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Abstract

This study is devoted to the effective plastic flow surface of a bi-porous material saturated
by a fluid. Highly irradiated uranium dioxide is a typical example of such a material. In
part I of this study, a GTN-type approximation of the effective plastic flow surface has
been derived. In this second part, the predictions of this new model are compared with
full-field numerical simulations performed with a numerical method based on Fast Fourier
Transforms. This method is successfully applied to voided materials with a Gurson matrix
where the voids are subjected to internal pressure. Different microstructures containing a
large number of spherical or ellipsoidal voids are investigated. The deviation from isotropy
of their mechanical response is measured by a new criterion.

Keywords: A. Ductility, B. Microstructures, B. Ideally plastic material, B. Porous
material, C. Numerical algorithms

1. Introduction

In the second part of this study devoted to the mechanical behavior of highly irradiated
uranium dioxide fuel (UO2) under accident conditions, the predictions of the analytical
models proposed in the first part are compared to full-field simulations. As recalled in part
I of this paper, UO2 exhibits a very specific microstructure with two populations of voids of
rather different sizes and shapes: a first population of voids, almost spherical in shape, is
observed inside the grains at the lowest scale (intragranular voids), and a second population
of voids, almost lenticular and located at the grain boundaries can be found at a larger scale
(intergranular voids). During a reactivity initiated accident (RIA), the temperature of the
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fuel increases abruptly, inducing a thermal dilatation of the material and a strong increase of
the pressure in the voids due to the presence of fission gases confined inside these bubbles. At
the mesoscale, the matrix (where intragranular voids are already smeared out) is modelled as
a pressure-sensitive ductile material governed by the Gurson-Tvergaard-Needleman (GTN)
criterion (Gurson, 1977; Koplik and Needleman, 1988; Tvergaard, 1990). The objective of
this study is to derive a criterion describing the effective flow surface of the voided material
at the macroscopic scale when the intergranular voids are ellipsoidal and subjected to an
internal pressure.

The analytical Gurson-like criterion (or GTN criterion) proposed in the first part of this
study (Vincent et al., 2013) takes the form :
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where α, β, and γ are three functions of the parameters of the problem, namely fb the void
volume fraction of the spherical intragranular voids of very small size, fe and w the void
volume fraction and aspect-ratio of the ellipsoidal (oblate) intergranular voids, pb and pe
the internal pressures in the intragranular and intergranular voids, respectively (see part I
of this study, Vincent et al., 2013, for more details). Fritzen et al. (2013) have recently
published a similar study for voided materials with a pressure-sensitive matrix of Green
type. The present study differs from the latter one in three aspects: first the matrix in the
present study is a Gurson material, second the voids are randomly oriented ellipsoids and
third they are subjected to an internal pressure.

The approach followed to derive (1) is based on a study of an elementary volume element
made of a single hollow ellipsoid and extended to an assemblage of self-similar randomly
oriented ellipsoidal voids, as schematized in Figure 1.

Figure 1: Assemblage of self-similar randomly oriented hollow ellipsoids (from (Vincent et al., 2009)). Unit
pattern (left). Rotated and dilated hollow ellipsoid (center). Representative volume element (right).

Since, to the best of the author’s knowledge, no comparison with experimental data is
available to assess the validity of the analytical model (1), its predictions are compared here
with three-dimensional full-field simulations, performed with a numerical method based on
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Fast Fourier Transforms. This iterative method was proposed by Moulinec and Suquet
(1994, 1998) for microstructures subjected to periodic boundary conditions and does not
require, at least explicitly, any meshing of the microstructure.

The organization of the paper is as follows:

- The procedure followed to generate different microstructures used in the full-field simu-
lations is presented in section 2.1. These microstructures must contain a large number
of voids to approach overall isotropy as closely as possible. An original (to the best of
our knowledge) criterion for measuring deviation from isotropy is introduced.

- A reminder on the FFT method, and its variant based on augmented Lagrangians is
given in section 3.

- Finally the results of the full-field simulations for spherical and ellipsoidal voids are
presented in sections 4.2 and 4.3 and compared with the analytical criterion (1). The
agreement is found to be good, not only for the effective flow surface but also for the
average dilatation-rate in the matrix which governs the evolution of the void volume
fraction of both population of voids.

2. Microstructures

2.1. Microstructure generation

The full-field simulations are performed on artificially generated microstructures. The
unit-cell is a unit cube. The microstructures are generated in two steps.

1. First the unit-cell is filled with spheres using an algorithm inspired by Molecular
Dynamics. This algorithm proceeds iteratively. First, the spheres are randomly placed
in the volume and can freely overlap. Then the distance of interpenetration between
each sphere and its neighbors is calculated as the sum of the radius of the sphere and
of its neighbors minus the distance between the centers of the two spheres (or zero if
the spheres do not interpenetrate). For each sphere all the interprenetration distances
are summed up and the center of the sphere is moved by a given fraction of this sum
augmented by a small random displacement. The iterative process is stopped as soon
as no interpenetration is detected between spheres. The volume fraction which can
be reached by the classical Random Sequential Addition algorithm (Torquato, 2003)
does not exceed 40 % whereas the filling rate obtained with the above MD algorithm
is about 60% for monodisperse spheres and higher for polydisperse spheres.

2. In a second step, a unit void, either a spherical void or an ellipsoidal void with random
orientation, is located at the center of each sphere. All single hollow elements are self-
similar and the void volume fraction in each of them is identical, chosen in such a way
that the overall void volume fraction fe is reached. Therefore each void is surrounded
by a shell of matrix with a width proportional to the void size.
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The outer spheres may have the same diameter (monodisperse spheres) and then all the
voids have the same size (but their orientation is different when they are not spherical).
Or they may have different diameters (polydisperse spheres) in which case the voids have
different sizes. The close-packing volume fraction of the spheres is larger in the polydisperse
case than in the monodisperse case and can approach fe = 1, at least theoretically, if an
infinite number of sizes can be used. Obviously in practice the number of different sizes for
the spheres is limited.

For spherical voids, where no problem of orientation of the voids arises, polydisperse
spheres (and voids) were chosen with 3 different sizes of voids. Two typical microstructures
are shown in Figure 2. The realization on the left contains 73 small voids, 12 medium size
voids, and 8 large voids. The realization on the right contains 9, 3 and 1 voids in each class
of size (the size ratios with respect to the smallest size are respectively 1.0, 1.8, and 3.3).

Figure 2: Periodic unit cells used for the FFT simulations of a microstructure with spherical in shape voids.
Total void volume fraction fe = 0.04.

The monodisperse situation is the choice that was made for ellipsoidal voids to ensure
that all orientations are equally represented in the microstructure with the same weight (at
least to a good accuracy). Three different realizations are shown in Figure 3 with a void
aspect ratio w = 1/5. Attention is restricted to oblate spheroids where the third axis a1 is
smaller than the two equal axes b1 (the aspect ratio w is defined as a1/b1). Each of these
realizations contains 511 voids.

2.2. Spatial resolution

The FFT method does not require a specific meshing of the unit cell but still makes use
of a sampling of the image describing the microstructure. The microstructure is given as a
digital image, provided either by an experimental device (computed tomography, 3D X-ray
diffraction or any other mean), or generated artificially (see Lebensohn et al., 2011, for a
review of possible applications of the method). The image consists of equally sized voxels
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Microstructure # 1 Microstructure # 2

Microstructure # 3

Figure 3: Spheroidal intergranular voids. Three different realizations of the unit-cell containing 511 ellip-
soidal voids with total volume fraction fe = 0.04. All ellipsoids have the same size. Aspect ratio of the
ellipsoids: w = 1/5.
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and its resolution is measured by the number of voxels, so that even if no specific meshing is
formally required, there is an inherent spatial resolution of the image related to the number
of voxels in the image. The sampling is regular, allowing for the use of commonly available
FFT packages, and the unit-cell is discretized into N ×N ×N voxels of identical size. N is
limited by the memory capability of the computer on which the simulations are performed.
The largest images used in the present simulations are discretized into 5123 voxels (the
corresponding unit-cells are shown in Figure 3). The question of spatial resolution is then
closely related to determining the number of voids which can be distributed in the unit-cell
with a given sampling. This question pertains to determining how many voxels should be
used for an elementary pattern such as the one shown in Figure 4 (right) to capture accurately
the field fluctuations (stress and strain) in the matrix around each void. This is a technical
issue which should be addressed, ideally, realization by realization, by conducting parametric
studies in which the number of voxels is increased until stationarity of the quantities of
interest (effective properties, local fields) is reached. Following this procedure would require
a formidable computational effort. Instead of that what was done here was to examine a
cubic unit-cell containing a single spherical void at its center and we determined how many
voxels are required to achieve a reasonable compromise for a single void. Detailed results
are reported in Appendix B. The cubic unit-cell was discretized into 323, 643, 1283 voxels
and convergence of the effective flow surface with the spatial resolution was examined. It
was found that the intermediate spatial discretization 643 voxels was sufficient to ensure
results which deviate from less than 1% compared to the results at the highest resolution.
Therefore it was decided to distribute M voids in the unit-cell, with M lower than (N/64)3,
so that each void and its surrounding shell of matrix could be discretized into more than
643 voxels (in average, depending on the void size) and the same criterion was applied for
ellipsoidal voids. For instance when N = 512, the number of voids in the unit-cell should
be less than 512 (hence the 511 ellipsoidal voids in Figure 3).

2.3. Representativeness

The question of representativeness of the results of the full-field simulations is a diffi-
cult issue: how many realizations should be investigated and how big should they be? No
attempt has been made in the present study to fully, and definitively, answer these ques-
tions. First because answering them would require a mathematical background which, to
the best of the authors’ knowledge, does not exist for nonlinear materials. Second because
the computational effort necessary to explore systematically the effect of the size of the rep-
resentative volume element, for all loading cases and all configurations, would be prohibitive.
The results presented here, even if restricted to a limited number of realizations, correspond
to 334 different full-field calculations. The CPU time for one full-field simulation with the
largest realizations was of the order of 35 hours on 2 Intel R© Xeon R© processors E7-8870 2.4
GHz (20 cores) with 70 GB RAM.

Therefore, in the absence of a rational guideline to decide how many realizations are
necessary to achieve representativity, the results and comparisons reported in the sequel are
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Figure 4: Left: unit cube filled with spheres (in gold) containing a central ellipsoidal void (purple). Right:
Elementary pattern

largely based on the authors’ experience to decide whether the results are representative.
Admittedly, this way of proceeding based on experience can be disputed. But it can be
motivated by a few general comments drawing the attention of the reader to the fact that
the above question of representativeness is not well-posed as such and should be formulated
in a more precise way to obtain a more specific answer.

First the notion of representativeness is an asymptotic notion, in the sense that exact
stationarity of the quantities of interest can only be reached in the limit of an infinite
domain. For finite volumes, such as the ones corresponding to specific realizations of a unit-
cell, one can only require that the deviation from stationarity should be less than a given
threshold (a few percents usually). So a better formulation of the question should be: how
big should a realization be, or how many realizations of a prescribed size are required to
attain stationarity of a quantity of interest with an error less than a given threshold? Even
this question is difficult as the exact stationary value is not known, and therefore the error
must be inferred from the simulations themselves. We shall then report the discrepancy
between different simulations performed on different realizations (and not only the average
results).

Secondly the answer depends on the “quantity of interest”. In the present context,
stationarity is understood for the effective flow surface (up to a prescribed error). This
does not necessarily ensure stationarity for other quantities such as the void growth-rate,
the strain fluctuations in the matrix, or the maximum strain attained locally in the matrix
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(among other examples of quantities of interest). Obviously the more local the information
for which stationarity is seeked, the larger the volume element should be. Here we will
discuss only the effective flow surfaces and estimate the distance between the flow surfaces
obtained for different realizations by measuring the difference along radial paths in stress
space. As a general comment, we point out that the notion of representativity is intimately
related to a quantity of interest.

Obviously the size of the representative volume element also depends on the constitutive
relations of the constituents. Our experience is that nonlinear materials require larger volume
elements than linear materials (but this experience is not always shared by other researchers
in the field and this question is left as an open question).

The conclusion is that the question of representativity cannot be answered thoroughly,
either theoretically or computationally. A related question (not strictly equivalent) pertain-
ing to macroscopic isotropy is easier to answer. It was indeed observed in the course of
our simulations that when averaging the results over a given set of realizations, stationarity
and isotropy where closely related. Since the voided materials investigated in this study are
made of an isotropic matrix containing randomly oriented voids, macroscopic isotropy is a
requirement for which the results should be checked.

2.4. Deviation from isotropy

There are several possible definitions of isotropy for a volume element. A first possible
definition, which can be called geometrical isotropy, pertains to the geometrical arrangement
of the phases and is assessed by inspecting the geometry of the volume element. This can be
done by considering the covariograms of the phases, as proposed for instance in Kanit et al.
(2003). A second possible definition of isotropy, which can be called mechanical isotropy,
consists in assessing the isotropy of the mechanical response of the volume element under
the application of mechanical loads, for given constitutive relations of the phases. The first
definition is broader than the second one, in the sense that geometrical isotropy implies
mechanical isotropy. However, as explained in more details in section 2.3, isotropy for
nonlinear materials is rarely met exactly (by constrast with the linear case where a finite
group of symmetry is sufficient to ensure isotropy) and therefore in both cases, geometrical
or mechanical isotropy, a measure of deviation from isotropy has to be introduced. In the
geometrical approach, based on the inspection of 2d-covariograms of specific cuttings of a
3d image, the deviation from isotropy is difficult to define and remains mostly qualitative (a
short study based on covariograms is reported in Appendix D). This is more easily achieved
in the mechanical approach, where a quantitative measure of deviation from isotropy under
different loadings can be introduced. This mechanical approach will be followed in the
sequel.

Macroscopic isotropy imposes necessary conditions on the relations between the overall
stress and the overall strain-rate obtained through full-field simulations. Consider a macro-
scopically isotropic, ideally plastic material. Its yielding properties can be described by
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means of a yield function F depending on the three invariants of Σ (the argument assumes
that the yield criterion is smooth):

F(Σ) = F(Σm,Σeq, J3), J3 =
1

3
Σd

ijΣ
d
jkΣ

d
ki. (2)

Assuming that F is differentiable, the overall strain-rate associated with this yield function
by the normality rule reads as:
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Therefore the overall strain-rate can be split over three mutually orthogonal tensors V i|i=1,2,3:
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where the ξ̇(i)’s are scalars. The computed overall strain-rate Ė
comp

associated with a given
overall stress stateΣ located on the overall yield surface should conform to the decomposition
(5). To check that this requirement is satisfied Ė

comp
is decomposed into a component

parallel to the space spanned by the V i’s and a component orthogonal to this space:
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The deviation from overall isotropy is measured by :
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Different values of η found for the different configurations used in the present study can be
found in Appendix C. It can be observed that the configurations, taken individually, may
deviate significantly from isotropy (a few percents). However, when averages over several
configurations are taken, the deviation from isotropy is small (less than 3.5 %).
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Remark: The differentiability of F used in (3) plays apparently an essential role in the
proposed criterion (7). If the flow surface has a corner for a certain stress state, the direction
of the strain-rate is non unique at this point. However, the deviation from isotropy can still
be measured by (7) when the flow effective surface can be described by N yield functions
Fi, all being isotropic and differentiable. Indeed, the flow rule takes the form

Ė =

N
∑

i=1

λ̇i
∂Fi

∂Σ
(Σm,Σeq, J3), (8)

and the argument leading to the decomposition (5), on which the measure (7) is based, still
holds for each of the terms in (8) individually.

The question of the existence of corners is difficult to answer. As Benzerga and Leblond
(2010) point out, corners may arise on the effective flow surface at some stress states due
to the occurence of plastic localization (taking over the diffuse plastic fields postulated by
Gurson’s criterion). In our simulations, several points (twenty in most cases) on the effective
flow surface were determined but no information on the smoothness of the surface can be
inferred from these simulations. We observed that, at the volume fraction considered in the
present analysis, the flow surface did not exhibit sharp corners (at least at first sight), with a
possible exception on the hydrostatic axis. A possible interpretation is that the localization
criterion of Benzerga is not reached at the porosity considered here (4 %). But we cannot
be more affirmative.

In the specific example of plastic voided materials which is the objective of the present
study, it is often found that the deviation measured by (7) is maximal at high stress triax-
iality. A possible explanation for this large deviation is that the flow surface could have a
corner point (as found for two-dimensional voided materials under plane strain conditions
by Pastor and Ponte Castañeda, 2002), or that the curvature of the effective flow surface in
the vicinity of the hydrostatic axis is large. Small numerical errors may lead to artificially
high values of the deviation from isotropy in the vicinity of such corner points.

3. Numerical determination of the effective flow surface

3.1. Definition and properties of the effective flow surface

The effective flow surface of voided materials is a special case of the more general problem
of the effective strength domain of a composite material. Consider a composite material
whose constituents have a limited strength characterized by a strength domain P (x) at
point x, where P is a convex domain in stress space. The associated dissipation function ϕ
(also called the support function of P ) is defined as

ϕ(x, ε̇) = sup
τ∈P (x)

τ : ε̇.

ϕ is a convex function as soon as P is a convex set.
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The effective strength domain of the composite is defined as (Suquet, 1983, 1987):

P hom = {Σ such that there exists σ(x) with 〈σ〉 = Σ,

σ(x) ∈ P (x) for all x in V, divσ(x) = 0, σ · n−#},
(9)

where −# denotes a field taking opposite values on opposite sides of the unit-cell V and n

is the outer unit normal vector on the boundary of the unit-cell. The above definition is ap-
propriate for periodic media (or periodic boundary conditions) but more general boundary
conditions can be considered (Suquet, 1987). The boundary of P hom defines the effective
extremal or flow surface of the composite (Hill, 1967). This surface depends on the strength
domain of the individual constituents, on their volume fraction and on their arrangement.
The reader is referred to Suquet (1987), de Buhan and Taliercio (1991), Francescato and
Pastor (1997) among others for a discussion of the general properties of P hom and its appli-
cations to specific situations.

It is worth noting that the definition of P hom does not assume any constitutive relation
for the phases except the information that no stress state outside P (x) can be physically
sustained at point x. In particular the constituents are not assumed to be elasto-plastic.
The counterpart of this generality is that the effective strength domain is only a domain
of potential strength in the vocabulary of Salençon (2013). The numerical determination
of P hom can be performed either by means of the static definition (9) or by means of a
kinematic characterization based on the effective potential Φ (Suquet, 1987):

Φ(Ė) = inf
v∈K#(Ė)

〈ϕ(ε̇(v))〉V , (10)

where K#(E) = {u such that ε(u) = E + ε(v), v periodic}. It can be shown that Φ is the
support function of P hom:

Φ(Ė) = sup
Σ∈Phom

Σ : Ė.

Accurate upper and lower bounds for P hom can be obtained by means of these two ap-
proaches, as illustrated in Pastor et al. (2009) where the effective flow surface of a hollow
sphere is investigated. The kinematic approach (10) leads to an upper bound for the ef-
fective flow surface, whereas the static approach (9) leads to a lower bound. The second
approach (10) has been extensively used in the first part of this study (Vincent et al., 2013)
(the only difference was that the displacement was assumed to be linear on the boundary of
V to simplify calculations). The full-field simulations reported in the following allow for the
exact determination of the flow surface from the interior (it is therefore a static approach),
up to numerical round-off errors.

Although the effective strength domain can be defined without reference to plasticity, two
results specific to elastic ideally-plastic constituents are worth recalling. They are classical
in the context of limit loads and can be extended to the present context of the effective
extremal surface of composites.
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1. The effective flow surface can be characterized as the overall stress states obtained as
asymptotic limits of the average stress along specific loading paths, assuming that each
individual constituent is elasto-plastic, obeying the normality rule with respect to the
domain of plasticity P (x) at point x. The effective extremal surface does not depend
on the loading paths which have been followed to determine these asymptotic states
and does not depend on the (real or artificial) elasticity assigned to the constituents.

2. The extremal surface does not depend on the type of plasticity theory, incremental
or deformation theory, used for the individual constituents (provided that normality
holds).

The first result is well-known and for the reader’s convenience a brief derivation of the second
result is given in Appendix A.

3.2. The FFT method

The numerical method used in the full-field simulations is based on fast Fourier trans-
forms (FFT). In its simplest version, introduced in Moulinec and Suquet (1994, 1998) it
solves an integral equation iteratively. The rate of convergence of this iterative algorithm
deteriorates when the contrast between the phases increases. This slow convergence of the
basic algorithm for composite with high contrast has motivated the development of acceler-
ated schemes (Eyre and Milton, 1999; Michel et al., 2000; Zeman et al., 2010; Brisard and
Dormieux, 2010; Monchiet and Bonnet, 2012; Moulinec and Silva, 2013) for composites with
high contrast between the phases. In the case of voided materials such as those considered
here, the contrast is even infinite. The accelerated method used here is based on augmented
Lagrangians (Michel et al., 2001) and belongs to a broader class of accelerated schemes as
shown by Moulinec and Silva (2013).

The extremal surface of the voided material is determined here using the deformation
theory of plasticity (which delivers the same extremal surface as the incremental theory).
Each individual constituent is governed by a strain-energy function ϕ(x, ε) such that, for
all x in V :

σ(x) =
∂ϕ

∂ε
(x, ε). (11)

The volume V , consisting of the matrix material and of the voids, is subjected to an average
strain E and periodicity conditions are assumed on its boundary. To be more specific, the
strain field ε(u) is split into its average E and a fluctuation term ε(v) such that ε(u) =
E + ε(v). The field v is periodic while the vector σ · n is anti-periodic on the boundary of
V . The effective strain-energy can be characterized by the variational property (10). This
variational problem is then formulated as a minimization problem under constraint:

inf
e

inf
u∈K#(E)

〈ϕ(e)〉V , under the constraint: ε(u(x))− e(x) = 0 ∀x ∈ V. (12)

The augmented Lagrangian associated to the previous problem reads as:

L(0)(ε(u), e,λ) = 〈ϕ(e)〉V + 〈λ : (ε(u)− e)〉V +
1

2

〈

(ε(u)− e) : C(0) : (ε(u)− e)
〉

V
. (13)
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The second order tensor λ is the Lagrange multiplier and the fourth order tensor C(0) is the
stiffness of the reference medium which must be appropriately chosen. The minimization
problem under constraint can be re-written as a saddle-point problem

sup
λ

inf
e

inf
u∈K#(E)

L(0)(ε(u), e,λ), (14)

which can be solved using Uzawa’s algorithm:

Iterate i : ei−1 and λi−1 being given,

• step 1 : find ε(ui) solution of:

inf
u∈K#(E)

L(0)(ε(u), ei−1,λi−1),

• step 2 : find ei such that (for all x),

∂ϕ

∂e
(x, ei) +C(0) : ei(x) = C(0) : ε(ui(x)) + λi−1(x),

• step 3 : Update λi, λi(x) = λi−1(x) +D(0) : (ε(ui(x))− ei(x)).

D(0) is a fourth-order tensor which gives the descent direction in the algorithm. Once
convergence has been reached, e coincides with ε(u) and λ is the stress.

3.2.1. Step 1

Step 1 is a classical linear elasticity problem for a homogeneous linear elastic medium
with stiffness C(0):

σ(x) = C(0) : ε(v(x)) + τ (x), divσ(x) = 0 ∀x ∈ V, v #, σ · n −#, (15)

where the polarization field τ (x) is defined as: τ (x) = λi−1(x)−C(0) : ei−1(x) +C(0) : E.
The solution of problem (15) can be expressed by means of the periodic Green operator Γ(0)

associated with C(0):

ε(v(x)) = −Γ(0) ∗ τ (x) in real space, ε̂(v(ξ)) = −Γ̂
0
(ξ) : τ̂ (ξ) in Fourier space, (16)

where the symbol ∗ denotes the convolution product in real space. The Fourier transform

Γ̂
(0)

being explicitly known for general C(0) (Moulinec and Suquet, 1998), the solution of
(15) can be conveniently computed in Fourier space through the second equation in (16)
and then computed in real space using the inverse FFT.

3.2.2. Step 2

When the potential ϕ is isotropic and can be written as a function of the first two
invariants of ε, ϕ(ε) = ϕ(εm, εeq) and when the reference medium is taken to be isotropic
with bulk and shear moduli k(0) and µ(0) respectively, the second step reduces to a set of
two non linear equations:

{ 1
3

∂ϕ
∂εm

(eim, e
i
eq) + 3k0e

i
m = 3k0εm(u

i) + λi−1
m ,

1
3µ0

∂ϕ
∂εeq

(eim, e
i
eq) + eieq =

(

εd(ui) + 1
2µ0

(λi−1)d
)

eq
.

(17)
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3.2.3. Step 3

The update of the Lagrange multiplier λ requires a specific choice of the fourth-order
tensor D(0). Among other possible choices, D(0) was taken equal to C(0) in the present
work. This choice leads to λi = 0 in the voids.

3.2.4. Convergence criterion

The criterion adopted to stop the iterations reads as

||εi − ei||
||E|| ≤ η1, and

||λi − ∂ϕ
∂ε
(εi)||

||
〈

λi
〉

V
||

≤ η2, (18)

where η1 and η2 are two prescribed thresholds, with typically in our calculations, η1 = η2 =
10−3.

3.2.5. Deformation theory for Gurson matrix with internal pressure

The effective flow surface is determined using a deformation theory for the matrix, which
is a Gurson material with pressurized voids (in the original Gurson’s criterion the voids are
stress-free). It follows from Vincent et al. (2009) that the corresponding yield function reads
as:

fGur (σ) =
σ2
eq

σ2
0

+ 2fb cosh

(

3

2

σm + pb
σ0

)

− 1− f 2
b , (19)

where fb is the void volume fraction of the intraganular bubbles and pb is their internal pres-
sure. The plastic strain derived from the normality rule (in the framework of a deformation
theory) is:

εp = λp∂f
Gur

∂σ
(σ) , (20)

where λp is the plastic multiplier. Assuming infinitesimal strains, a poroelastic strain is
added to the plastic strain to form the total strain

ε = εe + εp, εe = C−1 : (σ + pbi). (21)

For simplicity, the stiffness tensor C is assumed to be isotropic, with bulk and shear moduli
k and µ. Finally the complete set of constitutive relations for the deformation theory of a
pressurized Gurson matrix reads as:



















εm =
σm + pb

3k
+ λp fb

σ0
sinh

(

3

2

σm + pb
σ0

)

εeq =
σeq

3µ
+ 2 λp σeq

σ2
0

λp ≥ 0, fGur (σ) ≤ 0, λp fGur (σ) = 0.

(22)

The augmented Lagrangian method requires, in step 2, the inverse relation, i.e. the relation
giving σ = ∂ϕ

∂ε
(ε) as a function of ε. The relations (22) can inverted as follows:
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• Compute the trial stress σT = C : ε− pbi, i.e. σ
T
m = 3 k εm − pb, σT

eq = 3µ εeq.

• If fGur
(

σT
)

< 0, then σ = σT .

• Otherwise, (σm, σeq) are determined by solving (22). The last line is replaced by the
single equation fGur (σm, σeq) = 0. The resulting set of nonlinear equations is solved
for (σm, σeq, λ

p) by means of the Newton-Raphson method. Finally, σ = σmi + σd,
with:

σd =
2µ

1 + 6λpµ
σ2
0

εd. (23)

3.2.6. Strain or stress control

The elasto-plastic problem can be solved either following a path in strain space or a path
in stress space (Marigo et al., 1987; Suquet, 1987; Swan, 1994)). In the strain-controlled
method, the strain-rate Ė is prescribed and the overall stress Σ(t) is computed as the average
of the local stress field. Then, for voided materials, σ(t,x) has a limit when t tends to +∞
(P hom is bounded in all directions) denoted σ∞(x). It is readily seen from Appendix A
that the associated macroscopic stress Σ∞ is such that

Ė : (Σ̂−Σ∞) ≤ 0 , ∀Σ̂ ∈ P hom. (24)

Therefore, Σ∞ is on the boundary of P hom and Ė is an outer normal to P hom at Σ∞.

In practice it is often required, and more physically sound, to impose the direction
of the overall stress, rather than the overall strain-rate, motivating the introduction of a
stress-controlled method where Σ(t) is prescribed. However, as is well-known, imposing a
prescribed path in stress space may lead to numerical instabilities when approaching the
limit load (asymptotic stress). A mixed procedure is adopted in which only the direction
Σ0 of the overall stress is prescribed together with the strain-rate in this direction:

Σ(t) = h(t)Σ0, Σ0 : Ė(t) = t. (25)

where the amplitude h(t) is an unknown of the problem which is determined by prescribing
the strain-rate in the imposed direction of overall stress. In the example of uniaxial tension in
direction 3 (for instance), the procedure (25) amounts to imposing to the macroscopic stress
to have only one nonvanishing component Σ33 in the tensile direction, whereas the loading
is applied by controlling the strain E33. This procedure can be seen as a strain-controlled
loading in a prescribed direction only. When t goes to +∞, h(t) and Ė(t) have limits h∞

and Ė
∞

when t tends to +∞ and these limits satisfy (24). The stationary stress h∞Σ0 is on
the boundary of P hom with outer normal Ė

∞
. An additional advantage of controlling the

direction of overall stress is that calculations can be performed at a prescribed macroscopic
stress triaxiality-ratio T :

T =
Σm

Σeq

. (26)
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In principle, the calculations should be performed for a prescribed value of the differential
pressure p = pb − pe. However convergence issues were observed if one tries to impose a
significant internal pressure in the voids. This is probably due to the fact that the radial
loading path in stress space starts from 0, whereas the effective flow surface is translated
along the hydrostatic axis. Therefore, depending on the stress triaxiality ratio, the boundary
of the effective flow stress can be close to 0. To avoid these convergence issues, the internal
pressure has been applied gradually.

3.3. Overall stress states and loading conditions

The overall stress states considered in this study are taken in the following form

Σ = Σmi +
2

3
Σeq





− cos(ω + π
3
) 0 0

0 − cos
(

ω − π
3

)

0
0 0 cosω



 . (27)

The Lode angle ω varies from 0 to π/3 and is related to the third invariant of the overall
stress through

J3 = det
(

Σd
)

=
2

27
Σ3

eq cos(3ω).

Two specific values of the Lode angle, ω = 0 and ω = π/6, corresponding respectively to
stress deviator Σd being a purely axisymmetric, traceless stress state, to an in-plane shear,
will be considered in the sequel:

ω = 0 : Σd = 2
3
Σeq

(

−1
2
e1 ⊗ e1 − 1

2
e2 ⊗ e2 + e3 ⊗ e3

)

,

ω = π
6

: Σd = 1√
3
Σeq (−e2 ⊗ e2 + e3 ⊗ e3) .







(28)

4. Full-field simulations versus analytical model.

4.1. Preliminaries

4.1.1. Comparison with analytical models: modified porosity

In order for the comparison between full-field simulations and the analytical models
developed in part I of this study to be meaningful, a consistent definition of porosity has to
be adopted on both sides. This is the role played in the GTN model by the parameter q1.
Following Tvergaard (1982), if f is the void volume fraction in the axisymmetric unit-cell
used in the full-field simulations, the results of these simulations should be compared to the
Gurson model with a modified porosity q1f , where q1 ranges approximately from 1.15 to
1.7. The need for this correction can be understood at large volume fraction. The unit-cell
loses its carrying capacity when the spherical void reaches the boundary of the cylinder,
which occurs when f = 2/3, leading to q1 = 1.5, the value proposed by Tvergaard (1982) for
small f , based on an analysis of strain localization between voids. Koplik and Needleman
(1988) found a good agreement between their unit-cell simulations and Gurson criterion
with q1 = 1.25 halfway between the original Gurson’s value (q1 = 1) and Tvergaard’s value
(q1 = 1.5). Other authors (Fritzen et al., 2012) have found a dependence of q1 on f , in the
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form q1 = 1.69−f . Despite the diversity in these expressions, it is clear that a correction must
be applied to the porosity used in the simulations. In the present context, this correction
applies to the intergranular porosity fe and the porosity f ∗

e used in the analytical models is
defined with a correcting factor q:

f ∗
e = qfe (29)

The strategy adopted here to determine an estimate of q follows closely the procedure
through which the microstructures are constructed, by packing spheres in a first step (the
packing volume fraction is denoted by d) and then by adding voids at the center of these
spheres. The meaningful porosity f ∗ used in the analytical model is the porosity of the
ellipsoidal void in the ellipsoidal volume of matrix confocal to the void (see Figure 5). Let
a1 and b1 denote the short and long axes of the spheroidal voids and a2 and b2 denote the
axes of the confocal volume of matrix. Then the following relations can be easily established:

f ∗ =
a1b

2
1

a2b
2
2

,
fe
d

=
wb31
b32

, b21 − a21 = b22 − a22, (30)

from which the following relation is derived

f ∗ =

(

1−
(

fe
wd

)2/3

(1− w2)

)−1/2
fe
d
. (31)

This would suggest to take q = (1/d)
(

1−
(

fe
wd

)2/3
(1− w2)

)−1/2

. To be consistent with

Koplik and Needleman (1988) we follow their suggestion to take q halfway between q = 1
(when no correction due to the packing volume fraction d is applied) and the above value.
This leads to

q =
1

2






1 +

1

d
(

1−
(

fe
wd

)2/3
(1− w2)

)1/2






. (32)

Note that for spherical voids (w = 1) the correction still depends on the volume fraction of
the safety spheres in the unit-cell.

4.1.2. Reference medium used in the full-field simulations

The artificial elasticity attributed to all matrix materials used in this section, and the
reference medium used in the FFT simulations (denoted with a superscript 0) are both
isotropic with Young modulus and Poisson ratio chosen as

E = 10 σ0, E(0) = 7.5 σ0, ν = ν(0) = 0.2, (33)

where σ0 is the yield stress of the von Mises matrix at the microscopic scale.

4.2. Spherical intergranular voids

The intergranular voids considered in this subsection are spherical and all different mi-
crostructures have the same void volume-fraction fe = 0.04.
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Figure 5: The porosity f∗ is defined as the ratio between the volume occupied by a void (in white) to the
volume occupied by its confocal ellipsoid (in light gray) included in its outer sphere (in dark gray). Left:
spherical (in this case, the confocal ellipsoid and the outer sphere are merged). Right: ellipsoidal in shape.

4.2.1. Von Mises matrix

As a preliminary test to the situation where two different populations of voids are present,
the particular case of an incompressible von Mises matrix (fb = 0) is investigated first. Since
the matrix is incompressible, an internal pressure in the intergranular voids (pe 6= 0) results
in a translation of the effective flow surface for the drained material (pe = 0) along the
hydrostatic axis. Therefore, the full-field simulations are performed with drained conditions
only.

Six different realizations shown in Figure 6 containing 73 small, 12 medium, and 8 large
voids were used in the full-field simulations (the size ratios with respect to the smallest size
are respectively 1.0, 1.8, and 3.5). The filling rate d, defined as the ratio between the volume
occupied by all single hollow spheres to the volume of the unit cell, is d = 0.7. The resulting
q parameter, as defined in section 4.1.1 is therefore q = 1.214. Each realization is discretized
in 5123 voxels for the FFT simulations.

The two forms (28) of the overall stress have been considered in this study, corresponding
to purely axisymmetric or purely in-plane shear Σd. Each realization is loaded along 13
different directions corresponding to 13 different values of the stress triaxiality-ratio:

T = −∞, −20, −4, −2, −1, −1/3, 0, 1/3, 1, 2, 4, 20, +∞,

and the limit stress in each direction is determined. As can be seen from Figures 7 and 8 the
discrepancy between the 6 effective flow surfaces obtained for the 6 different configurations
is small. Since the full-field simulations for the 6 different configurations are performed at
the same stress triaxiality-ratios, the 6 results are aligned along radial directions in stress
space. For each stress-triaxiality ratio, the discrepancy between the 6 configurations can be
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Microstructure # 1 Microstructure # 2 Microstructure # 3

Microstructure # 4 Microstructure # 5 Microstructure # 6

Figure 6: Spherical intergranular voids. Six different realizations of microstructures.

measured by the normalized root mean square:

ǫ =

√

√

√

√

n
∑

k=1

(

||Σ(k)|| − ||Σ||
)2

√
n||Σ||

, (34)

where the superscript k refers to the k-th realization, n = 6 and

Σ =
1

n

n
∑

k=1

Σ(k), ||Σ|| =
√

ΣijΣij =

√

3Σ2
m +

2

3
Σ2

eq.

The error ǫ is plotted in Figures 9 and 10 for the 13 different stress triaxiality ratios. The
error remains small (less than 0.7 %). The deviation from isotropy for the 6 different
configurations and for their ensemble average is given in tables C.1 and C.2. Even though
each configuration, taken individually, may deviate from isotropy by a few percents, the
deviation obtained after averaging over the configurations is much smaller (less than 3.5 %).
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Figure 7: Spherical intergranular voids, von Mises matrix, Lode angle ω = 0, drained conditions (pb =
pe = 0). Solid line: Gurson criterion with porosity q × 0.04, q = 1.214. Symbols: FFT results for the 6
microstructures of Figure 6 (all 6 symbols are almost on top of each other).
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Figure 8: Spherical intergranular voids, von Mises matrix, Lode angle ω = π/6, drained conditions (pb =
pe = 0). Solid line: Gurson criterion with porosity q × 0.04, q = 1.214. Symbols: FFT results for the 6
microstructures of Figure 6 all 6 symbols are almost on top of each other).
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Figure 9: Spherical intergranular voids, von Mises matrix, Lode angle ω = 0, drained conditions (pb = pe =
0). Error ǫ as a function of the stress triaxiality-ratio (6 microstructures of Figure 6).
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Figure 10: Spherical intergranular voids, von Mises matrix, Lode angle ω = π/6, drained conditions (pb =
pe = 0). Error ǫ as a function of the stress triaxiality-ratio (6 microstructures of Figure 6).
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4.2.2. Von Mises matrix, reduced configuration

The small discrepancy observed among the 6 configurations of Figure 6 suggests that
accurate results could be obtained with a single configuration. In addition, given the number
of simulations which have to be performed at different internal pressures for a Gurson matrix,
reducing the size of the configuration is desirable. This motivates the present section where
full-field simulations are performed on a reduced configuration and compared to the reference
results obtained in section 4.2.1. This reduced configuration shown in Figure 2 (right)
contains 9 small, 3 medium, and 1 large voids. The spatial resolution of the image is 2563

voxels (compared to 5123 for the microstructures used in section 4.2.1). Typical computation
times are 3 hours and 20 minutes for a microstructure with 2563 voxels and 41 hours for
5123 voxels (computations on 8 cores of a Hewlett-Packard Z800 workstation, equipped with
two quadcore processors Intel R© Xeon R© W5580 3.20GHz).

The flow surface computed for this reduced configuration is compared, for axisymmetric
stress states (ω = 0), in Figure 11 to the classical Gurson criterion (with modified porosity
q fe) and with the average (for each direction of the stress) over the 6 configurations of the
previous section. It can be observed that the three surfaces are in good agreement, which
suggests that:

1. the correcting factor q presented in section 4.1.1 leads to a good agreement between
the analytical Gurson criterion and the full-field simulations (the flow stress under
purely hydrostatic stress is slightly underestimated by Gurson’s model, whereas the
flow stress under purely deviatoric stress is slightly overestimated),

2. the effective flow surface can be determined with a good accuracy from full-field sim-
ulations on the reduced image only.

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Sm �Σo

S
eq
�
Σ

o

Figure 11: Spherical intergranular voids, von Mises matrix, Lode angle ω = 0, drained conditions (pb =
pe = 0). Solid line: Gurson criterion with porosity q× 0.04, q = 1.214. Crosses: FFT results on the reduced
microstructure of Figure 2 (right). Circles: average over the 6 configurations of Figure 6.
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The deviation from isotropy for this configuration is also reported in table C.1. The
deviation for the reduced configuration is of the same order of magnitude as for the 6
configurations of the previous section: a few percents at high stress triaxiality and less than
1 % at intermediate and low stress triaxiality.

Finally, given that the reduced configuration leads to almost the same results as the more
elaborate configurations of Figure 6, all subsequent full-field simulations for spherical voids
will be performed on the reduced configuration.

4.2.3. Gurson matrix, reduced configuration

The main objective of the present paper is to assess the accuracy of the analytical model
(1) when both the primary and secondary populations of voids are present and subject to
an internal pressure. For this purpose the matrix is now a Gurson material. The porosity
of the secondary population (intragranular bubbles in the matrix) is fb = 0.02. The other
parameters of the simulations are the same as in the previous section. Attention is restricted
to axisymmetric overall stress states (ω = 0). The effect of a differential pressure p = pb−pe
is investigated at three different values: pb = 0, pb = 0.5 σ0, pb = 1.5 σ0 (pe is taken equal to
0). The comparison is performed at two levels:

1. Effective flow surface. The analytical criterion (1) is compared to the FFT results in
Figure 12. The agreement is satisfactory for all three pressures at all stress triaxialities.
The effect of an internal pressure pb is well reproduced by the model.

2. Average dilatation-rate in the matrix. The strain-rate field computed by the FFT
simulations can be used to compare the average of the hydrostatic strain-rate in the
matrix to the parameter A introduced in the first part of the study. The results
are shown in Figure 13 in the case of an overall hydrostatic loading. Additional
values of the internal pressure pb have been considered here for the purpose of this
comparison (pb = −1.0, −0.5, 1.0, 2.0, 2.5). A good agreement between the model and
the numerical simulations is observed which confirms that the expression A(p) proposed
in Vincent et al. (2013) is an accurate approximation of the average dilatation-rate in
the matrix. This is essential in studying the evolution of the void volume fraction of
the intergranular voids which is governed by:

ḟe = 3(1− fe)
(

Ėm − 〈ε̇m〉M
)

(35)

An accurate estimate for 〈ε̇m〉M (the average dilatation rate in the matrix M) is
required for a correct prediction of the evolution of fe. As for the evolution of the
intragranular void volume fraction fb, it varies from point to point according to:

ḟb(x) = 3(1− fb)ε̇m(x), ḟb(x) = 3(1− fb(x))ε̇m(x).

This relation can be averaged to give

ḟ b = 3(1− fb)〈ε̇m〉M ,
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Figure 12: Spherical intergranular voids, Gurson matrix fb = 0.02, Lode angle ω = 0, microstructure Figure
2 (right): Solid line: new estimate (1) with f∗

e
= q × 0.04, q = 1.214, q3 = 1, pe = 0. Symbols: FFT

simulations, Thin black: pb = 0. Gray: pb = 0.5σ0. Thick black: pb = 1.5σ0.
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Figure 13: Spherical intergranular voids, Gurson matrix fb = 0.02, Lode angle ω = 0, microstructure Figure
2 (right). Hydrostatic loading. Average dilatation-rate in the matrix normalized by the average dilatation
rate in the whole volume as function of p = pb − pe. pe = 0. Solid line: estimate Ā proposed in Vincent
et al. (2013) with f∗

e
= q × 0.04, q = 1.214, q3 = 1. Crosses: full-field simulations.

which can be seen as an evolution equation for the average microporosity. Again, an
accurate estimate for 〈ε̇m〉M is essential for a correct prediction of the evolution (in
average) of fb.

The deviation from isotropy for the reduced configuration with a pressurized Gurson
matrix is reported in table C.4. Although the deviation from isotropy depends on the
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constitutive relations of the matrix (and therefore depends on fb and pb), it is found to be
of the same order of magnitude as in the case of a Von Mises matrix.

4.3. Ellipsoidal intergranular voids

The intergranular voids considered in this section are ellipsoidal with aspect ratio w =
1/5. Three different realizations, shown in Figure 3, have been used in the FFT simulations.
They contain 511 ellipsoidal voids with a total volume fraction fe = 0.04, all with the
same size but with random orientation. The unit-cell is discretized into 5123 voxels. The
filling rate for the distribution of monodisperse spheres surrounding the ellipsoidal voids is
d = 0.62.

4.3.1. Von Mises matrix

As for spherical voids, the case of a von Mises matrix (fb = 0) containing randomly
oriented and distributed ellipsoidal voids (porosity fe, aspect ratio w) is considered first.
Three different microstructures (denoted by “microstructure # 1” to “microstructure # 3”)
have been generated following the procedure described in section 2.1. In a first step, 511
nonoverlapping spheres with identical size are arranged in the cubic unit-cell. The filling
rate for 511 monodisperse spheres using our MD inspired algorithm is d = 0.62. In a second
step, ellipsoids (in gray in Figure 3) with identical size but different (random) orientation
are located at the center of each individual sphere. Again, two Lode angles for the overall
stress have been considered in this study (ω = 0 and ω = π/6) corresponding to purely
axisymmetric or purely in-plane shear Σd (see section 3.3).

The effective flow surfaces obtained for these 3 different realizations are shown in figures
14 and 15. The following observations can be made.

1. The discrepancy between the 3 realizations is small. This discrepancy can be estimated
by the same measure (34) as in section 4.2.1, with n = 3. The error ǫ is determined
for each stress triaxiality ratio and shown in figures 16 and 17. It is is less than 0.6 %,
suggesting that stationarity has been reached with less than 1 % error.

2. The agreement between the proposed analytical criterion (1) and the FFT results
(figures 14 and 15) is good. The analytical model has been evaluated with the modified
porosity f ∗

e = qfe following the procedure of the section 4.1.1 (q = 1.588). The GTN
form of the effective flow surface is thus confirmed. The correcting factor q of section
4.1.1 seems to match results at low and high stress triaxiality.

3. Finally, the deviation from isotropy has also been evaluated for the three configurations
(Table C.3). Again, even though each configuration may deviate significantly from
isotropy (up to 10 %), the deviation from isotropy of the ensemble average of the
results (average over the 3 realizations) is small (less than 3.5 %). The deviation
is maximal at high stress triaxiality, which suggests, as for spherical voids, that the
curvature of the effective flow surface on the hydrostatic axis is large.
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Figure 14: Ellipsoidal intergranular voids, von Mises matrix, Lode angle ω = 0, drained conditions (pb =
pe = 0). Microstructures # 1 to # 3 of Figure 3. Solid line: new estimate (1) with fb = 0, f∗

e
= q × 0.04,

q = 1.588 w = 1/5, q3 = 1, pb = pe = 0. Symbols: FFT simulations.
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Figure 15: Ellipsoidal intergranular voids, von Mises matrix, Lode angle ω = π/6, drained conditions
(pb = pe = 0). Microstructures # 1 to # 3 of Figure 3. Solid line: new estimate (1) with fb = 0,
f∗

e = q × 0.04, q = 1.588 w = 1/5, q3 = 1, pb = pe = 0. Symbols: FFT simulations.

4.3.2. Gurson matrix

Finally full-field simulations for a Gurson matrix (fb 6= 0) and different internal pressures
pb in the ellipsoidal voids are compared with analytical model. Given the low dispersion of
results among the 3 realizations, only microstructure # 1 was investigated under axisym-
metric overall stress (ω = 0).

26



0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.5 0 0.5
0

0.5

Sm

S
e
q

Ε @%D for Ω=0

Ε

@%
D

T=
1

Figure 16: Ellipsoidal intergranular voids, von Mises matrix, Lode angle ω = 0, drained conditions (pb =
pe = 0). Error ǫ as a function of the stress triaxiality-ratio (3 microstructures of Figure 3).
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Figure 17: Ellipsoidal intergranular voids, von Mises matrix, Lode angle ω = π/6, drained conditions
(pb = pe = 0). Error ǫ as a function of the stress triaxiality-ratio (3 microstructures of Figure 3).

The agreement between the analytical criterion (1) and the FFT results is good for
all values of the internal pressure pb which were considered in the simulations (see Figure
18). Moreover the average dilatation rate in the matrix with respect to the pressure pb
can be computed from the full-field simulations and compared with the predictions of the
approximation A introduced in the analytical model (Vincent et al., 2013). This is done
in Figure 19 for a purely hydrostatic stress when pb = −1.0, −0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5.
Again, a good agreement between the model and the numerical simulations is observed.
Once again the good agreement between the model and the full-field simulations, both for
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the effective flow surface and for the average dilatation-rate in the matrix (or equivalently
with the void growth-rate) supports the claim that the effective flow surface of doubly porous
materials with pressurized voids can be accurately approximated by a GTN-type criterion.
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Figure 18: Ellipsoidal intergranular voids. Comparison between predictions for the effective flow surface.
Lines: new estimate (1) computed with fb = 0.02, f∗

e
= q × 0.04, q = 1.588 w = 1/5, q3 = 1, pe = 0.

Symbols: FFT results on the microstructure # 1 of the Figure 3. Thin black: pb = 0. Gray: pb = 0.5σ0.
Thick black: pb = 1.5σ0.
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Figure 19: Ellipsoidal intergranular voids. Hydrostatic overall stress. Average dilatation-rate in the matrix
normalized by the average dilatation rate in the whole volume function of p. Solid line: analytical model A
of Vincent et al. (2013). Crosses: full-field simulations on microstructure # 1 from the Figure 3.

The deviation from isotropy has also been evaluated (see table C.4). The results are
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roughly the same as in the case of a von Mises matrix with a maximum deviation at high
triaxiality.

4.4. Influence of the third invariant of the stress

Although this study is not devoted to a thorough discussion of the influence of the
third invariant of the overall stress on the plastic properties of voided materials, a few
observations can be made from the full-field simulations. Indeed the analytical model (1)
does not incorporate any dependence on the third invariant and the question of whether this
approximation is relevant can be asked. We discuss here only the drained case (pb = pe = 0)
for a von Mises matrix.

1. First the numerical effective flow surface for ω = 0 is not symmetric with respect to
the deviatoric axis Σm = 0, whereas it is symmetric when ω = π/6. This is consistent
with the following exact result first proved in Cazacu et al. (2013): when the matrix
has point symmetry (i.e. when the local plastic potential satisfies ϕ(−ε̇) = ϕ(ε̇)), the
effective flow surface has also point symmetry (if Σ belongs to P hom then −Σ also
belongs to P hom). When the material has overall isotropy, the effective flow surface
can be expressed in terms of the three first invariants of Σ and the point symmetry of
P hom implies that if (Σm,Σeq, det(Σ)) belongs to P hom then (−Σm,Σeq,−det(Σ)) also
belongs to P hom. This has two consequences:

• First, for a given Lode angle ω, the two flow surfaces corresponding to ω and
ω + π/3 in the plane (Σm,Σeq) are deduced one from the other by a mirror
symmetry with respect to the deviatoric axis. This is a consequence of the fact
that when ω is changed into ω + π/3, det(Σ) is changed into −det(Σ).

• In particular when ω = π/6, i.e. when det(Σ) = 0, the corresponding effective
flow surface has mirror symmetry with respect to effective flow surface

Therefore it is not surprising that the two flow surfaces for ω = π/6 in figures 8 and
15 are symmetric but that the two surfaces in figures 7 and 14 are asymmetric.

2. The asymmetry of the flow surfaces for ω = 0 is small. It cannot be concluded
immediately that this small effect of the Lode’s angle on the effective flow surfaces
results in a small effect on the flow rule. As pointed out in Danas et al. (2008), the
overall plastic strain-rate (colinear to the gradient to the flow surface) can be affected
by a small perturbation of the surface, in particular in the vicinity of the hydrostatic
axis where our numerical simulations show that the curvature of the surface may be
large. However, a closer look at the overall dilatational strain-rates does not reveal a
significant effect of the Lode’s angle on the overall dilatation, at least in the range of
porosity which was investigated here and this effect should not be overestimated.

3. However, a definite influence of the third invariant on the local plastic strain-rate
fields was observed. In all our simulations, the fields corresponding to overall pure
shear (ω = π/6) were more localized (concentrated into highly deformed regions) than
those obtained for axisymmetric shear (ω = 0). This is illustrated in Figure 20 for
instance with the following color code: red and blue correspond to high and low strain-
rate levels respectively, green and yellow to intermediate strain-rate levels (normalized
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by the overall strain-rate). Therefore, one cannot exclude that, integrated over the
whole time history of the material, these small deviations in the flow rule and in the
change of shape of voids may lead to significant differences at void coalescence for
different Lode’s angles.

Figure 20: Spherical voids (microstructure # 0 in Figure 6). Purely deviatoric overall stress. Snapshots of
the equivalent strain-rate field. Left: ω = 0. Right: ω = π/6.

The consequences of this huge difference in the local strain-rate fields, which may have a
significant effect on the change of shape of the voids and therefore on the evolution of the
microstructure, remain to be investigated.

5. General conclusion

In part I of this study, an analytical model was proposed to describe the effective flow
surface of a voided material with two populations of voids of different sizes, subjected to
internal pressures in addition to the classical loading by average. In its simplest form, the
analytical form which was proposed was of GTN-type. An explicit expression for the average
dilatation-rate in the matrix (or alternatively of the void growth-rate) was also derived.

In the present paper (part 2 of the study), the predictions of this analytical criterion
have been compared to full-field numerical simulations using the Fast Fourier Transform
method of Moulinec and Suquet (1998) and Michel et al. (2000). The method has been
successfully applied to the case of voided materials with a Gurson matrix and internal
pressure. Different unit cells containing a rather large number of voids (511 voids in the
ellipsoidal case) to ensure isotropy and representativeness up to a certain error (which has
been defined) have been investigated. The agreement with the model is found to be very
satisfactory.
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Salençon, J., 2013. Yield Design. ISTE. John Wiley.
Stoyan, D., Kendall, W., Mecke, J., 1995. Stochastic Geometry and Its Applications. Wiley Series in Prob-

ability and Statistics. John Wiley & Sons Ltd, England.
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Appendix A. Effective flow surface

The minimization problem (10) is non-smooth in the sense that the function ϕ to be
minimized is not differentiable at the origin. Although this minimization problem could
be attacked directly (de Buhan and Maghous, 1995; Pastor et al., 2009) with adequate
minimization algorithms for nondifferentiable functions, an alternative procedure consists in
the resolution of a sequence of evolution problems for a composite with elastic ideally plastic
phases (instead of being rigid-plastic). First, each individual phase is given an artificial
(or real) elastic stiffness C(x) so that the constituents are elastic ideally-plastic. This
modification is legitimate since the overall flow surface of the composite does not depend
on the elastic properties of the constituents. Second, an artificial time t is introduced. The
evolution of the local fields σ(t,x),u∗(t,x) within the unit cell is determined under the
application of a strain-rate Ė(t) (which is given in the strain-controlled method or to be
determined in the stress-controlled method). For simplicity, the strain-rate is assumed to
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be prescribed and constant Ė(t) = Ė ∀t ≥ 0.

Appendix A.1. Incremental plasticity

When an incremental model of plasticity is assumed for the individual constituents, the
evolution problem reads as:

σ(t,x) = C(x) : (ε (u(t,x))− εp(t,x)) ,

σ(t,x) ∈ P (x), ε̇p(t,x) = λ̇(t,x)
∂f
∂σ

(x,σ(t,x)), λ̇ ≥ 0,

div(σ(t,x)) = 0, u(t,x) = tĖ · x+ u∗(t,x), u∗#, σ.n−#,



















(A.1)

where f(x, .) is the equation defining the boundary of P (x) = {τ , f(x, τ ) ≤ 0}, when such
an equation exists, otherwise the normality rule is used in generalized form.

Let Σ̂ be an element in P hom and let σ̂(x) denote the associated local stress field through
(9). Taking the time derivative of the first line in (A.1), multiplying it by σ̂ − σ(t) and
integrating over the volume element, yields after due use of Hill’s lemma:

〈

σ̇(t) : C−1 : (σ̂ − σ(t))
〉

≥ Ė :
(

Σ̂−Σ(t)
)

, (A.2)

where Σ and Σ̂ are the volume averages of the fields σ and σ̂. Assume that in the limit as
t → +∞, σ(t) has a limit σ∞. Then σ̇ vanishes and passing to the limit in (A.1) one gets
that:

Ė :
(

Σ̂−Σ∞
)

≤ 0, Σ∞ = lim
t→+∞

Σ(t). (A.3)

Therefore Σ∞ is on the boundary of P hom (it was already known that it was in P hom as
the average of σ∞ which satisfies all the requirements of (9)), with a non vanishing outer
normal Ė to the boundary of P hom.

Appendix A.2. Deformation theory

When a deformation theory of plasticity is assumed for the individual constituents, the
evolution problem reads exactly as in (A.1), except that the normality rule is written in
total form (and not in incremental form) as:

εp(t,x) = λ(t,x)
∂f

∂σ
(x,σ(t,x)), λ ≥ 0. (A.4)

Multiplying the first line of (A.1) by σ̂ − σ(t) and integrating over the volume element,
yields after due use of Hill’s lemma:

1

t

〈

σ(t) : C−1 : (σ̂ − σ(t))
〉

≥ Ė :
(

Σ̂−Σ(t)
)

, (A.5)

Taking the limit as t tends to +∞ and assuming that σ(t) has a limit, yields again:

Ė :
(

Σ̂−Σ∞
)

≤ 0, Σ∞ = lim
t→+∞

Σ(t). (A.6)
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Therefore the asymptotic overall stress Σ∞ obtained by the deformation theory belongs to
the boundary of P hom with outer normal Ė. Both models, incremental and deformation
theory, lead asymptotically to the same overall stress states. However, as is well-known, the
path followed to reach these points may be different.

Appendix B. Single void in a von Mises matrix. Simple cubic structure

To calibrate the spatial resolution used in the numerical simulations, a simple cubic
structure is considered first. The volume element is a cube containing a spherical void
located at its center. The same void volume fraction as in Richelsen and Tvergaard (1994),
f = 0.04. The matrix is a von Mises material. The influence of the spatial resolution of the
image is studied by considering a discretization of the cube into 323, 643 or 1283 pixels. The
results are shown in Figure B.21 for axisymmetric loading (ω = 0) and pure shear (ω = π/6)
where the Lode angle ω is defined in (3.3). The results are consistent with those obtained
by Richelsen and Tvergaard (1994) (these authors also considered other loading conditions
corresponding to other values of ω which are not reported here). The influence of the
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Figure B.21: Single void in a cubic unit-cell. f = 0.04. Influence of the spatial resolution. Left: axisymmetric
loading ω = 0. Right: pure shear ω = π/6.

spatial resolution is relatively small with a maximum when T = 1 and T = ∞. A spatial
resolution 643 seems to achieve a reasonable compromise between accuracy and the size of
the problem.

Appendix C. Deviation from isotropy
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T # 1 # 2 # 3 # 4 # 5 # 6 Average Reduced
−∞ 6.49 9.52 7.65 5.16 8.17 4.78 3.28 2.50
-20. 3.18 9.83 6.66 5.39 8.10 4.26 3.26 6.43

-4. 3.11 6.22 5.90 0.76 6.53 4.04 1.26 1.44
-2. 1.69 2.05 2.20 0.70 1.42 1.18 0.23 1.43
-1. 0.62 0.74 0.39 0.62 0.43 0.29 0.07 0.46
-1/3 0.31 0.37 0.11 0.50 0.15 0.18 0.03 0.15
0. 0.34 0.40 0.10 0.55 0.16 0.19 0.03 0.08
1/3 0.55 0.64 0.16 0.72 0.33 0.30 0.06 0.09
1. 1.67 1.94 0.64 1.25 1.08 0.85 0.18 0.42
2. 3.45 5.79 2.81 0.79 2.58 1.88 0.70 1.86
4. 6.03 8.53 3.46 4.63 5.89 3.94 1.44 2.77
20. 7.28 4.70 3.77 2.52 4.40 2.09 2.29 3.26
+∞ 6.49 9.52 7.65 5.16 8.17 4.78 3.28 2.50

Table C.1: Deviation from isotropy in % measured by η (7) for the 6 microstructures of Figure 6 and the
microstructure of Figure 2 (right) (Reduced microstructure). Von Mises matrix, ω = 0.

T # 1 # 2 # 3 # 4 # 5 # 6 Average
−∞ 6.49 9.52 7.65 5.16 8.17 4.78 3.28
-20. 1.98 6.21 3.09 3.71 2.49 5.64 2.88
-4. 3.29 2.56 1.89 1.38 2.03 1.24 0.57
-2. 5.53 1.60 0.63 0.72 3.37 0.52 1.38
-1. 4.40 5.81 1.83 0.97 1.81 1.65 1.60
-1/3 1.82 2.18 1.62 0.79 0.65 1.50 0.63
0. 0.09 0.20 0.07 0.50 0.25 0.33 0.05
1/3 1.69 2.17 1.58 0.55 0.58 1.32 0.54
1. 3.76 6.40 2.12 0.98 1.32 1.76 1.26
2. 3.22 8.49 3.04 0.90 1.01 2.93 1.20
4. 3.91 6.90 2.37 1.25 11.23 4.04 2.88
20. 7.08 4.55 4.55 3.45 4.42 1.98 1.95
+∞ 6.49 9.52 7.65 5.16 8.17 4.78 3.28

Table C.2: Deviation from isotropy in % measured by η (7) for the 6 microstructures of Figure 6 and the
microstructure of Figure 2 (right) (Reduced microstructure). Von Mises matrix, ω = π/6.
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Microstructure # 1 # 2 # 3 Average
❍
❍
❍
❍
❍
❍

T
ω

0 π/6 0 π/6 0 π/6 0 π/6

−∞ 6.23 6.23 9.76 9.76 9.63 9.63 2.88 2.88
-20. 5.57 3.28 10.48 7.09 10.35 2.52 2.69 1.96
-4. 3.92 1.52 8.86 3.08 7.14 0.8 1.64 0.91
-2. 2.38 0.83 4.5 2.35 4.18 1.04 0.78 1.11
-1. 1.23 0.99 1.99 1.77 1.87 0.81 0.43 1.01
-1/3 0.44 0.61 0.92 0.47 0.53 0.72 0.25 0.52
0. 0.18 0.53 0.66 0.36 0.22 0.49 0.18 0.27
1/3 0.14 0.64 0.76 0.94 0.36 0.51 0.20 0.31
1. 0.39 0.78 1.97 2.21 0.84 0.63 0.66 0.79
2. 0.83 1.44 3.49 3.57 1.53 1.53 1.14 1.40
4. 1.58 2.82 4.4 4.66 3.65 3.19 0.87 1.38
20. 5.49 5.39 7.72 8.21 6.38 3.4 2.80 3.32

+∞ 6.23 6.23 9.76 9.76 9.63 9.63 2.88 2.88

Table C.3: Deviation from isotropy in % measured by η (7) for the 3 microstructures of Figure 3. Von Mises
matrix. ω = 0, π/6.

Spherical voids
Reduced microstructure

T pb = 0 pb = 0.5σ0 pb = 1.5σ0

−∞ 2.55 2.64 2.50
-20. 5.95 6.50 6.75

-4. 1.97 3.27 1.46
-2. 1.25 2.36 1.42
-1. 0.46 0.83 0.45
-1/3 0.15 0.15 0.10
0. 0.08 0.08 0.11
1/3 0.10 0.13 0.39
1. 0.55 0.64 1.98
2. 2.02 2.39 0.31
4. 1.90 0.50 0.94
20. 2.48 2.71 0.17
+∞ 2.55 1.74 0.27

Ellipsoidal voids
Microstructure # 0

T pb = 0 pb = 0.5σ0 pb = 1.5σ0

−∞ 5.72 2.81 6.20

-20. 5.83 5.80 5.60
-4. 3.36 4.19 3.98
-2. 2.87 0.31 2.37
-1. 1.30 1.24 1.20
-1/3 0.45 0.45 0.45
0. 0.18 0.18
1/3 0.13 0.11 0.10
1. 0.42 0.47 0.85
2. 0.86 0.88 1.03
4. 1.9 2.16 1.71
20. 4.87 4.17 2.41
+∞ 6.02 3.98 2.56

Table C.4: Influence of the internal pressure in the voids on the deviation from isotropy in % measured by η
(7). Gurson matrix, ω = 0. Left: reduced microstructure of Figure 2. Right: microstructure # 1 of Figure
3.
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Appendix D. Covariograms

In order to qualitatively evaluate the stationarity and the isotropy of the image # 1
(Figure 3), a specific study based on covariograms is presented here. It is recalled that the
the image # 1 contains 5123 voxels and 511 ellipsoidal voids (monodisperse voids, aspect
ratio 1/5, porosity 0.04). First of all, an additional image has been built with 10243 voxels
and 4088 ellipsoidal voids (while keeping the other parameters identical to those of the image
# 1). Given its large size and number of cavities therein, this second image is our “reference
image“ for stationarity and isotropy that we could get from this type of microstructures.

Appendix D.1. Characterization of the reference image

Covariograms C(r) have been plotted for several cutting planes and in several directions.
Results are reported in Figure D.22.
It appears that the covariograms stabilize from about 100 pixels (which is about 3 times
the radius of the safety spheres surrounding the voids), with an integral range of about 25
pixels. These values are much lower than the total size of the unit-cell, suggesting that the
stationarity has been reached for each of these cutting planes.
Moreover, in each of these planes, the obtained covariograms remain close to each other,
meaning that they are independent of the orientation: C(r) ≈ C(||r||).
These two last observations will serve as benchmarks with respect to the stationarity and
global isotropy that could be obtained from such images.

Appendix D.2. Characterization of the image # 1 (Figure 3)

Covariograms have been plotted and results are reported in Figure D.23.
As for the reference image, it appears that: (1) the covariograms stabilize from about 100
pixels, with an integral range of about 25 pixels, (2) for each cut, the covariograms remain
close to each other (C(r) ≈ C(||r||)). Consequently, the same features as in the reference
image are found, suggesting that the two images have approximately the same degree of
stationarity and isotropy.
Moreover, as expected in the case of stationary random close sets, the variance of the surface
fraction of the inclusions (here the voids) is decreasing with the size of the cutting planes
(Stoyan et al., 1995): Figure D.24 shows this variance for 100 parallel cutting planes as a
function of the size of the samples inside these planes. One can also observe that the variance
is very low (less than 10−4) from a size of 300 pixels, suggesting a good level of isotropy for
the image # 1 with 512 pixels length (it would be 0 if this image were perfectly isotropic).
Finally, for the present study, simulations have been performed on 5123 voxels images and
not on 10243 voxels images, ensuring reasonable computation costs (about 35 hours on 20
cores and 70 GB RAM).
This covariogram based analysis remains mostly qualitative. Concerning the problem of
global isotropy, the mechanical approach introduced in the section 2.4 leads to a quantitative
measure of the deviation from isotropy.
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Figure D.22: Covariograms in terms of distance (in pixels). 4 parallel cutting planes in the 10243 voxels
image (with 4088 voids). On each of these cutting planes, covariograms are plotted in 8 directions. Cutting
planes are also reported on each figure.
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Figure D.23: Covariograms in terms of distance (in pixels). 4 parallel cutting planes in the image #1
(Figure 3). On each of these cutting planes, covariograms are plotted in 8 directions. Cutting planes are
also reported in each figure.
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Figure D.24: Image #1 (Figure 3): variance of the surface fractions for 100 parallel cutting planes as a
function of the size of the samples inside these planes (in pixels).
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