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[1] An assessment of the performance of a state-of-the-art large-scale coupled sea ice-
ocean model, including a new snow multilayer thermodynamic scheme, is performed.
Four 29 year long simulations are compared against each other and against sea ice
thickness and extent observations. Each simulation uses a separate parameterization
for snow thermophysical properties. The first simulation uses a constant thermal con-
ductivity and prescribed density profiles. The second and third parameterizations use
typical power-law relationships linking thermal conductivity directly to density (pre-
scribed as in the first simulation). The fourth parameterization is newly developed and
consists of a set of two linear equations relating the snow thermal conductivity and
density to the mean seasonal wind speed. Results show that simulation 1 leads to a sig-
nificant overestimation of the sea ice thickness due to overestimated thermal conduc-
tivity, particularly in the Northern Hemisphere. Parameterizations 2 and 4 lead to a
realistic simulation of the Arctic sea ice mean state. Simulation 3 results in the under-
estimation of the sea ice basal growth in both hemispheres, but is partly compensated
by lateral growth and snow ice formation in the Southern Hemisphere. Finally,
parameterization 4 improves the simulated Snow Depth Distributions by including
snow packing by wind, and shows potential for being used in future works. The inter-
comparison of all simulations suggests that the sea ice model is more sensitive to the
snow representation in the Arctic than it is in the Southern Ocean, where the sea ice
thickness is not driven by temperature profiles in the snow.
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1. Introduction

[2] The thermophysical properties of snow on sea ice
play a key role in the physics of heat conduction
through the snow-sea ice system. In particular, several
studies have shown the importance of the snow thermal
insulating effect on the sea ice growth and decay [e.g.,
Eicken et al., 1995; Fichefet and Morales Maqueda,

1997; Sturm et al., 2002]. By strongly curtailing the con-
ductive heat flux from the sea ice to the snow-
atmosphere interface and therefore heat losses to the
atmosphere, the low thermal conductivity of snow
reduces the basal ice growth.

[3] The process of heat transfer through the snow
includes mainly three mechanisms: (1) heat conduction
through the ice matrix formed by the interconnected
grains, (2) heat conduction in the interstitial air, and (3)
the transfer of latent heat by water vapor that subli-
mates from warmer grains to condense on colder ones.
With regard to this, a variable called effective thermal
conductivity (keff) is typically used, accounting for all
three processes. However, the term effective thermal
conductivity is probably not the most appropriate,
because it includes transfer by latent heat, which is not
a conductive process. Following Calonne et al. [2011],
we therefore refer to the variable regrouping the above
three processes as the apparent thermal conductivity,
kapp. Another potentially important process, heat
advection by wind pumping of air over a rough snow
surface, is not included in kapp and has to be simulated
separately if represented in a model. The range of
possible values for kapp extends from about 0.03 to
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0.65 W m21 K21 [Sturm et al., 1997, 1998], and several
regression curves relating snow thermal conductivity to
snow density qs were proposed (e.g., Yen [1981] and
Sturm et al. [1997], among the most commonly known
and used in the modeling community). Yet most large-
scale sea ice models (coupled to ocean and/or atmos-
pheric general circulation models or not) have been
using the 0.31 W m21 K21 constant value proposed by
Maykut and Untersteiner [1971] and Semtner [1976].
Until now, the same constant has been used in the
Louvain-la-Neuve Sea Ice model (LIM), which
includes, like all those models, a relatively simple snow
representation with only one snow layer and constant
snow density and thermal conductivity. Even so, Wu
et al. [1999] and Fichefet et al. [2000] showed that their
simulated Antarctic sea ice exhibits a strong sensitivity
to snow thermal conductivity, despite the rather sim-
plistic snow representation in their models. In particu-
lar, they found the modeled average Antarctic sea ice to
be on average 10% thinner when using a value reduced
by half for kapp with respect to the usual value.

[4] The present study aims at extending those works
and investigates the sensitivity of a large-scale coupled
sea ice-ocean model to the representation of snow ther-
mal conductivity using a new, more elaborate snow
thermodynamic scheme. In particular, we show the
impacts of a newly developed and simple parameteriza-
tion of snow packing by wind on the simulated snow
depth distributions. The second objective is to study the
reproducibility of Lecomte et al.’s [2011] results and
assess the differences in response of the sea ice model to
various thermal conductivity formulations between
both hemispheres. Benefit is taken from the host
coupled model including oceanic feedbacks to explain
those dissimilarities. Lastly, we evaluate the ability of
this model to simulate the sea ice extent and thickness
in both hemispheres with respect to observations. The
paper is laid out as follows: section 2 introduces the sea
ice-ocean model and the snow scheme, section 3 details
the experimental setup, and section 4 describes the
observations used to evaluate the model outputs. In sec-
tions 5–6, we respectively present and discuss the mean
state and variability of the sea ice extent/thickness for
each simulation. Findings are summarized in section 7.

2. Model Description

[5] For the purpose of this study, we use the global
coupled ocean-sea ice model NEMO-LIM, in the same
configuration as in Massonnet et al. [2011]. Both the
ocean-sea ice model and snow scheme we use are
described in the next two sections.

2.1. Sea Ice and Ocean

[6] LIM3 (Louvain-la-Neuve Sea Ice Model, version
3) is a state-of-the-art thermodynamic-dynamic sea ice
model. Its comprehensive description is given in Van-
coppenolle et al. [2009a]. This model includes an explicit
representation of the subgrid-scale distributions of ice
thickness, enthalpy, salinity, and age (using five ice cat-
egories). The thermodynamic component is a multilayer

scheme (five layers of ice) based on the energy-
conserving model of Bitz and Lipscomb [1999] and sea
ice halodynamics are represented using an empirical
parameterization of the effects of brine convection
(gravity drainage) and percolation (flushing and snow
ice formation) on the vertical salinity profile. Sea ice
dynamics are solved using the elastic-viscous-plastic
(EVP) rheology of Hunke and Dukowicz [1997] and the
C-grid formulation of Bouillon et al. [2009]

[7] LIM3 is fully coupled with the oceanic general cir-
culation model (GCM) OPA (Ocean PArallelis�e, ver-
sion 9) (see, Madec [2008] for the full documentation)
on the modeling platform NEMO (Nucleus for Euro-
pean Modeling of the Ocean) following the formulation
of Goosse and Fichefet [1999]. All simulations are per-
formed on the model global tripolar ORCA1 grid
(1� resolution) with 42 vertical levels. A sea surface sa-
linity restoring toward the Levitus [1998] climatological
values is added to the freshwater budget equation to
prevent spurious model drift.

2.2. Snow Scheme

2.2.1. General Description
[8] Initially, the snow in LIM3 was, as in most ice-

ocean GCMs, represented as one single layer with con-
stant thermophysical properties. From this starting
point, two general lines of model improvement were
considered. The first is the sophistication of the physical
and numerical framework used for snow representation
(e.g., increasing the number of layers, introducing vary-
ing density, etc.), which is a prerequisite for parameter-
izing important processes such as penetration of
shortwave radiation, snow packing and drift. The sec-
ond line of improvement, i.e., the representation of the
latter processes themselves, is partially addressed in this
study and will be further developed in future studies.
Thus, a multilayer thermodynamic snow scheme of
intermediate complexity was developed and tested in
the one-dimensional (1-D) version of LIM (LIM1D)
[Lecomte et al., 2011]. This scheme was then modified
and included into the full version of NEMO-LIM3 for
the present work in order to add a slightly improved
radiation scheme, a new snow thermal conductivity for-
mulation, and make it consistent with the structure of a
three-dimensional model with horizontal advection.
The final scheme, described hereafter, therefore pro-
vides a better characterization of the snow layer proper-
ties (density and thermal conductivity) and of their
impacts on heat conduction through the snow ice sys-
tem, compared to the initial snow representation in
LIM3.

[9] For each sea ice thickness category in a given hori-
zontal grid cell of the model, snow is considered as a
horizontally uniform snow pack on sea ice, with a thick-
ness hs. At each depth z within the snow, the thermody-
namic state of the medium is characterized by
temperature T(z), density qs (z), and effective thermal
conductivity kapp (z). The vertical snow temperature
profile is governed by the one-dimensional heat
diffusion equation:
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where cs 5 2100 J kg21 K21, qs, and kapp are the specific
heat, density (handled as described in section 2.2.2.1),
and thermal conductivity of snow (parameterized as a
function of either density or wind speed, as detailed in
section 2.2.2.2), respectively. I(z) is the solar radiation
penetrating into snow at depth z. Practically, the
downwelling radiation decreases exponentially through
the snow, except in its highly scattering uppermost por-
tion [Perovich, 2007]. This layer is usually referred to as
the ‘‘surface scattering layer’’ (SSL). In the new radia-
tive scheme, we assume that the surface layer absorbs
all near-infrared solar radiation [Dozier and Warren,
1982; Warren, 1982], so that the remaining radiation is
in the visible and UV parts of the solar spectrum.
Therefore, the snow column is optically divided into a
highly scattering surface layer of thickness hSSL and
several deeper layers. The solar radiation penetrating
under the SSL is:

I05 12að Þi0Fsw; ð2Þ

where a is the surface albedo, Fsw the incident solar
radiation at the surface, and i0 5 0.18 the fraction of
solar radiation penetrating under the SSL (value of
Grenfell and Maykut [1977]). The albedo is computed as
a function of the surface state, cloud cover, ice thick-
ness, and snow depth [Shine and Henderson-Sellers,
1985]. Radiation transmission through the deeper layers
is then computed following Beer’s law, using a set of
extinction coefficients js for dry and wet snow from
J€arvinen and Lepparanta [2011]:

I zð Þ5I0e2jsz; ð3Þ

where z> hSSL is the snow depth. The parameter hSSL is
assigned to 3 cm (value of Perovich [2007]). Radiation
absorption into the ice is also treated using Beer’s law,
with an attenuation coefficient ji 5 1 m21. The crude
representation of the radiative transfer in snow and sea
ice should definitely be improved, for instance through
the use of more sophisticated schemes [e.g., Briegleb
and Light, 2007; Holland et al., 2012], which will be the
subject of future work.

[10] The surface energy balance provides the bound-
ary condition at the top of the snow cover (fluxes are
defined positive downward):

Fct
0 5 12að Þ 12I0ð ÞFsw1Flw2�srT4

s 1Fsh1Flh ð4Þ

[11] Fct
0 being the conductive heat flux in snow just

below the surface, Flw the downward longwave radia-
tion, �s50:97 and Ts the surface emissivity and tempera-
ture, respectively, and Fsh and Flh the turbulent fluxes of
sensible and latent heat. In LIM3, the heat content of
three snow physical layers and the total snow mass (per
ice category) are advected horizontally with the sea ice,
as suggested by Lecomte et al. [2011]. This minimum

number of layers was chosen to avoid an excessive
increase in computing time, closely related to the num-
ber of state variables advected in the model. Consider-
ing that no optimization of the code was done at this
stage, this configuration leads to a lengthening of the
actual computing time by �40% compared to the
standard version of NEMO-LIM3 with a single snow
layer. Most of this cost is due to the advection of snow
mass and temperature tracers (20 tracers) using the
Prather scheme, the cost of which significantly
increases with a large number of tracers. However, the
snow vertical grid is refined in The thermodynamics so
that the heat diffusion equation is solved within six
layers instead. This is done using an energy-conserving
method and enables the thermodynamic scheme to bet-
ter simulate the temperature gradient within the snow
cover.

[12] Once the new temperatures are computed, the
snow mass balance is calculated as:

@Ms

@t
5RS2RM=Su2RSI ð5Þ

where Ms is the snow mass per unit area (integral of
snow thickness times density over all layers), RS the
snowfall rate, RM/Su the melt or sublimation rate, and
RSI the snow ice formation rate. RM/Su accounts for
both surface and internal melts, and surface sublima-
tion whenever the snow surface specific humidity is
larger than the air specific humidity. Basically, when
the surface energy balance is positive for snow (taking
into account all incoming and outcoming fluxes) and
surface temperature reaches the melting point, snow
melts. If the snow surface specific humidity (relative to
the temperature of the surface layer) is larger than the
air specific humidity and the air relative humidity is
lower than 100%, snow sublimates instead of melting.
Since the energy by unit mass required to sublimate
snow is about 10 times larger than the one for melting
it, snow mass losses by surface ablation in case of subli-
mation are significantly reduced compared to regular
melt conditions [Nicolaus et al., 2009].

[13] RSI is parameterized as in Fichefet and Morales
Maqueda [1997]. When the snow pack is heavy enough
to depress the snow-ice interface below the sea level, a
mixture of snow and sea water flooding the interface
refreezes to form snow ice that is merged with the
underlying sea ice. The thickness of the snow ice layer is
computed assuming the hydrostatic equilibrium of the
snow/ice column into the ocean.

[14] The snowfall rate, RS is initially derived from
climatological data, as a surfacic water mass flux
(in kg m22 s21). Then, RS is converted into snow
accumulation Dhsfall:

Dhsfall5f sfallqsf
solidRSDt ð6Þ

where fsolid, fsfall, and Dt are the fraction of precipitation
that falls as snow, the fraction of solid precipitation fall-
ing on the ice-covered part of the grid cell and the
model time step, respectively. fsolid is computed as a
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function of surface air temperature following Ledley
[1985], and fsfall is defined as

f sfall5
12 12aið Þb

ai

ð7Þ

where ai is the ice concentration (area fraction) and b a
blowing snow parameter (equal to 0.6 in the model)
accounting for the impact of the wind on the amount of
snow blown into the ocean.

2.2.2. Parameterizations
2.2.2.1. Snow Density Profile

[15] The representation of snow metamorphism in a
model, implying the characterization of the snow pack
through the snow grain size and shape, requires a high
level of sophistication that is not compatible with both
the spatial scales resolved explicitly by GCMs and the
computational costs of such models. Despite being ben-
eficial for the representation of some processes, such as
the physics of depth hoar formation [see, e.g., Sturm
and Massom, 2009], a comprehensive description of
metamorphism like the one used in complex land snow
models (e.g., CROCUS [Brun et al., 1989]) was not
included in LIM3. Besides, in contrast with the density
of continental snow, the density of snow on sea ice is
affected by sea ice dynamics and topography.

[16] Nonetheless, the impacts of such mechanisms on
snow are so poorly understood that prognosing the evo-
lution of snow density in a sea ice model is hardly feasi-
ble at this stage. Instead, a density profile is prescribed
as a function of the sea ice age and thickness, and only
the snow mass (not volume) is advected on the horizon-
tal grid of the model. This is done by assuming that the
snow depth and stratigraphy are highly conditioned by
the history of the underlying sea ice. Studies presenting
specific snow stratigraphies on first-year ice (FYI) and
multiyear ice (MYI), such as Nicolaus et al. [2009], sup-
port this assumption. Two main observational data sets
were used to build the snow density profiles for FYI
and MYI in the model. The first is from the interdisci-
plinary Ice Station POLarstern (ISPOL) [Hellmer et al.,
2008] project, Weddell Sea, Antarctica. The campaign
was conducted in the western Weddell Sea, Southern
Ocean in austral spring and summer 2004/2005. Regular
measurements (over December 2004) of snow density
profiles were made in four sites including both FYI and
MYI around the drifting station. A full description of
these data can be found in Nicolaus et al. [2006] and
Nicolaus et al. [2009]. In the Arctic, snow density data
were taken from the Canadian Arctic Shelf Exchange
Study (CASES) that took place in 2003. This data set,
described in Langlois et al. [2007], provides snow den-
sity profiles on first-year land-fast sea ice offshore in
Franklin Bay, Northwest Territories, Canada.

[17] First, those snow pit data were processed to bring
all densities and layer thicknesses back on a normalized
vertical grid with depth ẑ varying from 0 (surface) to 1
(bottom). The normalized density profiles were then
averaged over snow samples originating from sea ice of
similar type and thickness. From this, a uniform snow

density profile of 290 kg m23 and a vertical profile
qs ẑð Þ5291189ẑ kg m23

� �
were chosen to be prescribed

in the model for snow on FYI and MYI, respectively.
Given the very high spatial (even at regional scale) and
temporal variability of the snow cover on top of sea ice
in both hemispheres [e.g., Massom et al., 2001; Sturm et
al., 2002], this modeling choice might appear relatively
simple. However, it is a first attempt to account for the
impact of the variability of the snow stratigraphy on the
large-scale sea ice thermodynamics. In the context of
the multiplication of snow in situ data sources, this
method could be refined to add more detailed and dis-
tinct profiles as a function of ice type in large-scale sea
ice models.

2.2.2.2. Snow Thermal Conductivity
[18] The snow thermal conductivity is usually related

to snow density through data regressions. Here, we use
those of Yen [1981] (equation (8)) and Sturm et al.
[1997] (equation (9)):

kapp5ki

qs

qw

� �1:88

ð8Þ

kapp50:13820:00101qs10:000003233q2
s ð9Þ

with ki and qw being the thermal conductivity of pure
ice (2.01 W K21 m21) and the density of freshwater
(1000 kg m23), respectively. Those relationships were
chosen in Lecomte et al. [2011] because they are broadly
used in the snow-modeling community. However, due
to the dissimilar meteorological conditions, sea ice types
and thickness distributions in the two hemispheres, the
Arctic and Antarctic sea ice snow cover properties (in
particular density stratigraphy) are substantially differ-
ent [Sturm and Massom, 2009]. In light of the current
state of snow representation in sea ice models, these dif-
ferences cannot be well represented yet. The evaluation
of snow thermal conductivity based on such relation-
ships is therefore critical and sometimes leads to large
errors in thermal conductivity (and subsequently in sea
ice state estimates) according to whether they are used
in the Northern or Southern Hemisphere. For these rea-
sons, we have sought to develop simple parameteriza-
tions of snow density and thermal conductivity that
would be independent from those considerations and
would directly relate the snow density and thermal con-
ductivity to climate variables such as the surface wind
speed, the surface air temperature or the temperature
gradient in the snowpack. Here, we briefly present the
correlations obtained in [Domine et al., 2011b] between
the snow density and the mean seasonal surface wind
speed and between the snow thermal conductivity and
the mean seasonal surface wind speed (w). The rationale
is the observation, common and shared by virtually all
field snow scientists, that the hardness and density of
dry snow are largely determined by the wind intensity.
This widespread observation has been published and
used in continental snow models [e.g., Brun et al., 1997;
Vionnet et al., 2012] but, to the best of our knowledge,
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never in sea ice models. Since both snow hardness and
density are good predictors of the snow thermal con-
ductivity [Domine et al., 2011a], relating this latter vari-
able to the surface wind speed also appears logical.

[19] We used data from field campaigns in Sodankyl€a
(Northern Finland), Barrow (Alaska) [Domine et al.,
2012], the Col de Porte (French Alps), Ny Alesund (Sval-
bard) [Domine et al., 2011a], and Summit (Greenland)
for thermal conductivity. For density, in addition to the
aforementioned locations, we used data from Fairbanks
(Alaska) [Taillandier et al., 2006] and Dome C (Antarc-
tica). The data from places with references have been
published, and most of the others have been obtained for
a purpose totally different from that of the current study.
Data from Col de Porte, Summit, and Dome C have not
been published yet. As detailed in Domine et al. [2012],
the snow density was measured with density cutters, i.e.,
by extracting and weighting a known volume of snow.
The snow thermal conductivity was measured with a
TP02 heated needle probe from Hukseflux. The principle
is to measure the rate of dissipation of a 100 s heat pulse
by monitoring the temperature rise of the heated needle
[Sturm et al., 1997; Morin et al., 2010]. This rate is related
to snow thermal conductivity. Meteorological data was
either measured during the campaigns or taken from per-
manent meteorological stations at the sites. The tempera-
ture gradient within the snow was determined from
vertical strings of thermistors placed in the snow during
the campaign. The site of Sodankyl€a is in the forest and
wind speed is measured above the canopy. This is clearly
not representative of wind speed at ground level. At this
site, essentially no wind could be felt at ground level and
there was never any blowing snow. These conditions
were similar to those experienced in Fairbanks, so that
the wind speed above the canopy was scaled to the ratio
between the wind speeds above and below the canopy
from Fairbanks to obtain the below canopy Sodankyl€a
wind speed.

[20] The correlation between the snow density and
the surface wind speed is shown in Figure 1 (left). In
this figure, the surface wind speed is the seasonal one.
The snow density is the average of all density data over
a season, as in the case of Fairbanks, or over the cam-
paign duration, which ranges from 2.5 months (Sum-
mit) to 3 weeks (Finland). These data lead to the
following relationship:

qs544:6w1174 kg m23
� �

ð10Þ
[21] The associated correlation coefficient R2 5 0.63,

based on seven samples, is statistically significant
(p� 0.05). It can be enhanced by adding a temperature
gradient component. The rationale is that the tempera-
ture gradient tends to reduce the density in seasonal
snowpacks, where the warmer basal layers sublimate
and lose mass while not compacting [Sturm and Benson,
1997; Taillandier et al., 2006]. Empirically, we found
that qs5w20:13rT , with rT , in K m21, yielding the
best correlation, R2 5 0.82 (p� 0.05). However, com-
puting the seasonal mean temperature gradient in the
snowpack significantly increases the numerical memory
requirements of the model, so that only the wind speed

correlation was actually retained. The correlation
between the snow thermal conductivity and the surface
wind speed is illustrated in Figure 1 (right), and yielded
the following regression:

kapp50:0424w10:0295 Wm21K21
� �

ð11Þ

[22] Based on five points, R2 5 0.88 (p� 0.05). It can
be enhanced to 0.91 (p� 0.05) by adding a temperature
gradient component but for the same reasons as above,
this was not implemented in the model. Second-order
polynomial fits were also applied to these data but were
not statistically significant for snow density as a func-
tion of wind speed, so they were not retained.
2.2.2.3. Basic Intercomparison

[23] The constant value of 0.31 W m21 K21 usually
used for kapp in sea ice models was historically taken
from the formulation of Abels [1892] for snow of

Figure 1. Correlation between (a) the mean snow den-
sity/(b) thermal conductivity and the mean seasonal sur-
face wind speed at various locations (see section 2.2.2.2
for details).
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density equal to 330 kg m23. As depicted in Figure 2,
this value is greater than the thermal conductivities
produced by all other relationships introduced above
for low to medium densities, and especially for light
snow. Equation (9) provides lower thermal conductiv-
ities than (8), because Sturm et al. [1997] studied depth
hoar of subarctic taiga in large proportion. Since this
snow type has the lowest kapp, this artificially
decreased their values [Domine et al., 2011a]. For this
reason, the model simulations associated to formula-
tions (8) and (9) in section 3.2 are named KHIGH and
KLOW, respectively. The new regressions ((10) and
(11)) lead to thermal conductivity values in between
those of (8) and (9), for the usual range of snow den-
sities in the model. Because regression 10 represents a
simple parameterization of snow packing, the corre-
sponding simulation is called KPACK in the following
sections.

3. Model Forcing and Experimental Design

3.1. Forcing

[24] A combination of atmospheric reanalyses and cli-
matologies are used to drive the sea ice-ocean model.
We use the NCEP/NCAR daily reanalyses of 2 m air
temperature and 10 m u- and v-wind components
[Kalnay et al., 1996], and monthly climatologies of rela-
tive humidity [Trenberth et al., 1989], total cloudiness
[Berliand and Strokina, 1980], and precipitation [Large
and Yeager, 2004]. River runoff rates are derived from
Dai and Trenberth [2002].

[25] All forcing fields are spatially interpolated from a
2� 3 2� latitude-longitude grid to the ORCA1 grid. Sur-
face radiative and turbulent heat fluxes are calculated
following Goosse [1997]. The surface wind stress over
sea ice is computed with a quadratic bulk formula
assuming a drag coefficient Ca 5 1.40 3 1023.

3.2. Model Setup and Simulations

[26] All simulations are run from 1948 to 2007, but
the analysis and the comparison of model output with
observations are made over the 1979–2007 period, for
which satellite data are available. Initial ocean tempera-
ture and salinity fields are taken from Levitus [1998].
Wherever the sea surface temperature is below 0�C, sea
ice thicknesses (snow depths) of 3.5 (0.3 m) and 1 m (0.1
m) are prescribed in the Arctic and the Southern
Oceans, respectively. Ice concentration is initialized to
0.95 and 0.90 in the ice-covered regions of the Northern
and Southern Hemispheres, respectively. Initial sea ice
and snow temperatures are fixed to 270 K, and sea ice
salinity to 6 PSU. The ocean model time step is Dt0 5 1
h and the sea ice model is called every six ocean time
steps.

[27] From the thermal conductivity and density for-
mulations described in section 2.2.2.2., four simulations,
hereafter referred to as KPACK, KCST, KHIGH, and
KLOW, were performed. Table 1 makes explicit which
parameterization was used in each run. The first simula-
tion (KPACK) was carried out using equations (10) and
(11). KCST was run utilizing a constant snow thermal
conductivity (equal to 0.31 W m21 K21) for each snow
layer. KHIGH and KLOW were conducted using rela-
tionships (8) and (9), respectively, and prescribing the
snow density profile as described in section 2.2.2.1.

4. Observations

[28] In the next sections, we assess the skill of all
model simulations in both hemispheres by comparing
their sea ice thicknesses, concentrations, and extent to
observations coming from different sources.

[29] Two sets of observational data are used to vali-
date the modeled ice thickness. In the Northern Hemi-
sphere, draft data (defined as the ice thickness below
sea level) measured by Upward Looking Sonars (ULS)
onboard submarines are available from 1979 to 2000.
These data, described in Rothrock et al. [2008], are pro-
vided by the NSIDC (National Snow and Ice Data Cen-
ter). They include mean drafts from more than 3000, 50
km long transects and about 30 cruises. According to
Rothrock et al. [2008], the ULS observational errors
have a standard deviation of 0.38 m with no significant
bias. In the Southern Ocean, we use the ASPeCt
(Antarctic Sea Ice Processes and Climate) data of

Figure 2. Snow thermal conductivity versus density
for Yen [1981] and Sturm et al. [1997] relationships. Col-
ored dots of coordinates (qs, ks) represent snow thermal
conductivity and density as functions of wind speed
from Domine et al. [2011b].

Table 1. List of the Simulations Performed With the Model,

Using the New Snow Scheme

Simulation
Name

Parameterization Used for Snow Density
and Thermal Conductivity

KPACK Density and effective thermal conductivity of
Domine et al. [2011b], equations (10) and (11).

KCST Prescribed density (as detailed in section 2.2.2.1).
Constant thermal conductivity 5 0.31 W m21 K21.

KHIGH Prescribed density (as detailed in section 2.2.2.1).
Effective thermal conductivity of Yen [1981].

KLOW Prescribed density (as detailed in section 2.2.2.1).
Effective thermal conductivity of Sturm et al. [1997].
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Worby et al. [2008a], which consists of about 14,000
estimates of sea ice thickness over the 1983–2000 pe-
riod. Sea ice thicknesses from this data set are observed
from ships when they break the ice and turn it sideways.
Errors in the ASPeCt thickness range from 620% to
630% for undeformed and deformed ice, respectively
[Worby et al., 2008a; Kurtz and Markus, 2012].

[30] For ice concentration, we use in both hemi-
spheres the data from the Scanning Multichannel
Microwave Radiometer (SMMR) and the Special Sen-
sor Microwave/Imager (SSM/I) reprocessed by the
EUMETSAT Ocean and Sea Ice Satellite Application
Facility (Tonboe and Nielsen, 2010), from 1983 to 2007.
The data were interpolated onto the model grid in order
to perform the pointwise comparison with the simulated
sea ice concentrations. Sea ice extent is then computed
based on monthly fields of ice concentration from both
model runs and satellite data, as the total area of oce-
anic grid cells covered by more than 15% of sea ice.

[31] Finally, we qualitatively compare the model
snow depth distributions to those obtained by Kwok
et al. [2011] and Kurtz and Farrell [2011], from large-
scale airborne surveys over the Arctic basin, and by
Worby et al. [2008b], who evaluated the EOS Aqua
Advanced Microwave Scanning Radiometer (AMSR-
E) snow depth product in the Southern Ocean.

5. Results

[32] In the following, we discuss the model ability to
simulate the mean state and variability of the Arctic
and Antarctic sea ice covers over the 1979–2007 period.
All deviations between observed and simulated quanti-
ties are expressed in terms of absolute value of the dif-
ference model—observation. Absolute values were
chosen to avoid compensation of deviations with oppo-

site signs, and resulting in misleading small values. A
summary of these errors is given in Table 2.

5.1. Mean State

[33] We invite the reader to refer to Figures 3 and 4
together with Table 2. Figure 3 shows the mean sea-
sonal cycles of sea ice extent in both hemispheres, for
all simulations and as observed. Figure 4 displays the
differences between the simulated and observed sea ice
drafts in the Northern Hemisphere at places where
observations are available. Red (blue) areas show where
the model overestimates (underestimates) the sea ice
draft or thickness. The equivalent maps are not shown
for the Southern Hemisphere for reasons that are given
in section 5.2.2. The mean snow state is illustrated in
Figure 5, which shows the April mean Snow Depth Dis-
tribution (SDD) averaged over the last decade of each
run on both Arctic FYI and MYI (we use the category-
averaged snow depths to compute them), while Figure 6
depicts the Antarctic annual mean snow depths over sea
ice for each simulation.
5.1.1. Northern Hemisphere

[34] As shown by Figures 3 and 4, KPACK and
KHIGH both provide a realistic mean sea ice state in
the NH. For KPACK, the sea ice extent annual mean
deviation and the draft mean absolute error with
respect to observations are 0.35 3 106 km2 (2.8%) and
0.63 m, respectively. The mean draft in this simulation
is overestimated by 2.3%. With such errors, typical for
NEMO-LIM3 in the ORCA1 configuration [Massonnet
et al., 2011], both globally and regionally, KPACK
exhibits the best skill in simulating the Arctic sea ice
extent and thickness among all simulations. KHIGH
has slightly larger sea ice extent and draft mean errors
(0.4 3 106 km2 and 0.64 m). KCST and KLOW overes-
timate and underestimate the mean sea ice draft, with
relative errors of 134.5% and 253.3%, respectively.
KLOW presents by far the largest ice extent absolute
differences with observations, with a mean value reach-
ing 1.0 3 106 km2 (�10%).

[35] All model simulations do reasonably well in
reproducing the observed SDD in the Arctic. In all
cases, the snow depth on FYI ranges from 0 to 45 cm,
with a peak at 10 cm (instead of 15 cm in Kwok et al.
[2011]) in the SDD. On MYI, the maximum snow depth
is about 120 cm for KCST, KHIGH, and KLOW (peak
in SDD around 45–50 cm), while it is only 100 cm for
KPACK (peak at 30 cm). With mean snow depths (over
1997–2007) varying from 7 (15 cm) to 17 cm (31 cm) on
FYI (MYI), the snow pack appears globally too thin
but the shape and width of the SDDs are relatively well
captured given the possible errors in the precipitation
climatology used to force the model, especially in
KPACK.
5.1.2. Southern Hemisphere

[36] As revealed by Table 2, the model sea ice thick-
ness is less sensitive to the snow thermal conductivity in
the SH than in the NH. A similar mean error of about
35 cm is found for all runs, which explains why maps
equivalent to those displayed in Figure 4 are not shown
for the SH. In contrast, Figure 3 indicates that the SH

Table 2. Mean Absolute Value of the Difference Between

Observed and Simulated Variablesa

KPACK KCST KHIGH KLOW

Mean thickness
error (m)

NH (Draft) 0.63 1.08 0.64 1.55
SH

(Thickness)
0.36 0.36 0.35 0.34

Mean extent
error (106 km2)

NH 0.35 0.44 0.40 1.00
SH 1.01 1.06 0.92 0.72

Ext. Ano.b trend
error (106 km2/yr)

NH 0.027 0.032 0.030 0.013
SH 0.012 0.013 0.008 0.005

Ext. Ano.b std
error (106 km2)

NH 0.16 0.21 0.19 0.005
SH 0.14 0.16 0.12 0.07

aFor draft and thickness errors, the average of the difference
mod.—obs. (in absolute value) is computed over all observation loca-
tions. For sea ice extent, the mean annual cycle over 1979–2007 is
computed for the model and the observations, and the annual mean of
the difference between the two (in absolute value) is calculated.
Observed and simulated monthly extent anomalies are retrieved with
respect to the mean annual cycles of sea ice extent, in order to compute
their trends and standard deviations over 1979–2007. The same
method (absolute value of the difference mod.—obs.) is then applied
to the latter quantities to get the errors. The best statistics for each
diagnostic are enhanced using italics font.

b‘‘Ext. Ano.’’ stands for extent anomaly.
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sea ice extent is relatively sensitive to the snow thermal
conductivity formulation. While KLOW is relatively
poor in the Arctic, it performs better in the SH with
respect to ice extent (error of 0.72 3 106 km2, i.e.,
10.5%) than the other runs (�1.0 3 106 km2). The
model tends to underestimate the SH mean sea ice
thickness by �30%, compared to the ASPeCt ice thick-
ness product. In Fichefet et al. [2000], a negative ice-
ocean feedback was detected when reducing the snow
thermal conductivity, with less ice growth and therefore
less brine rejection, in turn resulting in weaker oceanic
heat fluxes to the ice due to the stronger ocean stratifi-
cation. In their study, the latter process triggered an
enhanced sea ice thermodynamic production competing
with, and sometimes compensating, the initial drop in
sea ice growth rate. Such a feedback is not clearly
observed here, probably because some of the model
components are substantially different. In particular,
NEMO-LIM3 includes the sea ice thickness distribu-
tions, a prognostic salinity, a treatment of the vertical
mixing in the ocean different from the one in the ocean

model of Fichefet et al. [2000], and was used at a higher
resolution.

[37] A common problem of all model runs is their
inability to reproduce the fast decrease in extent in
November-December (see Figure 3). This typical fea-
ture for the NEMO-LIM3 ORCA1 configuration of the
model was already observed in Massonnet et al. [2011]
and is still unexplained.

[38] As in the NH, although the observed geographi-
cal distribution of snow depth is reasonably well repro-
duced, in particular with regards to the ASPeCt snow
data, the model tends to underestimate the snow depths
compared to the Advanced Microwave Scanning Radi-
ometer (AMSR-E) snow depth product [Worby et al.,
2008b] (not shown). The maximum snow depth is found
in the Weddell Sea and reaches 25 cm in KCST, against
19 cm only in KPACK.

5.2. Variability

[39] Surprisingly, the simulations yielding the best
estimates for mean state are not necessarily those

Figure 3. Simulated and observed (Tonboe and Nielsen, 2010) mean seasonal cycle of sea ice extent over the period
1979–2007, for simulations (a) KPACK, (b) KCST, (c) KHIGH, and (d) KLOW. Extents are calculated as the
total area of oceanic grid cells with ice concentration larger than 15%. The error bars denote the standard deviation
of monthly extents during the period of analysis.
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providing the ice extent anomalies in best agreement
with observations. Figure 7 shows the time series and
trends of the monthly anomalies in sea ice extent in
both hemispheres through 1979–2007 for KPACK
and KLOW. Because they are qualitatively similar, we
only show these plots for KPACK, and compiled the

statistics for the other runs in Table 2. Both Figure 7
and Table 2 reveal that KLOW systematically outper-
forms all other runs in reproducing the observed sea ice
extent anomalies, with relative errors of 225.3%
(223.1%) for the trend in extent anomaly and 10.8%
(113.3%) for the standard deviation in extent anomaly

Figure 4. Differences (in meters) between simulated and ULS (National Snow and Ice Data Center, 1998,
updated 2006) sea ice drafts in the Northern Hemisphere (mod.—obs.), for simulations (a) KPACK, (b) KCST, (c)
KHIGH, and (d) KLOW. Modeled drafts have been chosen according to the month and year of the observation.
The corresponding grid cell has been chosen as the closest to the coordinates of the observation.
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in the NH (SH). Contrary to the mean sea ice state, the
sea ice variability seems to be equally sensitive to the
snow thermal conductivity formulation in both
hemispheres.

6. Discussion

6.1. Mean State

[40] As shown in section 5.1, KCST overestimates
the Arctic sea ice volume while such a behavior was
not observed with the former representation of snow
in the model [see, e.g., Vancoppenolle et al., 2009a].
Two reasons can be invoked. First, as explained in sec-
tion 2.2.2.3., the snow thermal conductivity in KCST
seems to be overestimated compared with other formu-
lations, particularly for snow on FYI that has smaller
densities in the model. The result is a strongly
enhanced FYI growth rate in winter. Second, our
snow scheme is multilayered and better resolves the
vertical temperature profile in the snow, making the
model more sensitive to the surface thermodynamic

forcing compared to its former version. This feature is
also observed in the Southern Ocean, although less sig-
nificantly. As clearly shown by Figure 8, presenting
the seasonal cycle of the sea ice mass balance spatially
integrated terms, the surface energy budget in the
Southern Ocean is such that it rarely leads to surface
melt. Hence, the sea ice mass balance in the South is
rather driven by snow ice formation, and formation
and melting at the base. Therefore, the relative impor-
tance of atmospheric processes is likely smaller than in
the Arctic. Compared to KCST or KPACK, KLOW
produces more insulating snow on top of sea ice that
curtails the heat loss from the ice to the atmosphere
and thus limits the basal ice growth in winter (see Fig-
ure 8). FYI therefore covers a larger part of the Arctic
Ocean during wintertime, in turn leading to a signifi-
cantly reduced sea ice summer extent. Among all simu-
lations, KHIGH leads to the most realistic sea ice
thicknesses with a snow thermal conductivity relation-
ship naturally leading to values widely varying
between those produced by KLOW and KCST.

Figure 5. Arctic mean snow depth probability density functions (1997–2007) on FYI and MYI for simulations (a)
KPACK, (b) KCST, (c) KHIGH, and (d) KLOW. Category-averaged snow depths are used to compute the distribu-
tions. Vertical dashed lines represent the modal snow depth from Kwok et al. [2011], for FYI (blue) and MYI (red).
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[41] The Arctic sea ice draft simulated by the KPACK
and KLOW runs differ substantially from each other,
as depicted in Figure 4. Yet, the snow thermal conduc-
tivities for these two parameterizations look similar
(Figure 2). To explain this apparent contradiction, we
put forward two reasons. First, the snow thermal con-
ductivity in KPACK is a function of the wind speed
only, and the winds from the atmospheric forcing are
large (�5–10 m s21). For this simulation, kapp reaches
values at the upper tail of the distribution, say

�0.3 W m21 K21. In the KLOW run, kapp is a function
of snow density only (�300 kg m23 in the model), thus
reaching lower values and limiting ice growth in winter.
Second, snow density is also a function of wind speed in
the KPACK simulation, and for the same reasons it is
higher on average than the KLOW density. For the
same snow mass, the snow cover will accordingly be
thinner in KPACK (see also top left of Figure 5), thus
enhancing heat transfers compared to KLOW. These
two effects add up to produce a thicker ice in KPACK

Figure 6. Antarctic annual mean snow depths (1997–2007; in meters) for simulations (a) KPACK, (b) KCST, (c)
KHIGH, and (d) KLOW.
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than in KLOW, and explain the significant difference in
sea ice bottom production between the two simulations
(Figure 8).

[42] In all simulations and in both hemispheres, the
sea ice thickness and extent are also considerably sensi-
tive to the SDDs. Although qualitatively those distribu-
tions seem to be rather well reproduced, quantitatively
the observed SDDs of Kurtz and Farrell [2011] or Kwok
et al. [2011] as well as the geographical distribution of
mean snow depth in the Southern Ocean are not cap-
tured. Errors can be attributed to the forcing or to the
model itself. Regarding the forcing, using a climatology
for precipitation involves the loss of interannual vari-
ability. Besides, the atmospheric reanalyses and clima-
tologies used to force the model have known biases
[e.g., Bromwich et al., 2007; Vancoppenolle et al., 2011].
In particular, a bias in snow precipitation is likely to
affect the simulated SDDs by shifting them toward
thicker or thinner snow, thus improving or worsening
the quantitative comparison with observed SDDs,
respectively. Interestingly, KPACK provides the best
distribution shapes compared to the observational stud-

ies mentioned previously. This simulation uses regres-
sion (8), which emphasizes the importance of
accounting for the direct influence of wind on snow
depth, and ultimately suggests that developing a repre-
sentation of wind-forced snow redistribution in the
model would significantly impact on the results and
may be a lever for improving the simulated SDDs. We
therefore recommend this kind of parameterization for
snow density and thermal conductivity in sea ice models
designed for climate studies.

[43] The mean snow depths on Arctic MYI (Figure 5)
also indicate that runs with the smallest (largest) mean
snow thermal conductivities produce the smallest (larg-
est) snow depths. The reason is that a smaller snow ther-
mal conductivity induces less heat carried into the inner
snow-sea ice pack, therefore leading to an earlier onset
of surface melt at the end of spring and a more intense
thinning all along the snow melt period, and conversely.
This also explains the early ice extent minimum of
KLOW, which is shifted from September to August.

[44] Similar observations can be made in the SH,
although for different reasons since surface melt conditions

Figure 7. Simulated (red) and observed (black) (Tonboe and Nielsen, 2010) monthly anomalies in sea ice extent
(relative to the mean seasonal cycle of sea ice extent) in the (top) NH and (bottom) SH over the period 1979–2007,
for (a) KPACK Arctic, (b) KLOW Arctic, (c) KPACK Antarctic, and (d) KLOW Antarctic. The plain lines indi-
cate the trends computed from linear regression over the same period.
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are rarely reached there. As sea ice is thinner in KLOW
(due to the limited bottom growth during winter), more
snow ice production occurs due to more frequent negative
freeboards and seawater flooding the snow-ice interface.
This process, virtually nonexistent in the NH (see Figure 8,
top), enhances the snow thinning but counterbalances the
sea ice thermodynamic thinning. The latter mechanism
partly explains why, in the SH, the differences in ice thick-
ness between all runs are still small (as suggested by Table
2) relatively to the differences in mean snow thermal con-
ductivity through the various formulations that are used.
Furthermore, even though KLOW exhibits the smallest
absolute deviations with regard to sea ice extent observa-
tions, it is the simulation with the smallest mean sea ice
thickness and volume (not shown). The reason is that with

a smaller volume and minimum sea ice extent (see Figure
3), the larger area fraction of leads in late summer enables
a more intense lateral growth of sea ice all along the fol-
lowing winter (Figure 8), hence compensating for the ini-
tial underestimation in the seasonal sea ice extent. Finally,
the significantly less pronounced sensitivity of the SH sea
ice thickness to the snow thermal conductivity representa-
tion is consistent with the findings of Massonnet et al.
[2011]. They showed in particular that the NEMO-LIM3
SH ice concentration, extent, and thickness are less sensi-
tive to the model physics compared to their NH counter-
parts, in the ORCA1 configuration. This result is due to
the crucial importance of the oceanic heat supply in the
Antarctic sea ice mass balance. Because the average value
of this flux is larger in the SH, sea ice responds more

Figure 8. Spatially integrated terms from the simulated mean sea ice mass balance (over 1979–2007), for (a)
KPACK Arctic, (b) KLOW Arctic, (c) KPACK Antarctic, and (d) KLOW Antarctic. Positive (negative) diagnos-
tics represent sea ice mass source (sink) terms. Snow ice formation corresponds to the surface production of sea ice
whenever seawater floods the snow-sea ice interface and refreezes. Lateral production depicts the mass of sea ice
forming in leads. Bottom production/melt and surface melt are the integrated diagnostics for the basal thermody-
namic accretion/ablation of sea ice and the surface melt due to positive imbalance in the surface energy budget,
respectively. There is no explicit lateral melting in the model.
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significantly to oceanic anomalies than to atmospheric
ones, as already mentioned by Maykut and Untersteiner
[1971].

6.2. Variability

[45] As shown by the model statistics, KLOW pro-
vides the smallest errors for the monthly sea ice extent
anomalies with respect to observations in both hemi-
spheres. However, only the 2 m air temperature and 10
m u-v winds bear an interannual component in our
setup, while the other forcings (humidity, cloudiness,
and precipitation) are climatological. Therefore, the full
potential impacts of interannual variability and trends
of the actual atmospheric state on the sea ice cover are
only partially accounted for in our simulations. As an
example, a significant trend in the Southern Ocean’s
precipitation in the context of a warming climate, as in
Zhang [2007], would likely affect the sea ice extent
anomalies and trends over the simulation period. Addi-
tionally, the restoring of the sea surface salinities
toward the Levitus [1998] climatology further strength-
ens this problem. This in turn suggests limitations in the
conclusions that can be drawn from our analysis of sta-
tistics in Table 2.

[46] KLOW simulation yields a smaller sea ice volume
and a MYI areal coverage accordingly smaller, resulting
in two consequences. First, the ice has a lower mass and
responds faster to the dynamic forcing from the ocean
and the atmosphere. Second, larger direct inputs of so-
lar radiation are allowed into the ocean during the sum-
mertime drop in FYI concentration, affecting the heat
budget in leads and the oceanic turbulent heat flux at
the ice base. A positive ice-ocean feedback is then trig-
gered as the bottom melt of the remaining ice is
enhanced, subserving further decreases in ice concentra-
tion. Being aware of the aforementioned issues, the
seemingly better ice extent variability in KLOW may
therefore be attributed to larger oceanic interactions
occurring during the simulation, while the impacts of
the climatological forcing (clearly lacking of atmos-
pheric feedbacks) are lessened. Nonetheless, this is to
the detriment of the modeled sea ice mean volume,
which seems to be remarkably underestimated, espe-
cially in the NH.

7. Conclusions

[47] A new snow thermodynamic scheme was embed-
ded into the sea ice model LIM3 and the sensitivity of
the global coupled ice-ocean model NEMO-LIM3 to
the representation of snow thermal conductivity was
assessed through four runs (at a 1� horizontal resolu-
tion) using different snow thermal conductivity formu-
lations. These include a constant thermal conductivity
(simulation KCST), relationships of Yen [1981]
(KHIGH), Sturm et al. [1997] (KLOW), and a new one,
based on Domine et al. [2011b] (KPACK), which is spe-
cifically designed for climate studies. The first result of
this study is that the 0.31 W m21 K21 value for snow
thermal conductivity, which is commonly used in large-
scale sea ice models with a single-layer representation of

snow, cannot be used in a multilayer snow scheme with
varying density. This value, which seems too large,
except for very dense snow, leads to an overestimation
of the Arctic sea ice thickness, particularly in a multi-
layer scheme that is naturally more sensitive to the ther-
modynamic surface forcing than a single layer with
constant thermophysical properties. None of these sim-
ulations provides good results in terms of all snow and
ice variables and in both hemispheres simultaneously,
which stresses the specific response of each hemisphere
to varying snow physics. In the Arctic, the KPACK and
KHIGH simulations give a reasonable estimate of the
mean sea ice extent (absolute error between model and
observations of 0.35 3 106 km2 for KPACK, i.e. 2.8%)
and thickness (absolute error of 0.63 m, KPACK)
although the observed monthly sea ice extent anomalies
over 1979–2007 are better reproduced with KLOW. In
the Southern Ocean, KLOW leads to the minimum
absolute errors, with mean values of 0.72 3 106 km2

(10.5%) and 0.34 m (�30%) for ice extent and thickness,
respectively. However, these better statistics may be due
to compensating errors. Like in the NH, the sea ice ba-
sal thermodynamic growth is clearly curtailed by the
low snow thermal conductivity values in the simulation,
but it is partly compensated by both lateral production
and snow ice formation maintaining the hydrostatic
equilibrium of the snow-ice column. In the Arctic, low
snowfall and thicker ice virtually prevent snow ice for-
mation. KLOW also seems to feature a better sea ice
variability compared to all other simulations, poten-
tially allowing the oceanic feedbacks to play a more
prominent role in driving the geographical distributions
and temporal evolution of the ice concentration
through the oceanic heat flux at the ice base. The new
snow thermal conductivity formulation used in
KPACK seems the only one reasonably well suited for
both hemispheres even though the mean errors with
respect to observed sea ice extent (1.013106 km2

(13.0%)) and thickness (0.37 m) are still quite large in
the Southern Ocean, which could admittedly be due to
other sources of errors in the simulation. The most im-
portant peculiarity of KPACK is its ability to repro-
duce the observed shape of the Snow Depth
Distributions, thanks to relationships simply translating
the effects the snow packing by wind, and indirectly
influencing the snow depth. The importance of the
Snow Depth Distributions in the model physics ulti-
mately suggests that accounting for snow redistribution
by the wind would presumably impact positively on the
model performance. Finally, because of the lack of
atmospheric feedbacks and the intrinsic limitations of
the forcing, due to potential biases in the reanalyses and
climatologies, those findings will have to be investigated
using fully coupled configurations of the model, once
available. This contribution stresses the need for further
understanding of snow processes on sea ice and of
efforts toward better representation in large-scale
models.
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