough time, from 1996 tyd¢laes



2001 and followings (unfortunately, 1999 and 208®raissing). The year 2005 is

singular, while 2002 is associated with extremenalamces oblva.

[Figure 9 near here]

From the inference point of view, complementaryghts can be derived from OCA,

thanks to the table of bivariate moments (of type ). The most important

nsity, Time

moments areﬁal =10 .Zjll = 85 and /Tm =~ 88 Thus, the most important and

reliable interactions are associated wih i.e. the flow of time. Sincém > 0

indicates an increasing linear by linear interactibe significance of this moment

confirms that the abundanceldliva increased with time in the lagoon. The moment

A

As, is also very important, and corresponds to a @sgjve regularization of the cover

in the region of interest: extreme values (coveuad 20% or 80%) got rarer, while
medium values (about 50%) became more frequent.
3.3 Spatial and temporal dynamics of Zostera

We proceeded the same way ¥arsteraas forUlva, processing first the table
T:= Zi;Tk successively through CA and OCA.

3.3.1 Results of CA of the Zostera data

Notice first that the overall Pearson statisticsasy 228.4: this is significant for
some x* (95), but remember it was 346.05 fdiva. Correlatively, we found from (9)

that a single principal axis is significant, whishassociated with 75.3% of the total

inertia. The first principal plane is displayedBigure 10.

[Figure 10 near here]

This plane essentially highlights th&dsterawas mostly absent in the lagoon

(the code O represent 97.3% of the observatiors}laat the highest modalities of cover



were extremely rare for this species; it stressasmosiZosteraabundances were
observed in the first part of the sampling transéam 5 to 25 m, from the shore, in
very shallow waters.

3.3.2 Results of OCA of the Zostera data

One can see on Figure 11 that four column polynisnf&, B,, B, B;} and two
row polynomials{Al, AS} are statistically significant. Consequently, tlesto
representation of the column profiles is obtaimethee plane(A, A,). The row profiles
can also be displayed on the associated pﬂBneBs), but notice that the planes

(B,,B,) and(B,, B,) would convey as much information.
[Figure 11 near here]

We separately plotted on Figure 12 the row andmalprofiles because, as one

can see on Figure 13, simultaneous representatiad be dubiousﬁa5 is hardly
significant, while)AIL5 and)AIS’1 are really big.

[Figure 12 near here]

The reader can also see on Figure 13 that onlwafé¢he polynomials of
degree greater than 4 are importantZostera Nevertheless, the very dominant term in
the decomposition ist1 = - T4&orresponding to about 23.8% of the total inertia

Thus, the salient feature ®fis that the more we move away from the shorelee t
more the cover b¥osteradecreases. It is noteworthy that the same phenomen

appears fotlva andZosterawith similar proportions of variance.

[Figure 13 near here]



The second important interaction in this,,, ., s.ace table is the quintic by linear

one /15,1 = - 4.6. Plotting the associated function, we saw thistititeraction is
dominated by very low values of the cover due orrity ofZostera Indeed, the
probability of not observing it decreases when vavenaway from the shoreline. But
we also have*iL5 = 4.and /11,6 = - 45 We noted that in these two cases, interactions
are dominated by low values of the cover. In thesses, the probability of not
observingZosterais highly oscillating along the transect, withoaydrend. This erratic
spatial structure is is probably linked with thetsaof Zostera and its patchiness.

On the other hand, notice that corresponds to about 38.7% of total variance (much
less than the first principal axis of CA: 75.3%)daj, corresponds to 53.6% of the

same quantity.
Thanks to formulas (8) and (10), the table coulddm®nstituted from the s&t
of significant interactions, displayed on Figure $&ce the “independence structure”

P, O P, is very strong, we preferred to plot the discreyyaof P from independence,
P-P 0P, and its approximation
PR OP =3 AR OP)-(A,08,).

One can see on Figure 14 how the original discrepenfiltered this way, and

how much the position of null densities on the $ext is important.
[Figure 14 near here]

Next, we display on Figure 15 the temporal variadiof cover by ostera
projected onto the optimal pIar(Al, As). We discarded the segment 50-100m, where
there is practically ndostera

[Figure 15 near here]



We can see on Figure 15 that Fwosteratoo, through the whole time series,
most part of the dynamics took place in the 2Q finsters of the transect, very close to
the shoreline, and that these four units were tdsre this species was most abundant
(see Figures 10&12). Thus we will proceed the samg as forUlva, keeping only the
first four slices of the transposed cube for inigging further the temporal variations
of Zostera To save place, we will only mention the main tessaf OCA and CA olU .

The overall chi-squared statistics associated thightable is hardly significant
(X?=70.16 while, under (H), it would obey’ (50)); remember that in the caseldiva it

was 527.8! The decomposition 0f through OCA is also very different from that
obtained for Ulva: only the two first row an colurpalynomials are significant. They
correspond to moderate percentages of the totanae: 25.2 and 29.1% for the
column polynomials, 26.5 and 27.6% for the row polyials. In the case of CA, only
the first component (62.7%) is significant; we wile OCA for displaying the data on
Figure 16, where the observations posterior to 200@4learly opposed to the previous

ones.

[Figure 16 near here]

The very dominant bivariate moment in the,,q, rime table is/im =- 34

corresponding to 16% of the total variance (Pvafu&g®). The significance of this

moment shows that the abundanc&os$teradecreased with time in the lagoon. The
moments/iL2 and /12'2 are significant too, but with much bigger Pval(@937 and

0.045); each of them is associated with about 6%taf variance.
Thus, through the whole time series, there is aisogint decrease afostera

abundance, even if it remains in low levels of atantes, close to 0. On Figure 16, the



years 2004 to 2008 are associated with the scangli@ating a slight but indubitable
rarefaction oZostera

3.4 Ecological significant resultsfor submerged aquatic vegetation monitoring

Among submerged aquatic vegetatibiiva andZosteraare identified as
biological indicators of ecological status in thet&t Framework Directive for
transition waters. As a consequence, their momigpeconcerns most of the lagoon’s
managers worldwide. We have shown that the aburedanit)lva andZosterain the
Berre lagoon are statistically dependent of theadie to the shore, and that this spatial
structuring is stronger but more complicatedWva than forZostera Most of the
cover of these two species is located in the &@stneters of the sampling transects,
very close to the shore in very shallow water. Wran part of the variability is also
concentrated along the first 20 meters of the semgptansects, and remain high up to
50m from the shore. This is probably due toliiea way of growing, which spends
most of its life-cycle as a free drift, transportgdthe currents and accumulated on the
shore depending on the hydrodynamic conditionsa Asnsequence, for each year,
bathymetry and coast-line topology could be relatddlva density in a point.
ConcerningZostera the present day extent of the seagnasadows in the lagoon,
restricted to very shallow waters, suggest lighthaslimiting factor [37, 5]. Light
reduction could be due either to the silt inpunigestill too high or to sediment
resuspension. It could also be related to eutr@pioic of the lagoon which results in
micro- and macro-algae blooms together with higiele of colonization oZostera
leaves by epiphytes and light reduction for thegssss meadows.

Trough timeUlva cover shows a clear increase from 1998 to 2008ides
high interannual variability: years with highva abundances (2002) can be

distinguished from years with weak abundances (21988). From the first years of the



time-series, th&osteracover remained very weak and the abundances decnets
time. There is no clear sign of re-colonizatiorcei2005, when the environmental
pressure (inputs of freshwater, silts and nutrjeimiése been strongly reduced. The
reasons could be, in addition to continuing nutriaputs, the resuspension of silt, no
longer trapped under the seagrass canopy, during @pisodes, which are frequent in
the area, and/or the release of nutrients fronb#re silt habitat, which would constitute
an indication of a possible hysteresis of the sgsteompetition between the two
species could also be one of the constraining fad¢tw Zosteragrowth, the suffocation
by an enteromorph-likellva of aZosterameadow has been described in the literature
[34, 8, 9, 13, 10].

4. Conclusion

We studied an 11 year long sequence of the abupdzhdva andZosterain a
heavily disturbed Mediterranean lagoon, the Bagabn, through the Ordinal
Correspondence Analysis of Beh. The results argeoad with those issued from
classical Correspondence Analysis. Both of thesthoas consist in distinct
decompositions of the Pearson chi-squared statiatid of the corresponding
contingency table, according to different systems.
In the case of CA, since the systems consist igusam vectors, there is no interaction
between factors of different orders, which is ogiimm a purely descriptive perspective.
The price to pay lies in the complexity of the tast
The systems associated with OCA are very simpkaggonal polynomials), but it
takes into account numerous interactions betweeraral column systems, giving rise

to representation difficulties (simultaneous prajats, for instance). Consequently, we

propose a number of graphical guidelings (plots, interactions plots, partial table



plots) to help the user to select the relevant acamepts and interpret the associated
interactions.

Indeed the main advantages of OCA over CA (in aaldito simplicity of the factors) is
that it takes into account the ordinal nature @f smd/or column variables, and that it is
possible to test the significance of all the pairfactors. We could thus obtain de-
noised tables given by the unsaturated reconstitdtrmula, and determine significant
patterns of spatial (firstly) and temporal (secghdhanges obllva andZostera
abundance.

The spatial location dfllva andZosteraseems to be strongly dependant on the
distance to the shore, and indirectly to the delgidin abundances and variability are
observed very close to the shore since this is efree-floatingUlva drift can
accumulate and limit light for the deeper growdagstera Through timeJlva shows a
clear increase of its abundances wHitsteraremained in very weak abundances; this
suggests a high level of eutrophication despitemeeduction of nutrient inputs in the
lagoon.
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Appendix
1. Why tensor products?
SinceU OV :=UV ' one should think that only regular matrix-vectyebra is
necessary for our purpose. Nevertheless, we pegféoruse the tensor product notation
for three reasons:
1. as Benzécri noticed [4, p. 58], this is a natudhtion for bilinear applications,
and it is straightforwardly extensible to three ifoore) ways tables (see for
instance [12] or most papers about PARAFAC)

2. supposeE is a vector space equipped with the bz{lelis--,em} andF is another
vector space, equipped with the basis- -, f f; thenECO F is a third vector
space, equipped with the ba{!iasD f,:l<sisml<j< p}: this perfectly fit
the bivariate moments tables structure (see fighrasd 12)

3. the tensor product of two vectors is straightforiyaextensible to functional
spaces: iff (y) O H, andg(x) U H,, the tensor product O gUOH, O H, of
these functions i [ g(y, x) = f(y)g(x); we will use such products in the

next paragraph.
2. About bivariate moments
Remember the aim of OCA is to highlight the wagossibly differs from the

matrix P, O P, . As we saw in Section 2.2.2, this difference camlecomposed (see
formula (8)) in a sum of contributions of genewdrfi: A, | (F’I 0Py )o (A11 O Bp).
Notice that in that expression, the vectds and B, actually stem from the sampling
of othonormal polynomials. The column polynomiyj is obtained from a recurrence

formula [2], where the scorg (i) plays the part of the abscissa in Emerson’s



recurrence formula [14], while the scasg(|) plays the part of the ordinate for
obtaining theA, (y) . Consequently, it is natural to define the polyrednf\,, [ Bp(y, x)
on the rectangl@J ®,s, (J)]x[sI @,s (! )]. Proceeding the same way with the sampled

probability, we can finally describe each interastwith the bi-dimensional function

Ano (B OP)y,x) (A, 0B, )y, x) defined on this domain. As an illustration, we éav

shown on Figure 6 the dominant interactions obthinghe analysis of the spatio-

temporal distribution obllva (see section 3.2.2).



Table 1. Classes and scores corresponding to trex obthe bottom surface area by
Ulva andZosterafor each 5m2 successive units of the 31 permanamsects along the

Berre lagoon shore. See 3.1 for the definitiorhefdcores.

Cover (%) <5 510 20 20to 50 50 to 90 >90
5

Class 1 2 3 4

Score 25 12,5 35 70 95




Figure 1. location of the permanent transects asbrage for monitoring the submerged
aquatic vegetation in the Berre lagoon.
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Figure 2Ulva: the first principal plane of CA. The individuarmpling units clearly

constitute three groups: 0 to 20m, 20 to 50m antb3MOm.
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Figure 4: location and dispersion componentdfiva.
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Figure 6Ulva: the two main bivariate moments of the spatio-terapOCA.
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Figure 8: projection of the partial tables onto [d1m1e(Al, AZ), for Ulva. Years of

sampling are represented by their index (1 to Td)save place, only the first 50m of
the transects are represented.
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Figure 9: first plane of temporal CA faliva (83,6%, 10.1 %).
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Figure 12: row and column profiles projected omte plane (1,5) oZostera
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Figure 15: projection of the partial tables onte mane(Al, AS) for Zostera Years of

sampling are represented by their index (1 to Td)save place, only the first 50 m of
the transects are represented.
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Figure 16: first plane of temporal OCA fdostera
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